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Abstract. In the framework of the nonlinear mechanics, we study the dynamics of a neutral atom confined
in a magnetic quadrupolar trap. Owing to the axial symmetry of the system, the z-component of the
angular momentum pφ is an integral of motion and, in cylindrical coordinates, the dynamics of the atom
is modeled by a two-degree of freedom Hamiltonian. The structure and evolution of the phase space as a
function of the energy is explored extensively by means of numerical techniques of continuation of families
of periodic orbits and Poincaré surfaces of section.

1 Introduction

In the last decade of the 20th century, the experimen-
tal achievement of Bose-Einstein condensation (BEC) of
atoms has turned one of the most beautiful physics dreams
into reality [1–5]. Today, BEC remains one of the most ac-
tive fields in physics in such way that it would imposible
to enumerate the phetora of experimental and theoreti-
cal papers related to BEC. A Bose-Einstein condensate
is obtained when a gas of bosonic neutral atoms are led
below a critical temperature of a few tens of nanokelvins
from which, most of the atoms are occupying the same
quantum state.

Cooling atoms to those very low critical temperatures
was a technical challenge that required the development of
several experimental techniques [6]. The first one was laser
cooling [7–9] and with this procedure, atoms are cooled to
temperatures in the microkelvin range. In any case, these
temperatures are not low enough to obtain atomic conden-
sates and it is necessary to further reduce the temperature
of the atoms by evaporative cooling [10,11]. However, be-
fore to be evaporatively cooled, atoms have to be confined
in a magnetic trap. For this reason, magnetic trapping is
a crucial step in the BEC attainment.

The magnetic confining of neutral atoms with perma-
nent magnetic moment is possible due to the interaction
of the magnetic moment with a non-uniform static mag-
netic field. In order to be trapped, the magnetic force on
the atom must be attractive and it requires the magnetic
moment and the field to keep an appropriate relative di-
rection. This takes place when the Larmor precession fre-
quency of the magnetic moment around the field is much
greater than the orbital frequency. Under this approxima-
tion (the so-called adiabatic condition), the orbital mo-
tion does not affect the relative orientation between the
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Fig. 1. (a) Two-coils quadrupole magnetic trap. (b) Contour
levels of B(ρ, z; A) along the direction y = 0. All contours are
plotted at every 20 G up to 200 G except the contour passing
through the saddle points at 97.4327 G.

magnetic moment and the local field. In this way, the atom
keeps the desired orientation in a fixed positive Zeeman
sublevel and the trapping takes place around a local min-
imum of the field [4]. If the adiabatic condition breaks,
the force may become repulsive due to magnetic moment
flips to untrapped negative Zeeman sublevels, in such way
that the atom is ejected from the trap. These spin flips
(Majorana transitions [12]) are likely to occur in trap re-
gions where the atom is moving fast and where the field
strength is small [13].

The quadrupole trap [14–16] and the Ioffe trap [14,17]
are among the most significant magnetic traps for neutral
atoms. The quadrupole trap consists of two Helmholtz
coils with currents in opposite directions (see Fig. 1).
The field at the center of this trap has a zero minimum.
The Ioffe trap consists of four straight currents bars plus
two Helmholtz coils and it has a non-zero field minimum.
The theory of confining magnetic fields for neutral atoms
is developed in [14]. In that paper, the cumbersome exact
expressions of the magnetic field are replaced by suitable
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multipole polynomial expansions. As it is pointed in that
paper, these multipole expansions would be useful for
quantum and classical calculations.

The relevance of studying the classical dynam-
ics of magnetically trapped neutral species for atom
spectroscopy was pointed out by several authors [18–20].
Nevertheless, classical studies have been surprisingly rele-
gated. The main classical approaches are now briefly sum-
marized. A seminal study by Bergeman [5,21,22] showed
that, for high enough energy, the classical dynamics of an
atom trapped in a quadrupolar trap is chaotic. Later on,
Gomer et al. [18] found similar results. It is worth noting
that these works were performed using only the first non-
trivial terms of the multipole polynomial expansion of the
magnetic field. Surkov et al. [23] studied the low energy
coupling between the three-degree of freedom of an atom
in a Ioffe trap.

The main goal of this paper is to cover the lack of
classical studies in magnetically trapped neutral atoms.
Thence, we pay attention in the classical dynamics of an
atom trapped in a quadrupole trap. Finally, we point here
that the highly non-linear nature of the trapping mag-
netic fields, makes these systems very attractive for their
classical study.

The paper is organized as follows. In Section 2, we use
the adiabatic approximation to state the confining poten-
tial created by the quadrupolar trap. In Section 3 we es-
tablish the two-degree of freedom Hamiltonian governing
the dynamics of the system. By using a convenient set of
units, we obtain that the relevant parameters controlling
the dynamics are the z-component pφ of the angular mo-
mentum and the energy E. The study of the critical points
of the effective potential of the system is provided in Sec-
tion 4. From this study, we can understand part of the
dynamics. In Section 5 and 6 we study, for two different
values of pφ, the evolution of the phase space structure of
the system as a function of the energy E. In particular, in
Section 5, we perform a comprehensive study of the bifur-
cations of the two fundamental families of periodic orbits
(normal modes) that determine the phase space structure.
The escape dynamics is also studied in Sections 5 and 6.
The conclusions are provided in Section 7.

2 The confining potential

Under the adiabatic approximation, the atom remains in
a fixed Zeeman sublevel mF and the potential V (r) re-
sponsible for the interaction between the atom and the
magnetic field B is given by [4]

V (r) ≈ μef B(r), μef = μB g mF , (1)

where g is the g-factor and μB is the Bohr magneton.
From equation (1) we observe that trappable states are
those with positive mF > 0 (low-field seeking states) [4].

Now, let us consider a two coils magnetic quadrupole
trap. The coils, of radius R and with opposite equal cur-
rents I, are perpendicular to the z axis and centered at
zo = ±A (see Fig. 1a). The axial z-symmetry of the mag-
netic field created by a coil makes convenient to use cylin-
drical coordinates (ρ, z, φ). In this way, the azimuthal Bφ,

axial Bz and radial Bρ components of the magnetic field
of each coil are given by [14,24]

Bφ = 0, (2)

Bz =
μo I

2 π
bz(ρ, z; zo), (3)

Bρ =
μo I

2 π
bρ(ρ, z; zo), (4)

where the terms bz(ρ, z; zo) and bρ(ρ, z; zo) are the
expressions:

bz(ρ, z; zo) =
1

√
(R + ρ)2 + (z − zo)2

(5)

×
[
K(k2) +

R2 − ρ2 − (z − zo)2

(R − ρ)2 + (z − zo)2
E(k2)

]
,

(6)

bρ(ρ, z; zo) =
z − zo

ρ
√

(R + ρ)2 + (z − zo)2
(7)

×
[
−K(k2) +

R2 + ρ2 + (z − zo)2

(R − ρ)2 + (z − zo)2
E(k2)

]
,

(8)

being k2 = 4 R ρ/
[
(R + ρ)2 + (z − zo)2

]
the argument

of the complete elliptic integrals K and E. Using the
expressions (2)–(7) for our two coils trap configuration
and according to expression (1), the confining potential
V (ρ, z; A) is given by

V (ρ, z; A) = μef B(ρ, z; A) (9)

B(ρ, z; A) =
μo I

2 π

[
[bρ(ρ, z; A) − bρ(ρ, z;−A)]2 (10)

+ [bz(ρ, z; A) − bz(ρ, z;−A)]2
]1/2

.

Note that V (ρ, z; A) is also symmetric with respect to the
coordinate z. Except for the value of μef , V (ρ, z; A) and
B(ρ, z; A) present the same landscape with four critical
points: a minimum Pm of zero value at the origin and
three saddle points (see Fig. 1b). The existence of the
minimum provides the confining ability. One of the saddles
(Ps1 in Fig. 1b) is located at the z = 0 axis. The other two
saddle points, named Ps2, have equal same threshold value
and they are symmetrically located at the ρ = 0 axis (see
Fig. 1b). For A/R = 0.62673 all the saddle points have the
same energy. This is the depicted situation in Figure 1b.

The usual approach to study the dynamics of atoms
moving near the center of the trap is to consider the first
term V1(ρ, z; A) of the multipole polynomial expansions of
V (ρ, z; A) [14]. This term is given by:

V1(ρ, z; A) = μef B1(ρ, z; A), (11)

B1(ρ, z; A) = b1

√
ρ2 + 4z2, b1 =

3 I A R2 μo

2 (R2 + A2)5/2
.

We study the accuracy of this approximation in Fig-
ure 2 by comparing the contour magnetic field lines given
by (11) to the exact contour field lines given by (9). As it
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Fig. 2. Comparisson between the contour levels (blue curves)
of B1(ρ, z; A) from the expansion (11) and the contour levels
(red curves) of B(ρ, z; A) from the exact expression (10). Con-
tours for 20 G, 40 G, 60 G, 80 G, 97.4327 G and 100 G. Figure
for I = 200 A, R = 1 cm and A = 0.62673 cm.

was expected, this short expansion behaves correctly near
the center of the trap.

In a conventional trap of a few centimeters in size, b1

(the field gradient) is about a few hundred Gauss/cm. In
particular, b1 ≈ 100 G/cm for R = 1 cm, A = 0.62673 cm
and I = 200 A. If the atom is sodium in the mF = 2
Zeeman sublevel, and the circular orbit has a radius ρo =
0.1 cm, we get ωL/2π ≈ 55 MHz and ω/2π ≈ 150 Hz.
Thence, the adiabatic condition is fulfilled and the motion
of the atom can be considered classical.

3 The Hamiltonian and reductions

In cylindrical coordinates, the Hamiltonian H of a trapped
atom of mass m reads as

H =
1

2m

(

p2
ρ + p2

z +
p2

φ

ρ2

)

+ V (ρ, z; A) . (12)

Due to the axial symmetry of the field, the z-component
pφ of the angular momentum is a constant of the mo-
tion, and we are dealing with a two-degree of freedom
Hamiltonian system. We define the effective potential

U(ρ, z; A) = p2
φ/(2mρ2) + V (ρ, z; A)

which includes the centrifugal term depending on pφ. Be-
sides the internal parameters pφ and the energy H = E,
the dynamics depends on the external parameters m, μef ,
I, R, A, that is to say, on the kind of atom and on the
geometry of the trap. It is possible to reduce the num-
ber of the external parameters by using the dimensionless
lengths ρ′ = ρ/R, z′ = z/R and A′ = A/R and the di-
mensionless time t′ = t ωo, where the frequency ωo is

ωo =

√
μefBo

mR2
, B0 =

μo I

2 π R
.

Applying these transformations to (12), we arrive at the
following dimensionless Hamiltonian

E′ = H′ =
H

μef Bo
=

1
2

(
p′2ρ + p′2z

)
+ U (ρ′, z′; A′) , (13)

where the (dimensionless) effective potential takes the
form

U(ρ′, z′; A′) =
p′2φ
2ρ′2

+
[
[bρ′(ρ′, z′; A′) − bρ(ρ′, z′;−A′)]2

+ [bz(ρ′, z′; A′) − bz(ρ′, z′;−A′)]2
]
1/2.

(14)

Now, the system depends on the three parameters
(E′, p′φ, A′). Note that the energy E′ is expressed in units
of Eo = μef Bo. If the same procedure is applied to the
expansion (11), we get

U1(ρ′, z′; A′) =
p′2φ
2ρ′2

+b′1
√

ρ′2 + 4z′2, b′1 =
3 A′ π

(1 + A′2)5/2
.

(15)
In order to simplify the notation, hereafter we drop primes
in coordinates and momenta. From Hamiltonian (13), the
equations of motion read as

ż = pz, ρ̇ = pρ,

ṗz = −∂V (ρ, z; A′)
∂z

, ṗρ =
p2

φ

ρ3
− ∂V (ρ, z; A′)

∂ρ
. (16)

If we consider initial conditions with pz = z = 0, it is easy
to check that in the equations of motion (16) we obtain
ṗz = ż = 0, which corresponds to pure analytic vibrational
rectilinear periodic orbits along the ρ axis. We name this
kind of rectilinear orbits as Iρ.

4 The effective potential

A previous way to understand the dynamics is to study
the shape of the effective potential U(ρ, z; A′). The shape
of U(ρ, z; A′) is mainly determined by its critical points.
The critical points of U(ρ, z; A′) are given by the solutions
of the equations

∂V (ρ, z; A′)
∂z

= 0,

p2
φ

ρ3
− ∂V (ρ, z; A′)

∂ρ
= 0. (17)

For a constant value of A′ (fixed trap geometry), the posi-
tion and the energy of the critical points depend on pφ. In
what follows, we take A′ = 0.62673. For pφ = 0, the crit-
ical points of U(ρ, z; A′) are those of V (ρ, z; A′), e.g., the
minimum Pm and the saddle points Ps1 and Ps2 showed
in Figure 1b. When pφ �= 0, the centrifugal barrier in
U(ρ, z; A′) prevents the atom to cross the center of the
trap, and the minimum Pm and the saddle points Ps2 are
shifted from the ρ = 0 axis (see Fig. 3a for A′ = 0.62673
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Fig. 3. (a) Equipotencial curves of the effective potencial U(ρ, z; A′) for pφ = 0.05. The purple colored curve stands for the
(dimensionless) energy E = 1 contour. (b) Evolution as a function of pφ of the positions of ρm, the characteristic radius ρc and
the saddle point Ps1. (c) Effective potential along the z = 0 direction for increasing values of pφ. As pφ increases the depth of
the potential well along the ρ direction decreases and eventually it disappears. (d) Evolution as a function of pφ of the energy
(Em, Es1, Es2) of the critical points (Pm, Ps1, Ps2). All figures for A′ = 0.62673.

and pφ = 0.05). When the atom is moving near the center
of the trap, we use the approximation V1(ρ, z; A′) given by
the expression (15) to get that the minimum Pm is located
at the characteristic radius ρc,

ρc =

(
p2

φ

b′1

)1/3

. (18)

The evolution of (18) as a function of pφ is shown in Fig-
ure 3b. However, in the general case it is not possible to
obtain close expressions of the critical points as a function
of pφ. Hence, we obtain the position and the energy of the
critical points by solving numerically equations (17) for
different values of pφ. In Figure 3b is depicted the evolu-
tion of ρm and ρs1 in the interval 0 ≤ pφ ≤ 0.8, where ρm

and ρs1 are, respectively, the positions of the minimum Pm

and the saddle point Ps1 at the ρ axis. For increasing pφ,
Figures 3b–3c show that the minimum Pm moves away
from the center of the trap. At the same time, the sad-
dle point Ps1 approaches the minimum Pm in such way
that at pφ ≈ 1.02416 they collide and both disappear
(this situation is showed in Fig. 3c). As consequence, for
pφ > 1.02416, there is not potential well and the atom
can not be confined. For a wide range of values of pφ,
Figure 3b shows that the characteristic radius ρc is a very
good approximation of ρm. Roughly speaking, through the

value of pφ, equation (18) allows us to control the “mean”
size ρc of the orbits that the trapped atom can describe,
e.g., pφ indicates how far from the center of the trap the
atom can be orbiting.

The evolution of the energies Em, Es1 and Es2 of the
critical points Pm, Ps1 and Ps2 in the same pφ interval is
shown in Figure 3d. In the inset of this figure it is also
shown the evolution of the potential well depth by plot-
ting the energy gaps (Es1 − Em) and (Es2 − Em). For
pφ �= 0, the energies Es1 and Es2 are no longer equal, be-
ing Es1 < Es2 and Es2 increases much faster than Es1. In-
deed, the escape channel along Ps1 (e.g. along the ρ axis) is
energetically more accessible than the channel along Ps2.
In other words, the energy Es1 determines the potential
well depth of the trap. As expected, when pφ increases,
the energies Em and Es1 tend one to each other in such
way that, at pφ ≈ 1.02416 when ρm and ρs1 collide, we
have that Em ≈ Es1.

5 Phase space structure

In the preceding Section 2, we concluded that pφ con-
trols the confining ability of the trap. In this section we
will study the evolution of the phase phase governed by
the Hamiltonian (13) as a function of the parameters pφ

and E.
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Fig. 4. Surfaces of section (a) pz = 0 and (b) pρ = 0. (c) Normal modes Iz and Iρ and examples of quasiperiodic orbits around
them. All figures for pφ = 0.05 and energy E = 0.5.

The phase space structure of a two-degress of free-
dom Hamiltonian system is mainly characterized by the
number and stability of the periodic orbits existing in
phase space. A common way to illustrate the structure
and evolution of the phase space of a two-degree of free-
dom Hamiltonian system is by using Poincaré surfaces of
section. In our problem there are two ways to define a con-
venient surface of section. One of them as the intersection
of the phase trajectories with the (ρ, pρ) plane for pz = 0,
and the other as the intersection of the phase trajecto-
ries with the (z, pz) plane for pρ = 0. The pz = 0 and the
pρ = 0 Poincaré maps will provide a complementary vision
of the phase space structure because we can ensure that
all orbits will cross at least one of them at any time. Tak-
ing into account the symmetry of the potential V (ρ, z; A′)
with respect to the z axis, the limit of the available region
of the surface of section pz = 0 in the plane (ρ, pρ) is de-
termined by the possible values of the momentum pρ that
are given by the equation

pρ = ±
√√
√√2

[

E − p2
φ

ρ2
− V (ρ, z = 0; A′)

]

. (19)

It is worth noting that the rectilinear orbits Iρ are tangent
to the phase flux in this pz = 0 Poincaré map and they
correspond to the curves defined by (19). On the other
side, the available region of the pρ = 0 surface of section
in the plane (z, pz) is determined by those values of pz

satisfying

pz = ±
√√
√
√2

[

E − p2
φ

ρ2
− V (ρ, z; A′)

]

. (20)

Therefore, the limit of the pρ = 0 Poincaré map corre-
sponds to the maximum and minimum values of pz satis-
fying equation (20).

The dynamics of the systems depends on the parame-
ters pφ and E. The range of variation of the energy E is
largely determined by pφ because its value regulates the
effective potential well depth and the mean size of the
trapped orbits. Then, to study the evolution of the phase
space structure we fix the value of pφ while we vary the en-
ergy E. The choice of pφ is a delicate task; it must be large

enough to satisfy the adiabatic condition, while still small
enough for the atom to be trapped (see Fig. 3c). Moreover,
from a classical point of view, passages through the origin
are a major drawback in the computation of orbits because
in the quadrupolar trap the first derivatives of V (ρ, z; A′)
at the origin are not continuous. This fact can be easily
checked when the approach V1(ρ, z; A′), equation (11), is
used. Thence, in order to preserve the adiabatic condition
and to avoid passages through the origin, we consider in
this paper the general case of trajectories with values of
pφ �= 0. In particular, we choose in this study the values
pφ = 0.05 and pφ = 0.5. These two pφ values fulfill the adi-
abatic condition and at the same time they are sufficiently
different from each other to assess the influence of pφ on
the dynamics. In this section we fix the value pφ = 0.05
while in Section 6, the value pφ = 0.5 is used.

For pφ = 0.05, the minimum of the effective potential
is located at ρm ≈ 0.1 and its energy is Em ≈ 0.3841. In
Figures 4a and 4b we show the surfaces of section pz = 0
and pρ = 0 for an energy E = 0.5. In these surfaces of sec-
tion orbits are ordered forming invariant KAM tori around
a central stable fixed point. Note that this is the expected
phase space structure for energies close to the minimum
energy Em. The central fixed point in Figure 4a corre-
sponds to the arch-like periodic orbit named as Iz in Fig-
ure 4c, while the central point in Figure 4b corresponds
to Iρ (see Fig. 4c). In the left and in the right sides of the
pρ = 0 Poincaré section of Figure 4b we observe two small
structures with two stable fixed points which correspond
to Iz. Note that in the Poincaré map pρ = 0, Iz is almost
tangent to the flux. In fact, for pφ = 0, Iz is an analytical
rectilinear orbit along the z axis tangent to the pρ = 0
flux.

Indeed, at this energy, there only exist the two peri-
odic orbits Iρ and Iz which are the radial and the axial
nonlinear normal modes of the system [25,26]. The phase
space is organized around them in such way that, the
nearer a quasiperiodic orbit is to Iz (Iρ), the greater its
orientation is along the periodic orbit Iz (Iρ). Examples
of quasiperiodic orbits around Iz and Iρ are shown in Fig-
ure 4c. Roughly speaking, as long as Iz and Iρ are the only
periodic orbits, the system shows a quasi-linear behavior
because its nonlinearity reduces to a smooth mixture of
the normal modes Iz and Iρ. In the low energy regime, a
similar coupling between the axial and the radial degree
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of freedom of an atom in a Ioffe trap was found by Surkov
et al. [23].

5.1 The stability index k

It is well known that the linear stability of a periodic or-
bit of period T is determined from the eigenvalues of the
monodromy matrix M1 = M(T ). As we are dealing with
a Hamiltonian system, the four eigenvalues (λ1, λ2, λ3, λ4)
of M1 appear in reciprocal pairs. Following the invariance
of the Hamiltonians equations of motion, we have two triv-
ial eigenvalues λ1 = λ2 = 1. Thus, we just have to study
the remaining two eigenvalues (λ3, λ4) of M1. As they
are complex conjugate and reciprocal, λ = λ3 = 1/λ4,
they are on the unit circle in the complex plane or on
the real axis. In order to have a stable periodic orbit, the
two eigenvalues have to be on the unit circle [27]. If λ3

and λ4 are real the orbit is unstable. At the critical cases
λ3 = λ4 = ±1 the stability may change. The stability
index k is usually defined as [28]

k = λ + 1/λ = Tr(M1) − 2.

Indeed, a periodic orbit is stable when |k| < 2, unstable
when |k| > 2 and critical when |k| = 2. The critical values
k = ±2 mean that a new family of periodic orbits has
likely bifurcated from the original one. In particular, the
critical value k = 2 is very important because families
of periodic orbits always appear or disappear when the
stability index takes that value [29]. In general, a periodic
orbit of period mT (m ∈ N) may bifurcate from a parent
periodic orbit of period T when

k = 2 cos(2π n/m), (21)

with n ≤ m coprime natural numbers [29].
There is a close connection between the number m

and the multiplicity of a periodic orbit. We define the
multiplicity m′ of a T -periodic orbit as the number of
fixed points that the orbit generates on a given Poincaré
map. For example, Iz and Iρ have multiplicity m′ = 1
with respect to the Poincaré map pz = 0. So, when a mT
periodic orbit bifurcates from a parent T -periodic orbit
of multiplicity m′, the multiplicity of the bifurcated orbit
is m · m′. We will label the different families of periodic
orbits with its multiplicity m.

Therefore, the combined use of Poincaré sections, nu-
merical continuation of families of periodic orbits and sta-
bility diagrams, where k is plotted versus the parameter
generator of the family, is a useful tool in nonlinear studies
(see for instance [28,30–33]). At this point, we proceed as
follows. For a fixed value of pφ and by using the software
AUTO [34], we carry out the numerical continuation of the
families of the periodic orbits Iρ and Iz that emanate from
these solutions. For fixed pφ, the only free parameter for
our continuation procedure is the energy E, in such way
that the stability diagram of each family as a function of
the energy E is computed. From this diagram, we can de-
tect values of the energy where possible bifurcations take
place. Because a bifurcation produces qualitative changes

in the phase space structure, we illustrate its effect by cal-
culating the surfaces of section when the energy is slightly
lower and slightly larger than the value at the bifurcation.

5.2 Bifurcations of the normal modes Iz and Iρ

For pφ = 0.05, the energies of the saddle points Ps1 and
Ps2 are Es1 ≈ 2.4372 and Es2 ≈ 2.5503. Then, we compute
the evolution of the stability indexes kz and kρ of the
families Iz and Iρ in the interval 0.5 ≤ E ≤ Es1. The
result of this calculation is shown in Figure 5, where kz

and kρ are represented with black lines. A first look to
Figure 5 shows the occurrence of several bifurcations. We
will study some of them for increasing energy.

The Iρ periodic orbit suffers the first bifurcation at
E ≈ 0.5200 (see Fig. 5b). At that energy and at kρ = 2,
there appear two new branches, one stable and one unsta-
ble (solid and dashed green lines in Fig. 5b). Due to the
slow evolution of the stability index of these families, to
observe this bifurcation in the surfaces of section we have
to move to energy values far from the bifurcation energy
value, for example to E = 1.8. Because for this energy
value, several bifurcations have taken place, we will illus-
trate it later. However, and as we will observe later, this is
an island-chain bifurcation of multiplicity m = 6 because,
at E ≈ 0.5200, the stability index of Iρ is k ≈ −1, which
corresponds to m = 6 in equation (21).

As we observe in Figure 5a, the Iz mode suffers the
next two bifurcations because at E ≈ 0.5606 and at
E ≈ 0.6659, the stability index kz crosses twice the value
kz = 2. Both bifurcations are of pitchfork type and they
are visualized in the pz = 0 surfaces of section of Figure 6.
For E = 0.54 (see Fig. 6a) the surface of section presents
the same qualitative structure as Figure 4a. When the
critical value E ≈ 0.5606 is crossed, we observe in Fig-
ure 6b for E = 0.58 the pitchfork bifurcation: from the
fixed point Iz (which becomes unstable) emanate two sta-
ble fixed points (periodic orbits) of multiplicity m = 1.
These new two stable periodic orbits, which correspond
to the green solid line in Figure 5a, consist of two sym-
metric arch-like shaped orbits, which are a mirror reflec-
tion of one another with regard to the ρ-axis (see Fig. 6d).
The second pitchfork bifurcation is observed in Figure 6c.
The periodic orbit Iρ appears as a stable point surrounded
by a heteroclinic separatrix passing through two unstable
fixed points of multiplicity m = 1. Both unstable families
are represented in Figure 5a with the same dashed blue
line. These new unstable fixed points correspond to the
same symmetric periodic orbit with regard to the ρ-axis
but traveled in opposite senses (see Fig. 6d). After these
two bifurcations, the quasi-linear behavior of the system is
lost because there emerge new regions of motion different
from the primal around Iz and Iρ.

When the energy is E ≈ 1.0206, we detect in dia-
gram of Figure 5a the forth bifurcation because at kz = 2
there appear two new branches, one stable and one un-
stable (solid and dashed magenta lines). Again, due to
the slow evolution of the stability index of these families,
we will illustrate this bifurcation later. Nevertheless, we
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point here that it is an island-chain bifurcation of mul-
tiplicity m = 7. We confirm this bifurcation because at
E ≈ 1.0206 the stability index of Iz is kz ≈ −0.4450,
which corresponds to m = 7 in equation (21).

The next bifurcation is suffered by Iz and it takes
place at E ≈ 1.1889. At this energy value and at kz = 2,
there appear two new branches, one stable and one unsta-
ble (solid and dashed cyan lines in Fig. 5a). As we observe

in the surface of section of Figure 7a for E = 1.25, this
is an island-chain bifurcation of multiplicity m = 5 be-
cause there appears a resonance of five islands around Iz ,
which remains stable. The stable fixed point in the cen-
ter of each of the five islands corresponds to the stable
cyan branch in Figure 5a. The five islands are enclosed
by a separatrix passing through five unstable fixed points,
which correspond to the unstable dashed cyan branch in
Figure 5a. The new stable periodic motion is represented
in Figure 7b for E = 1.25. Again, we can ensure that it
is island-chain bifurcation of multiplicity m = 5 because
at the bifurcation energy E ≈ 1.1889, the stability in-
dex of Iz is kz ≈ 0.6180, which corresponds to m = 5 in
equation (21).

The normal mode Iz is also involved in the next bi-
furcation that takes place at E ≈ 1.5408. At that energy,
there appear at kz = 2 two branches, one stable and one
unstable (solid and dashed yellow lines in Fig. 5a). As we
observe in the pz = 0 surface of section in Figure 8a for
E = 1.75, it is an island-chain bifurcation of multiplicity
m = 3. Once again, equation (21) confirms this bifurca-
tion. The new m = 3 stable periodic orbit is depicted in
Figure 8b for E = 1.75.

At the energy E = 1.75, in the pz = 0 surface of section
of Figure 8a it is already possible to observe the m = 7
island bifurcation suffered by Iz at E ≈ 1.0206 (magenta
branches in Fig. 5a). At E = 1.75, in the pρ = 0 Poincaré
section of Figure 8c, it is also possible to observe the m = 6
island bifurcation suffered by Iρ at E ≈ 0.5200 (green
branches in Fig. 5b). The stable periodic orbits m = 6
and m = 7 are depicted in Figure 8d for E = 1.75.

We find the next bifurcation at E ≈ 1.8692 when the
estability index of Iz reaches the value kz = 2. This is a
double period-doubling bifurcation: from Iz there emerge
four new periodic families, two stable and two unstable of
multiplicity m = 2. The two new stable (unstable) fam-
ilies have the same stability index values, and therefore
both families are represented in Figure 5 by the same
solid (dashed) dark green line. In Figure 9a it is shown
the E = 2 surface of section after that bifurcation, while
in Figure 9b are depicted for the same energy the new
stable periodic motions that emerge from this bifurcation.
Note that the new stable periodic motions are mirror re-
flections of each other with respect the ρ-axis. The two
unstable periodic orbits correspond to the same orbit but
travelled in opposite senses. For simplicity, we do not rep-
resent the unstable orbits.

At E ≈ 1.9135, the stability index of Iρ reaches the
critical value kρ = −2 while at the same energy value
there appear at kρ = 2 two new branches (purple lines
in Fig. 5b), one stable and one unstable. This is again an
island-chain bifurcation of multiplicity m = 4 and thus, it
is very similar to the previously studied. This bifurcation
is visualized in the pρ = 0 Poincaré map for E = 2 of
Figure 10a: around Iρ there appears a resonance made of
eight new fixed points, four stable and four unstable. The
new m = 4 stable periodic orbit is drawn in purple color
in Figure 10b for E = 2.
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.

For higher energy values, the dynamics is increasingly
complex. In particular, for E ≈ 2.2431 and E ≈ 2.3861,
the normal mode Iρ suffers two consecutive period-
doubling bifurcations (see Fig. 5c). In the first one, from
Iρ which becomes unstable, there appears a new stable
orbit of multiplicity m = 2. In the second one, Iρ again
becomes unstable and it gives rise two new m = 2 un-
stable periodic orbits. These bifurcations can be observed
in the pρ = 0 Poincaré maps of Figures 11a and 12a for

E = 2.26 and for E = 2.3862, respectively. In Figure 11b
and 12b are depicted the new periodic motions that ap-
pear after these bifurcations. It is worth notice that even
at this high energy, most of the phase space remains regu-
lar. For energy values greater than E = 2.4, the behavior
of the stability index of Iρ is highly oscillatory (see Fig. 5d)
and before the escape energy Es1 ≈ 2.4372, this periodic
orbit suffers several bifurcations which are not reflected in
this study.
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5.3 Escape dynamics

When the energy approaches the trap depth energy given
by Es1 ≈ 2.4372, there is a big chaotic region around the
periodic orbit Iρ (see the surfaces of section of Fig. 13
for E = 2.4371). When the energy passes through the
value Es1 ≈ 2.4372, the first orbit to leave the trap is
Iρ as well as the nearest quasiperiodic orbits surrounding

it because they are strongly oriented to the Ps1 escape
channel. This results in unbounded pz = 0 surfaces of
section (see Fig. 14a for E = 2.5). Furthermore, part of
the chaotic sea around Iρ disappears becoming a escape
region visible as a “gap” in the Poincaré sections of Fig-
ure 14, in which only few points appear. These points cor-
respond to orbits with initial conditions in the gap which
remain trapped for a given time, crossing the surface of
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section a certain number of times before leaving the trap.
An example of this kind of escape orbits is showed in
Figure 14c. Note that, although E > Es1, there are sig-
nificant phase space regions which do not have access to
the escape channel. Orbits living in these regions remain
trapped forming robust KAM tori around stable periodic
orbits.

When the energy is bigger than the threshold Es2 ≈
2.5503, the escape channel along the saddle point Ps2 is
also open, and Iz and the quasiperiodic motions around it
are the first orbits to escape across Ps2. As consequence,
the pρ = 0 sections are unbounded and this escape region
appears as a new “gap” in the corresponding Poincaré
sections (see Fig. 15 for E = 2.75).
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-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1  1.2

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8z

pz

(b) E = 2.75

E = 2.75
ρ

p
ρ

(a)

Fig. 15. Surfaces of section (a) pz = 0 and (b) pρ = 0 for E = 2.75 and for pφ = 0.05.

As the energy grows, an increasing number of orbits
have access to the escape channels and the unbounded
and the chaotic regions in the surfaces of section grow in
size. It is worth notice that even at high energy values,
where most of the orbits are unbounded or chaotic, it is
still possible to find regions of trapped regular motion. In
particular, in the Poincaré sections of Figure 16 for E =
3.5 we observe that the islands around the m = 1 periodic
orbits appearing after the first pitchfork bifurcation (green
orbits in Fig. 6) are the last regions of bounded motion to
survive at high energies.

6 Dynamics for pφ = 0.5

When pφ = 0.5, the minimum Pm of the effective po-
tential U(ρ, z; A′) is located at ρm ≈ 0.43237, its en-
ergy is Em ≈ 1.86815 and the saddle point energies are
Es1 ≈ 2.57645 and Es2 ≈ 3.69005. Now, the centrifugal
barrier is stronger and it pushes the trapping region far
from the centre of the trap (see Fig. 3c). As in the pre-
vious section, we study the evolution of the phase space
structure as the energy increases. We perform this study
in a less comprehensive way than in Section 5, namely
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only by using Poincaré sections. When the energy is close
enough to Em ≈ 1.86815 (see Fig. 17a for E = 2), the
pz = 0 surface of section presents the same qualitative
structure as Figure 4a, with the normal modes Iρ and Iz

ruling the dynamics. When the energy increases, the sur-
faces of section of Figure 17b for E = 2.1 and Figure 17c
for E = 2.2 show that Iρ and Iz suffer two consecutive
pitchfork bifurcations. After these bifurcations, the phase
space reaches the same structure as in Figure 6c. The
phase space structure remains basically unchanged until
the energy reaches the trapping threshold Es1 ≈ 2.57645.
Indeed, even for E = 2.57, a resonance coming form a
m = 2 island bifurcation of Iρ is the only remarkable
change in the structure of the phase space (see Fig. 17d).
Surprisingly and except for the two thin stochastic layers
of chaotic motions in the separatrix regions, the system
presents a regular KAM tori structure.

In the energy interval Es1 ≈ 2.57645 < E < Es2 ≈
3.69005, the escape channel along the ρ direction opens
and the pz = 0 surfaces of section are unbounded be-
cause the quasiperiodic motions around Iρ begin to escape
(Figs. 17e–17f for E = 2.8 and E = 3.5). In these Poincaré
sections we find a wide region of chaotic motion acting as
a fuzzy border between bounded and unbounded motions.

When the energy is bigger than the saddle point energy
Es2 ≈ 3.69005, the escape channel along Ps2 is already
open and the quasiperiodic orbits around the Iz periodic
orbit can also escape. Thence, the corresponding pz = 0
surfaces of section have a hole in the central region (see
Fig. 17g for E = 3.7). Large regions of chaotic orbits are
also observed. As the energy is further increased, increas-
ingly orbits escape, in such way that when E = 4 only
a small region of confined orbits persists (see Fig. 17h).
As in the previous case for pφ = 0.05, the islands around
the m = 1 periodic orbits appearing after the first pitch-
fork bifurcation are the last regions of bounded motion to
survive.

If we compare the behavior of the system for pφ = 0.5
to the behavior of the system for pφ = 0.05 (Sect. 5), we
find that the dynamics in both cases is qualitatively very
similar. In particular, in both cases the system suffers the
same two pitchfork bifurcations that mark the beginning
of the nonlinear behavior of the system.

7 Summary and conclussions

In this paper we carry out a systematic study of the
classical dynamics of a neutral atom trapped in a mag-
netic quadrupole trap. In Sections 2 and 3, under the adi-
abatic approximation, the trapping potential and the
Hamiltonian governing the dynamics of the system are
stated. Due to the axial symmetry of the potential, the
z component pφ of the angular momentum is conserved.
Thence, in cylindrical coordinates the Hamiltonian defines
a two-degree of freedom dynamical system. After a con-
venient selection of units, the problem is seen to depend
on two parameters: pφ and the energy E. In Section 4,
the energy and position of the critical points of the effec-
tive trapping potential U(ρ, z; A′) are studied as a func-
tion of pφ. We find that the shape of U(ρ, z; A′) is deter-
mined by the presence of a minimum Pm and two saddle
points Ps1 and Ps2.

In Sections 5 and 6 and for two different values of pφ,
we carry out the numerical investigation of the phase space
structure for increasing energy. By direct inspection of the
equations of motion and using suitable Poincaré surfaces
of section, we have found that two fundamental stable
periodic orbits determine the phase space structure of the
system. These basic periodic motions are the radial Iρ and
the axial Iz nonlinear normal modes of the system. In Sec-
tion 5 for pφ = 0.05, the numerical continuation of families
of periodic orbits allows us to compute the stability dia-
grams of the normal modes Iρ and Iz as a function of the
energy E. This investigation shows the presence of sev-
eral bifurcations. Using Poincaré sections, some of those
bifurcations as well as the new periodic orbits emanating
from them, have been studied in detail. The increase of
the energy has two main effects. One of them is that the
phase space is constantly reorganizing around the new pe-
riodic orbits that appear after each bifurcation. The other
one is that, as the energy approaches the trapping thresh-
olds given by the energy of the saddle points Ps1 and Ps2,
the regularity of the system decreases because the phase
space begins to be filled with regions of chaotic motions.
For energy values above the trapping thresholds, the sys-
tem dynamics is increasingly dominated by unbounded
and by chaotic motions. However, even for energies above
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Fig. 17. Evolution as a function of the energy E of the pz = 0 surfaces of section. All figures for pφ = 0.5.
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the escape values, it is possible to find regions of regular
trapped motion.

We noted in the Introduction the importance of know-
ing how the atoms move in the trap. However, to our
knowledge, the present paper is the first exhaustive study
of the classical dynamics of a magnetically trapped neu-
tral atom. The extension of this study to atoms confined
in different magnetic trap configurations as the Ioffe trap
are now under consideration.

This work has been supported by the research projects
MTM2011-28227-C02-02 (Spanish Ministry of Education and
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