
Communications in Nonlinear Science and Numerical Simulation 111 (2022) 106484

a
e
t
h
c
n
p
q
t
m
C
B

h
1

Contents lists available at ScienceDirect

Communications in Nonlinear Science and
Numerical Simulation

journal homepage: www.elsevier.com/locate/cnsns

Coriolis coupling in a Hénon–Heiles system
J.P. Salas a,∗, V. Lanchares b, M. Iñarrea a, D. Farrelly c

a Área de Física Aplicada, Universidad de La Rioja, 26006 Logroño, Spain
b Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño, Spain
c Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA

a r t i c l e i n f o

Article history:
Available online 1 April 2022

Keywords:
Nonlinear dynamics
Escape dynamics
Chaotic behavior

a b s t r a c t

We study the impact of a Coriolis term in the dynamics of a perturbed Hénon–Heiles
Hamiltonian. The strength of the Coriolis coupling is measured by a frequency ω

that regulates two different regimes. If (in scaled units) ω1, the minimum becomes a
dynamically stable maximum, and there appears an open region of stable motion around
that maximum. We restrict our study to ω ∈ [0, 1) because we find richer dynamics in
that interval. Poincaré surfaces of section are used to show how the strength of the
Coriolis coupling controls the size of the trapping area. While, for ω = 0, most of
the orbits escape, for ω ≈ 1 most of the orbits remain trapped. The transition from
one situation to the other one reveals complex resonant structures giving rise to a
chaotic sticky region of long living orbits. The study of the escape basins reveals that
they evolve from a complex structure, with fractal boundaries, to basins with smooth
boundaries. Explicit computation of the evolution of the basin entropy confirms this fact.
The escape probability as a function of ω is also calculated. Both the evolution of the
escape probability and the entropy are not monotonic and exhibit intricate and complex
dynamics for intermediate values of ω.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The Hamiltonian dynamics of systems in which an (often) non-conserved Coriolis term is present continues to be an
rea of current research. Examples in atomic and molecular physics are atoms and molecules interacting with crossed
lectric and magnetic fields [1–7], and with circularly and elliptically polarized electromagnetic fields [8–14], including
he particular case of optical centrifuge for molecules [15–18]. Another, more recent, example is the control of high-order
armonic generation (HHG) in molecules by using multi-frequency circularly polarized rotating (and counter-rotating)
ombinations of laser pulses [19,20]. This is currently an active area of research with applications in photonics and
anotechnology, as well as in other areas. In general, the HHG Hamiltonian contains a zero-order molecular Hamiltonian
lus a non-conserved Coriolis term, and a time dependent driving interaction [20]. The dynamics can be understood
ualitatively in terms of the competition between the Coriolis and driving terms. Essentially the electron escapes from
he parent ion by tunneling and is then controlled by the laser field — the driving terms in the Hamiltonian. The electron
ay eventually undergo a re-collision with the parent ion, and depending on the symmetry of the ion, HHG may occur.
ontrolling the strength of the Coriolis term allows for control of the polarization and energies of the harmonics generated.
oth 2D and 3D systems have been studied using Hamiltonian models (e.g., Ref. [21]). Coriolis coupling also occurs in
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rovibrational spectroscopy, however, it is often weak and may often be neglected. Here, we are interested in situations
where the Coriolis coupling plays a dominant role.

Other areas in which Hamiltonians with Coriolis couplings arise are astronomy and galactic dynamics. For example, in
he very well-known restricted three body problem, a Coriolis term is responsible for most of the dynamics in that system.
esides this case, the book by Binney and Tremaine [22] emphasizes the necessity of considering rotating potentials to
etter explain the dynamics of stellar orbits in a galaxy, as well as the evolution of the disk galaxies [23]. In this setting,
quilibrium points and periodic orbits play an important role, as they organize the phase flow structure and different
ualitative aspects of the dynamical system can be understood. An interesting example is the possibility of matter transfer
hrough heteroclinic connections between equilibrium points, a mechanism proposed to explain the formation of spiral
rms [24]. Of more general interest is the determination of periodic orbits, mainly used to classify different types of
otion that can account, for instance, for the existence of unusual rotating barred galaxies [25–27]. Although many
tudies of barred galaxies involve explicit N-body simulations, it is possible to construct autonomous Hamiltonian systems
ith a ‘‘frozen" potential which represents a snapshot of the N-body simulation [28]. This class of model allows more
irect insight into the underlying dynamical processes. A recent example is a study of the so-called peanut-shaped disk
alaxies [25]. The main finding is that periodic orbits, nearby quasiperiodic and sticky orbits control the structure of the
alaxy. This phenomenon has also been observed in simulations of the capture of irregular moons by the giant planets
nd the formation of binaries in the Kuiper belt [29–31]. In each of these cases, the Coriolis term plays a significant role
nd it is central to know how the dynamics evolve.
A more general context where a Coriolis term appears is in open time-independent Hamiltonian systems. These systems

re characterized by the existence, in phase space, of one or more escape channels. Then, we can generically find two types
f trajectories: those that remain trapped in the interaction region (interior), and those that escape to infinity (exterior)
hrough one of the escape channels. The reason why a given orbit has or does not have access to a certain escape channel
s far for being a simple question. However, we know that the interior and the exterior regions are connected through a
ottleneck (i.e., a transition state), and each transition state is associated with a specific saddle point. In this sense, very
mportant investigations of, among others, Wiggins and coworkers [32–36] have contributed to the development of a
heory, that, under certain conditions, allows one to make an analytic construction of the dividing surfaces that in phase
pace separate escape and non-escape trajectories. The most important requirement of that theory is that no trajectory
asses through a dividing surface more than once. However, it is well known that in many cases, as for example for
igh enough energy trajectories, a given orbit may cross the dividing surface several times, so that the ‘‘no recrossing’’
equirement of the theory fails. Then, when there are recrossings, it is not possible to decide whether or not a given
rbit will escape. Furthermore, when there is more than one escape channel, it is also hard to decide not only if the
rbit will escape, but also the channel through which the escape will take place. In the latter situation, the study of the
o-called escape basins is a very useful tool to get a global vision of the escape or scattering dynamics, and it has been
sed in as varied branches of science as nonlinear dynamics (see e.g. [37–40]), atomic physics [41] or astronomy and
strophysics [42].
Every escape channel of an open Hamiltonian system defines a escape basin, which is usually taken to be the set

f initial conditions leading to trajectories that escape through a given channel. Because there also exits a basin for
he non-escape orbits in any scattering process, and although our system is conservative, we will speak generically of
ttraction basins to designate both escape and non-escape basins. Furthermore, when the boundaries between the basins
re smooth curves, the final destination of the orbits belonging to those basins is completely predictable. Conversely,
here are scattering processes where boundaries are not well defined, such that it is impossible, or almost impossible,
o predict the future an orbit. In this case, those scattering processes are chaotic and the boundaries between basins are
ractal structures (see e.g. [43–45]) that, in many cases, follow the more restrictive property of Wada [37,46–48].

In most studies, energy is the only relevant parameter of the evolution of the structure of the escape basins and, in
eneral, in the escape dynamics. However, there are many examples were, besides the energy, the Hamiltonian depends
n additional parameters; one class being systems with a non-conserved Coriolis term. For these systems, we desire to
nderstand how the escape dynamics depends on the strength (as measured by the frequency, ω) of the Coriolis coupling
bsent other perturbations. For this purpose, we choose as our case study the 2D Hénon–Heiles Hamiltonian, to which we
dd a Coriolis term. The Hénon–Heiles model was originally introduced in the context of galactic dynamics [49] but has
een widely studied in chemistry and physics, for example, as a model of coupled normal modes and chaotic dynamics
n general [37,50].

The article is organized as follows: Section 2 introduces the Hamiltonian and describes some basic properties of the
ystem, including the nature and positions of the various equilibria. To accomplish this, an effective potential (or, zero-
elocity surface [51]) is introduced and its structure and equilibria studied as a function of ω and the energy. A significant
bservation is that trapped trajectories and periodic orbits may exist for energies above the three saddle points in the
enon–Heiles potential. Section 3 proceeds to examine the escape dynamics using Poincaré surfaces of section. We find
hat, as ω → 1 (in scaled units), most of the orbits will be trapped, although the size of the scattering region goes to zero in
his limit. For values of ω intermediate between 0 and 1 a substantial chaotic zone develops with orbits being temporarily
rapped in sticky regions of phase space. Section 4 examines the evolution of the structure of the escape basins. Escape
robabilities are computed from the escape basins as ω is varied, and the behavior of the escape probability is explained

in terms of the basin entropy. In Section 5 the evolution of the escape probability as a function of ω is calculated taking
nto account all the phase space volume. The results are in excellent agreement with those obtained using the escape
asins. Conclusions are presented in Section 6.
2
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2. The Hamiltonian system and basic properties

Let us consider the rotating Hénon–Heiles system defined by the Hamiltonian function

H =
1
2
(X2

+ Y 2) +
1
2
(x2 + y2) − ω(xY − yX) + yx2 −

1
3
y3, (1)

where (x, y) and (X, Y ) are the cartesian coordinates and their corresponding canonical momenta. Finally, ω ∈ R is the
requency of the Coriolis coupling term. The Hamiltonian equations of the motion are given by

ẋ =
∂H
∂X

= X + ωy, Ẋ = −
∂H
∂x

= −x + ωY − 2xy,

ẏ =
∂H
∂Y

= Y − ωx, Ẏ = −
∂H
∂y

= −y − ωX − x2 + y2.
(2)

The system inherits some of the properties of the classical model, when ω = 0. In this sense, it is invariant under the
ction of the cyclic group C3 and also symmetric with respect to the planes

x = 0, Y = 0, x =
√
3y, Y =

√
3X, x = −

√
3y, Y = −

√
3X . (3)

Thus, coordinates and momenta are invariant under the dihedral group D3 separately. Moreover, the system enjoys the
additional symmetry

S ≡ H(x, y, X, Y ; ω) = H(x, y, −X, −Y ; −ω), (4)

implying that it is enough to consider positive or negative values of the frequency ω. The equilibrium points of the system
are the roots of the Hamiltonian flux (2) equated to zero. In this way, it is straightforward to show that there are four
equilibrium points (xe, ye, Xe, Ye) for the system (1), namely

E0 ≡ (0, 0, 0, 0),
E1 ≡

(
0, 1 − ω2, ω(ω2

− 1), 0
)
,

E2 ≡

(√
3
2 (1 − ω2), 1

2 (ω
2
− 1), 1

2ω(1 − ω2),
√
3
2 ω(1 − ω2)

)
,

E3 ≡

(√
3
2 (ω2

− 1), 1
2 (ω

2
− 1), 1

2ω(1 − ω2),
√
3
2 ω(ω2

− 1)
)

.

(5)

A close look at the coordinates of the equilibrium points reveals the presence of the symmetries previously mentioned.
On the one hand, the coordinates of the equilibrium points in the configuration space only depend on ω2, due to the
S symmetry. Furthermore, as a consequence of the C3 symmetry, the coordinates (x, y) and (X, Y ) of the three critical
points Ej, j ̸= 0, define two equilateral triangles, whose barycenters are at the origin, being the length of their sides
ℓ(x,y) =

√
3|1 − ω2

| and ℓ(X,Y ) =
√
3|(1 − ω2)ω|, respectively. Besides, the triangle in the (x, y) coordinates is symmetric

with respect to the y axis, whereas the triangle in the (X, Y ) momenta is symmetric with respect to the X axis, by virtue
of the symmetry (3).

The stability analysis of the equilibrium E0 yields that it is linearly stable, provided the four eigenvalues of the stability
matrix associated to (2) appear as two pure complex conjugate pairs (see [52])

λ0
1,2 = ±i(1 + ω), λ0

3,4 = ±i(1 − ω). (6)

In addition, it is also stable in the Lyapunov sense for every value of ω ̸= 1 (see [53]). On the contrary, E1,2,3 are
unstable because the four eigenvalues of the corresponding stability matrix appear as a pure complex conjugate pair λ1,2
and a real pair λ3,4 given by

λ1,2 = ±i
√
1 + ω2 + 2

√
ω4 − ω2 + 1, λ3,4 = ±

√
−1 − ω2 + 2

√
ω4 − ω2 + 1. (7)

ndeed, E1,2,3 are center × saddle points lying on the same energy manifold

H = Ee =
(1 − ω2)3

6
, (8)

and on the three dimensional sphere

x2 + y2 + X2
+ Y 2

= (1 + ω2)(1 − ω2)2 = R2. (9)

Moreover, the distance between any pair of critical points (Ei, Ej), i, j ̸= 0, is constant and equal to
√
3R. Note that the

istance tends to 0 as ω tends to 1, so that the four equilibria collide when |ω| = 1, where a bifurcation takes place. After
his bifurcation, we recover the four critical points with the same linear stability character. However, there is a change in
he energies. For |ω| < 1, Ee > 0, which is bigger than the energy E0 = 0 of E0. On the contrary, for |ω| > 1, Ee < 0 and it
is below the energy E0 = 0. This change in the relative values of the energies of the equilibrium points can be illustrated
through the zero velocity curves associated to the effective potential U(x, y) defined as [51]

U(x, y) = H −
1
(ẋ2 + ẏ2) =

1 − ω2
(x2 + y2) + x2y −

1
y3. (10)
2 2 3
3
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Fig. 1. Contour levels of the effective potential U(x, y) (see Eq. (10)) for different values of ω.

Because the critical points of U(x, y) match the coordinates of the equilibrium points E0,1,2,3, the evolution of the landscape
of U(x, y), for varying |ω|, will give us information about the transition through the bifurcation. When |ω| < 1, the contour
levels of U(x, y) for ω < 1, depicted in the left panels of Fig. 1, show that E0 is a minimum, and that there is a trapping
region inside the triangle whose vertices are E1,2,3. For |ω| > 1, E0 becomes a maximum (see the contour plots of U(x, y)
in the right panels of Fig. 1 for ω > 1). At this point, we recall that, despite its character, the equilibrium E0 is always
stable [53]. There is also a change in the disposition of the critical points. For |ω| < 1, E1 is located at the positive y axis
and E2,3 at the semiplane y < 0. On the contrary, for |ω| > 1, E1 is on the negative y axis and E2,3 in the semiplane y > 0.
Besides, as |ω| → ∞ the saddle points tend also to infinity and the contours levels resemble those of the function

U∞ =
1 − ω2

2
(x2 + y2),

hich corresponds to the effective potential of two isotropic harmonic oscillators coupled by the Coriolis term. In this
ay, one expects that the system will behave in a regular manner as |ω| increases far away |ω| = 1, at least in a wide

part of the phase space.
From the discussion above, there are two different regimes, depending on the value of the frequency ω. For |ω| < 1,

trapped motion exists for values of the energy below Ee, whereas as soon as the energy is greater than Ee, trajectories
can escape to infinity through three channels in the vicinity of the saddle points. However, the trap region shrinks with
increasing |ω| and disappears as soon as the bifurcation takes place at |ω| = 1. For |ω| > 1 there is not a trapping region
in the usual sense, because E0 is a maximum. However, the stable nature of this maximum E0, for |ω| > 1, makes possible
the existence of confined orbits in a neighborhood E0. Two examples of trapped trajectories for ω = 2 and energies
E = ±1 are shown in Fig. 2. In this work we will focus in the dynamics for the case |ω| < 1 and, more precisely, in how
the frequency ω affects the escape dynamics.

3. Escape dynamics for ω < 1

In this section, to study the escape dynamics of the system, we fix the energy E while we vary the frequency ω. Due
to the symmetry S (see Eq. (4)), we reduce to values of ω in the interval [0, 1). As the energy E of the unstable equilibria
e

4
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Fig. 2. Examples of two trapped trajectories for ω = 2 and energies E = 1 (blue orbit) and E = −1 (red orbit).

epends on ω, in order to make the results comparable to each other, we will fix the value of system energy E to be 20%
igher than Ee. That is to say, we choose an energy

E =
(1 − ω2)3

5
. (11)

We are interested in the effect the frequency ω produces in the escape dynamics. This can be viewed through Poincaré
surfaces of section. To this end, a convenient Poincaré map is x = 0 when it is crossed in the direction ẋ > 0. After
ntroducing these conditions in the Hamiltonian (1), the Poincaré sections appear in the (y, Y ) plane, and they are limited
y the curve

Y 2
+ (1 − ω2)y2 −

2
3
y3 = 2E. (12)

or E > Ee, Eq. (12), is an open curve, and it is clear that the size of the inner region of the section tends to zero as
→ 1, in accordance to the evolution of the distance between the unstable critical points. Furthermore, we expect that,

s ω → 1, most of the orbits are trapped due to two facts. On the one hand, the available phase space region around
he minimum and the bottlenecks around the saddle points (i.e., the scattering region) tends to zero as ω → 1. On the
ther hand, the Lyapunov stability implies that there exists a sufficient small neighborhood of the origin were the orbits
emain trapped. So, one expects that the intersection of both regions contains the majority of the orbits.

In Fig. 3 we show a gallery of surfaces of sections for values of ω ranging from 0 to 0.9. To better visualize the
escape dynamics, in Fig. 3, the intersection of the orbits with the Poincaré plane has been computed in the time interval
t ∈ [500, 1500]. In this way, only the trajectories with an escape time belonging to that interval are considered as orbits
with a long enough trapping time to contribute, before eventually escape, to the phase space structure.

It can be seen in Fig. 3(a) that, for ω = 0, almost all the trajectories escape, except for those appearing in two tiny
regions around two stable fixed points located at the Y = 0 axis, that correspond to the same stable periodic orbit.
he blue circles guide the eye to locate these tiny regions of confined motion. Moreover, Fig. 4(a) depicts the clover-like
eriodic orbit around which the confined motion is organized. When ω = 0.1, the region of non-escape orbits becomes

larger. However, the region diminishes up to ω ≈ 0.2 (see Fig. 3(a)–(b)) to grow again monotonically in such a way that,
for values of ω close to 1, most of the surface of section is dominated by robust KAM tori around a stable periodic orbit
(see Fig. 3(g)–(h)). More specifically, this stable periodic trajectory is an almost circular orbit and it is depicted, together
with two quasi periodic trajectories around it, in Fig. 4(b) for ω = 0.9. From the evolution of the Poincaré maps shown in
Fig. 3, the global effect of the frequency ω on the system dynamics is twofold. On the one side, as ω increases, the number
of escape orbits strongly decreases, so that for values of ω close to 1, most of the orbits in the scattering region around
the potential well are trapped and exhibit regular behavior. On the other side, the available scattering region around E0
decreases for increasing frequency.

In the transition from mainly escape to mainly trapped orbits, there is an interesting situation in the interval 0.3 ≲
ω ≲ 0.5 that can be observed in Figs. 3(e)–(f), in which the periodic orbit IC plays a relevant role. When decreasing ω

between ω ≈ 0.5 and ω ≈ 0.3, it can be seen that the KAM tori around IC are replaced by a wide stochastic layer. The
reason of this change is a bifurcation of the periodic orbit I . Indeed, the computation of the stability index κ (see Fig. 5),
C

5
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Fig. 3. Poincaré surfaces of section, x = 0, ẋ > 0, for E = 1.2Ee and 0 ≤ ω ≤ 0.9. The blue circles in panel (a) guide the eye to locate the tiny
regions of confined motion. The fixed point IC in panel (h) is a stable almost circular periodic trajectory that is depicted in Fig. 4(a). The red lines
are the limit of the Poincaré sections.

defined as the trace of the monodromy matrix [54], reveals that the orbit Ic undergoes a period doubling bifurcation at
ω ≈ 0.48. From this bifurcation, Ic becomes unstable and, at the same time, two new stable periodic orbits born. As a
consequence, it can be observed in Fig. 3(e) that different resonant structures, surrounded by zones of chaotic motion,
6



J.P. Salas, V. Lanchares, M. Iñarrea et al. Communications in Nonlinear Science and Numerical Simulation 111 (2022) 106484

o
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Fig. 4. (a) The red orbit is the stable periodic trajectory located inside the blue circles in the Poincaré section Fig. 3(a) for ω = 0. The coordinates
f this orbit on the section of Fig. 3(a) are (y ≈ 0.7115, Y = 0). (b) The red curve is the stable almost circular periodic trajectory that corresponds
o the fixed point labeled as IC in the Poincaré section Fig. 3(h). The blue and green orbits are quasiperiodic trajectory around IC . The coordinates
f those orbits on the section of Fig. 3(h) are (y ≈ 0.0268, Y = 0), (y = 0.05, Y = 0) and (y = 0.1, Y = 0), respectively. The black dashed lines in

both figures correspond to the equipotential curves U(x, y) = E = 1.2 Ee .

Fig. 5. Evolution of the stability index κ of the orbit IC (blue line) as function of ω. At ω ≈ 0.48 the stability index of IC reaches the critical value
κ = −2, and a period doubling bifurcation takes place. A new family of stable periodic orbits appear (green line).

appear. The existence of these chaotic regions correspond to long living sticky orbits. To better visualize this situation, a
zoom of the surface of section in Fig. 3(e) is computed considering the intersections with the Poincaré plane during 1000
units of time after different increasing threshold times. Fig. 6 shows four surfaces of section for ω = 0.4 computed in
different time intervals (a) t ∈ [500, 1500], (b) t ∈ [5000, 6000], (c) t ∈ [10000, 11000] and (d) t ∈ [15000, 16000]. In
Fig. 6(a) we can clearly see the region of sticky orbits. However, as the limits of the time intervals increase, there is a
progressive disappearance of the chaotic sticky orbits (see 6(b)–(d)). We can also observe in Fig. 6 the presence of robust
complex resonant structures around stable periodic orbits that appear giving rise to the aforementioned sticky region
of long living orbits in the scattering region. This is an interesting phenomenon that has been proposed to explain the
shape of some barred galaxies [25–27]. Finally, Fig. 7 shows a gallery of some of those stable periodic orbits living into the
resonant structures. It is worth noting the presence of periodic orbits enjoying the C3 symmetry (upper panels of Fig. 7),
each of them representing a single periodic orbit. However, periodic orbits in the lower panels of Fig. 7 give rise to two
more periodic orbits, by applying the C3 symmetry.

4. Evolution of the escape basins. Escape probability

4.1. Evolution of the escape basins

For energy values E above the saddle point energy Ee, the rotating Hénon–Heiles is an open Hamiltonian system with
three equiprobable escape channels. Furthermore, the evolution of the Poincaré sections of Fig. 3 shows that, for increasing
values of ω, most of the escape orbits appearing for small values of ω are gradually replaced by regular confined orbits.
7
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Fig. 6. Poincaré surfaces of section, x = 0, ẋ > 0, for E = 1.2Ee , ω = 0.4 and different intervals of time. (a) t ∈ [500, 1500], (b) t ∈ [5000, 6000], (c)
∈ [10000, 11000] and (d) t ∈ [15000, 16000].

Fig. 7. Gallery of stable periodic orbits living into some of the resonant structures that appear in Fig. 6.

hus, for E > Ee and for a given value of ω, there are four possible final outcomes or attractors for any trajectory, three
f them correspond to an escape trajectory through the saddle points, while the remaining one corresponds to a trapped
8
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orbit. Thus, we expect to find in phase space four basins of attraction, each of them determining the future of a given set
of initial conditions. Furthermore, the boundaries between the different basins provide very useful information because
their topology is closely related to the dynamics displayed by the system [37,44,45]. Then, it is natural to study how the
Coriolis coupling affects the structure of those attraction basins for increasing values of ω.

The determination of the attraction basins of our system starts by defining a fine grid of initial conditions covering
he available phase space. Then, every of those initial conditions is propagated by solving the Hamiltonian equations of
otion (2). The resulting trajectories are followed until they escape through one of three channels or remain trapped
p to a very long cut-off time tf . If a trajectory leaves the scattering region through the saddle point E1, we label
hat trajectory as belonging to basin 1. The same applies for the saddle points E2,3. On the other hand, if for t ≥ tf a
rajectory remains wandering in the scattering region, we assume that the trajectory belongs to the trapping basin and it
s labeled with 0. Because the rotating Hénon–Heiles system is a time-independent two-degrees of freedom Hamiltonian
ystem in the phase variables (x, y, X, Y ), trajectories evolve in a three-dimensional space described by three of these
variables, being the remaining one fixed by the constrain H = E . Then, in this problem, the grid of initial conditions is
actually a three-dimensional partition and, therefore, the attraction basins are also three dimensional objects. Besides the
computational cost of the numerical propagation of a huge number of initial conditions that entails a three-dimensional
grid, we encounter the additional problem of a useful visualization of the basins. Thence, we find more convenient to
handle a planar representation of the basins, which involves choosing a planar set of initial conditions as well. More
specifically, we select the initial conditions following the procedure proposed in [37]. In terms of the velocities (ẋ, ẏ), and
sing the zero velocity surface U(x, y) (see Eq. (10)), the Hamiltonian (1) reads as

H = E =
1
2
(ẋ2 + ẏ2) + U(x, y), (13)

here (ẋ, ẏ) = (X + ω y, Y − ω x). Then, for fixed values of ω and E , the available set of initial conditions in the
onfigurations space is given by Dx,y = {(x, y)| U(x, y) ≤ E}. For each vector r = (x, y) ∈ Dx,y, the velocity vector v = (ẋ, ẏ)
s chosen as r · v = 0 with the vector r × v pointing in the positive sense. In all our computations we have checked that,
ith this choice of the initial conditions, the three escape channels are equiprobable with a 95% confidence level, which

ndicates that this choice provides us a suitable glimpse of the escape basins. Therefore, the basins can be depicted in the
lanar domain Dx,y. In Fig. 8, for energy values 20% higher than Ee and for increasing values of ω, a gallery of escape basins
s shown. The color code in Fig. 8 assigns the red, green and blue colors to initial conditions escaping through exits E1, E2
nd E3, respectively. The black color is assigned to the initial conditions of orbits that, after the cut-off time tf = 2 × 104

emain trapped in the scattering region, such that these trajectories are labeled as non-escape events. In this way, regions
ith the same color shape each of the four possible attraction basins in the domain Dx,y.
For the non-rotating case ω = 0, the escape basins depicted in Fig. 8(a) indicates that most of the trajectories escape.

ndeed, we observe disjoint basins where the exit of the trajectories is clear. However, those disjoint regions are mostly
eparated from each other by wide boundaries where it is almost impossible to predict the final state of a given orbit.
his fact was extensively studied by Aguirre et al. [37], showing that the escape basins for ω = 0 have fractal structure
atisfying the Wada property [46–48], which confirms the high unpredictability observed in Fig. 8(a).
For ω > 0, Fig. 8 shows that significant black regions corresponding to non-escape basins appear. Interestingly, the

volution of these black basins is non-monotonic. Namely, for ω = 0.1 and 0.15, the size of the black basins seems
o increase; for ω between 0.2 and 0.4 its size decreases while, for ω > 0.4, the black basins grow in size, such that
or ω = 0.8, a unique non-escape basin occupies a large region of the domain Dx,y. This non-monotonic evolution of
he basins shows the complexity of the dynamics for intermediate values of ω. On the other side, the large size of the
lack basin for ω ≳ 0.6 reveals the stabilizing role of ω. This result is in agreement with the one provided by the Poincaré
ections where, for high enough ω, a large phase space region is occupied by non-escape orbits living in the neighborhood
f a stable periodic orbit.
Besides its influence in the stabilizing and confining of the orbits, the evolution for increasing ω of the structure of

he boundaries between the basins is also an important aspect. Indeed, after a general view of Fig. 8, we infer that, for
ntermediate values of the frequency ω (see the panels in Fig. 8 for ω ≤ 0.5), the boundaries between the basins are still
egions with a high uncertainty. We also observe that this global uncertainty or unpredictability is significantly reduced
or larger values of ω, so that, in panels Fig. 8(k)–(l) for ω = 0.7 and 0.8, the boundaries between the different basins
re clearly defined, in such a way that unpredictability has disappeared. Again, the evolution of the boundaries between
he escape basins confirms the results we found in the study using the Poincaré sections. Namely the decrease of the
haoticity of the system (e.g., its unpredictability) for large values of ω.
In the previous discussion about the evolution of the escape basins as a function of ω, we handled unpredictability and

ncertainty as fundamental concepts to understand the escape dynamics in the rotating Hénon–Heiles problem. However,
rom the color maps of Fig. 8, it is not possible to obtain a quantitative measure of the degree of unpredictability or
ncertainty of the system for a given value of ω. In order to measure the intrinsic unpredictability in scattering processes,
aza et al. [45] proposed a correlation function named basin entropy, which is based on the Gibss entropy expression.
n a nutshell, given a dynamical system with NA attractors, let suppose we discretize the phase space in NB small boxes
, ∀i = 1, . . . ,N . Inside each of those boxes, we considered a high enough number N of initial conditions. Each of the N
i B

9
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Fig. 8. Evolution of the escape basins of the rotating Hénon–Heiles system for increasing values of the frequency ω.

initial conditions inside the box Bi is propagated, such that its corresponding final basin is determined. Then, if pij is the
probability that the basin j occurs in the box Bi, the Gibbs entropy S of the basins is given by

S =

NB∑
i=1

NA∑
j=1

pij ln
(

1
pij

)
. (14)

The function S provides useful information about the degree of uncertainty of the system because, when S = 0, there is
only one attraction basin, while if the system is completely chaotic with NA equiprobable attractors, we have the maximal
ntropy value Smax = NB lnNA. In order to avoid in (14) the dependence on NA and NB, we define the normalized entropy
= S/Smax, such that 0 ≤ Ŝ ≤ 1. In this way, by using Eq. (14), we compute, for different values of ω, the basin entropy
of the corresponding escape basins. In our case, the boxes Bi, ∀i = 1, . . . ,NB, are squares of linear size ϵ that define a
lanar grid that spans the domain Dx,y. In [45], it is shown that, even though that Ŝ depends on the chosen value of ϵ,
hile the scaling box size ϵ is fixed, the value of Ŝ converges for increasing number of trajectories inside a box. In our
ase, we propagate thirty six trajectories in each squared box. The results of these calculations are shown in Fig. 9 for two
caling box sizes ϵ = 10−3 and ϵ = 2 × 10−3. As expected, the evolution of the basin entropy Ŝ is qualitatively the same
10
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c
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Fig. 9. Evolution of the normalized basin entropy Ŝ of the rotating Hénon–Heiles system for increasing values of the frequency ω. Two scaling box
sizes ϵ = 10−3 and ϵ = 2 × 10−3 have been used in the calculation.

for both values of ϵ. On the other hand, Ŝ shows a global decreasing for increasing ω, such that, for large values of ω, the
basin entropy tends asymptotically to zero. This indicates (see Fig. 8 for ω = 0.8) that the unpredictability in the escape
dynamics almost disappears, so that the system becomes deterministic. However, the behavior of Ŝ is non-monotonic,
showing two minima around ω ≈ 0.15 and ω ≈ 0.45 respectively. Interestingly, the increasing of the size of the non-
escape black basins observed in Fig. 8, for ω between 0.1 and 0.2, is a possible explanation for the local decreasing of the
basin entropy around ω ≈ 0.15.

4.2. Escape probability

From the computation of the escape basins of the previous section, we can also obtain the escape probability associated
to those basins. Then, and following the same procedure used for the calculation of the attraction basins of Fig. 8, in Fig. 10
is presented the escape probability P(ω) for ω ranging from 0 to 0.95 at steps of 0.025. Although, at a first glance, we
find in Fig. 10 the expected global decreasing of P(ω), its behavior is far from being smooth. Since we start with ω = 0,
the escape probability is roughly one in agreement with the Poincaré section of Fig. 3(a) and with the escape basin of
Fig. 8(a). In the interval 0 < ω ≲ 0.4, we observe that P(ω) shows a fluctuating behavior that confirms the complex
evolution observed in the Poincaré surfaces of section of Fig. 3 and in the escape basins of Fig. 8 in that interval. Then, for
ω ≳ 0.4 the escape probability shows a sharply decrease. That sharply decrease for ω ≳ 0.4 is somehow counter-intuitive
because, for ω values close to 1, one would expect that P(ω) tends to a given constant value, and this is not the behavior
depicted in Fig. 10. One possible reason why P(ω) shows that monotonic decreasing even for ω values close to one is that,
although the sets of initial conditions used for the computations of the escape basins preserve the equiprobable condition
of the three escape channels, those sets of initial conditions do not cover all the phase volume. Therefore, the evolution
of the escape probability depicted in Fig. 10 may be influenced by the way of those initial conditions were chosen. In
order to test this guess, in the next section we will carry out the calculation of P(ω) using sets of initial conditions evenly
distributed over all the phase space volume.

5. Escape probability

In this section we compute the escape probability by propagating samples of trajectories whose initial conditions are
uniformly distributed in all the phase space volume. To this end, we choose the initial conditions (x0, y0) = (x(0), y(0)) of
the orbits to be in the set

A(x0, y0) = {(x0, y0) ∈ R2
| U(x0, y0) ≤ E,

y0 ≤ 1 − ω2, y0 ±
√
3 x0 + 2(1 − ω2) > 0}, (15)

orresponding to the contour level of the zero velocity surface for a given energy E , closed by three lines perpendicular to
he three axes of the D3 symmetry at the saddles E1,2,3. Now, for each point belonging to A(x0, y0), all the possible values
f the initial velocity vector (ẋ0, ẏ0) = (ẋ(0), ẏ(0)) belongs to the circle

ẋ2 + ẏ2 = R(x , y ; E)2,
0 0 0 0

11
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Fig. 10. Evolution of the escape probability as a function of the frequency ω. The probability has been obtained from the escape basins of Fig. 8.

Fig. 11. Evolution of the escape probability as a function of the frequency ω in the interval ω ∈ [0, 1].

here R(x0, y0; E) =
√
2(E − U(x0, y0)) is the radius of that circle (see Eq. (13)). In this way, for all (x0y0) ∈ A(x0, y0), the

possible initial momentum vectors (X0, Y0) = (X(0), Y (0)) are given by the set of points

B(X0, Y0) = {X0 = R(x0, y0; E) cos θ − ω y0,
Y0 = R(x0, y0; E) sin θ + ω x0 | θ ∈ [0, 2π )}. (16)

Thus, the phase volume can be approximated by A(x0, y0) × B(X0, Y0) for each (x0, y0) ∈ A. Let be N the size of the
chosen sample, (x0, y0, X0, Y0) a point of the sample and φ(t; x0, y0, X0, Y0) the orbit such that

φ(0; x0, y0, X0, Y0) = (x0, y0).

If there exists t < 2×104 such that ∥φ(t; x0, y0, X0, Y0)∥ > 2, we say that the orbit escapes. Otherwise, the orbit is labeled
as trapped. Now, the escape probability is defined as

P(ω) =
Ne

N
, (17)

eing Ne the number of escape orbits. Fig. 11 shows the escape probability for ω ranging from 0 to 0.96 at steps of 0.02.
e see the same pattern observed in the Poincaré surfaces of section. When ω is turned on, the escape probability begins

o decrease. However, after ω = 0.1, the probability increases until ω ≈ 0.2, then diminishes again, but again increases
round ω ≈ 0.35. After that, it decreases to reach almost a constant value. If we compare the evolution of P(ω) represented
n Fig. 11 with the evolution of P(ω) in Fig. 10, we observe that, for ω ≲ 0.4, in both cases the escape probability behaves
qualitatively in the same way. However, there is important difference in the behavior of P(ω) for ω ≳ 0.4. Indeed, in Fig. 11,
we observe that P(ω) for ω ≳ 0.8 shows the predicted asymptotic behavior for large ω values. Thence, as we argued in
the discussion of Fig. 10, in order to compute in a correct way the escape probability of our system it is necessary to use
samples of orbits with initial conditions extended to all the phase space volume.
12
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6. Conclusions

In this paper we have studied the influence of the strength of the Coriolis coupling in the dynamics of a Hamiltonian
ystem with a Hénon–Heiles potential. The strength of the coupling, measured in terms of the absolute value of the
otational frequency ω, regulates two different regimes. If ω < 1, escape is possible through three equiprobable channels,
owing to the existence of a trapping region around the minimum of the effective potential. This region shrinks as the
frequency approaches unity. For ω > 1, there is not a trapping region in the usual sense, because the minimum of the
effective potential turns into a stable maximum. As the value of the frequency increases such that ω ≫ 1, the equipotential
levels resemble those of a harmonic oscillator coupled by the Coriolis term and the dynamics is expected to be similar.
Due to this fact, we limited our study to ω ∈ [0, 1) because the most rich dynamics occurs in that range. By means of
Poincaré surfaces of section, it is shown how the strength of the Coriolis coupling controls the size of the trapping area
in the scattering region. For ω = 0, most of the orbits escape, whereas for ω ≈ 1 the situation is the opposite. However,
the transition from one situation to the other one is not monotonic, which is revealed not only by the Poincaré sections
but, also, by computing the escape probability. Even more, for intermediate values, complex resonant structures appear
giving rise to a chaotic sticky region of long living orbits in the scattering region. Besides to control the escape dynamics,
the strength of the Coriolis coupling has another interesting consequence. Indeed, the basins evolve from a complex
structure, where the boundaries between them have fractal character, to basins with very well defined boundaries. The
computation of the evolution of the basin entropy, similar to the Gibbs entropy, as a function of ω, confirms this fact.
In this way, the basin entropy of the system tends to zero as the frequency approaches one, which it is consistent with
the observed evolution of the Poincaré sections. Furthermore, the behavior of the entropy also confirms the decrease
of the escape probability for ω approaching one. Both the evolution of the escape probability and the entropy is not
monotonous, revealing the rich and complex dynamics for intermediate values of ω. In summary, the Coriolis coupling
llows the formation of long living complex chaotic structures that, for high enough values of ω, become more regular
ompact structures.
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