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In this paper we focus on a generalized Hénon–Heiles system in a rotating reference frame,
in such a way that Lagrangian-like equilibrium points appear. Our goal is to study their
nonlinear stability properties to better understand the dynamics around these points.
We show the conditions on the free parameters to have stability and we prove the super-
stable character of the origin for the classical case; it is a stable equilibrium point regard-
less of the frequency value of the rotating frame.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Hénon–Heiles system is probably one of the most studied dynamical systems, because it can be used to model different
physical problems and also to highlight different properties inherent to most of two degrees of freedom nonlinear Hamilto-
nian systems. It arose as a simple model to find additional conservation laws in galactic potentials with axial symmetry [10].
However, it was shown that many other problems can be reduced to the Hénon–Heiles Hamiltonian or, at least, to a very
similar one, in what it is called the Hénon–Heiles family or generalized Hénon–Heiles systems. For instance, models for
ion traps [12], reaction processes [11], three particle systems [14], black holes [20] and others (see [3] for more examples)
can be described by means of a proper generalized Hénon–Heiles Hamiltonian. In the context of galactic dynamics, to study
stellar orbits, the rotation of the galaxy must be taken into account [21] so that it makes sense to consider a generalized
Hénon–Heiles system in a rotating frame expressed by the Hamiltonian
H ¼ 1
2
ðX2 þ Y2Þ �xðxY � yXÞ þ 1

2
ðx2 þ y2Þ þ ayx2 þ by3

; ð1Þ
where x is the angular velocity and a and b are parameters. Hamiltonian (1) is also of great interest in the study of the
dynamics of Rydberg atoms subject to different external fields. For instance, a magnetic field or a circularly polarized micro-
wave field lead to the presence of the term xðxY � yXÞ in the Hamiltonian function and, thus, to a generalized Hénon–Heiles
system [18]. Indeed, in [18] a particular case of Hamiltonian (1), when the parameters a and b are in the same ratio as in the
classical Hénon–Heiles system, is considered. The chaotic ionization dynamics of atoms is studied, showing the appearance
of a fractal Weyl law behavior.
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We will focus on equilibrium solutions and their stability properties, as many qualitative aspects of the dynamics can be
inferred. Indeed, trapped and escape dynamics are regulated by the presence of critical points with special properties of sta-
bility [4]. Moreover, the existence of stable equilibria is crucial in constructing self-consistent galaxy models from a given
potential [21] and also to demonstrate the existence of nondispersive, coherent states for Rydberg atoms in the presence
of external fields [13]. For the Hamiltonian (1) we find different type of equilibria, but the most relevant fact is the appear-
ance, for appropriate values of the parameters, of Lagrangian-like equilibrium points, similar to L4 and L5 in the restricted
three body problem. It is known that these equilibria are not always stable, but they can be either stable or unstable depend-
ing on the mass parameter [16,19]. So, the same can happen for the Lagrangian-like equilibrium points of the system defined
by (1). The goal of the paper is to determine the values of the parameters for which stability takes place.

The discussion of stability starts by performing a linear analysis in a small neighborhood of the equilibrium solutions. A
necessary condition for stability is that all eigenvalues have zero real part. If this is the case, if the corresponding linear Ham-
iltonian function is positive or negative defined, Dirichlet criterion (also Morse lemma and Lyapunov theorem) ensures non-
linear stability [5,19]. However, if the linear Hamiltonian is not defined, it is not possible to ensure Lyapunov stability.
Indeed, there are well known examples of equilibrium points of a Hamiltonian system that are stable in the linear sense,
but unstable in the Lyapunov one [17,19]. We will consider the case of distinct pure imaginary eigenvalues, such that we
can apply classical results from KAM theory.

First of all it is necessary to transform the Hamiltonian function into normal form in a neighborhood of the equilibrium,
by means of a successive changes of variables entailing a cumbersome process, because of the many symbolic algebraic
manipulations [16]. Once the Hamiltonian has been brought to normal form, Arnold’s theorem [1] guarantees the stability
of equilibria if a certain non degeneracy condition is satisfied. Nevertheless, this theorem does not apply in the presence of
resonances of order less than or equal to four. If these resonances appear, results given by Markeev [15], Cabral and Meyer [6]
and Elipe et al. [7] must be applied. Also these results can be applied for higher order resonances, when degenerate situations
appear. In this way, it is interesting to find those values of the parameters corresponding to degenerate cases because,
although Arnold’s theorem ensures stability in most cases when dealing with higher order resonances, sometimes they
can lead to instability.

The paper is organized as follows. First, in Section 2, we find equilibria of the system. Next, in Section 3, we study the
linear stability and, in Section 4, the Lyapunov stability is considered. The last two sections are devoted to the analysis of
the stability in presence of resonances. Finally some concluding remarks are presented.

2. Equilibria

It is well known that, for the classical Hénon–Heiles problem, there are four equilibria whose coordinates ðx; y;X;YÞ are
given by ð0;0; 0;0Þ; ð0;1; 0;0Þ and ð�

ffiffiffi
3
p

=2;�1=2;0;0Þ. The origin is a minimum of the potential, and the other three equilib-
ria are saddle points, located at the vertices of an equilateral triangle with barycenter at the origin, accounting for the D3

symmetry of the problem. However, in the generalized Hénon–Heiles system, the symmetry can be destroyed by the param-
eters a and b, yielding to a new scenario of equilibrium points depending on the values of a; b and x. In particular, we obtain
the following result.

Theorem 2.1. Let us consider the Hamiltonian system defined by (1), then there are at most four equilibrium points. Moreover

(i) If x2 ¼ 1 and ab – 0 or x2 – 1 and a ¼ b ¼ 0; E1 � ð0;0;0;0Þ is the unique equilibrium point.
(ii) If x2 – 1 and b – 0, there are two equilibria: E1 and
E2 � 0;
x2 � 1

3b
;�x

x2 � 1
3b

;0
� �

:

(iii) If x2 – 1; b – 0 and að2a� 3bÞ > 0, there are four equilibria: E1; E2 and

E3;4 � � jx2�1j
2

ffiffiffiffiffiffiffiffiffiffi
2a�3b

a3

q
;x

2�1
2a ;�xx2�1

2a ;�x jx2�1j
2

ffiffiffiffiffiffiffiffiffiffi
2a�3b

a3

q� �
.

Proof. Equilibria of the system (1) are the solutions of the corresponding Hamilton equations equated to zero. These are
_x ¼ X þxy;
_y ¼ Y �xx;
_X ¼ �x� 2axyþxY;
_Y ¼ �ax2 �xX � y� 3by2

:

8>>><
>>>:

ð2Þ
From these equations we obtain X ¼ �xy and Y ¼ xx. Thus, x and y satisfy the system
ððx2 � 1Þ � 2ayÞx ¼ 0;

�ax2 þ ðx2 � 1Þy� 3by2 ¼ 0:

(
ð3Þ
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The first equation in (3) is verified if x ¼ 0 or y ¼ ðx2 � 1Þ=ð2aÞ. By substitution of these values into (2), the result follows
straightforwardly. h

It is worth noting that, for x2 – 1, there is a limiting case when b tends to zero. Indeed, if b tends to zero, the X and y
coordinates of the equilibrium point E2 blow up to infinity and, as the parameter b changes its sign, the same do X and y.
This can be viewed as if the point E2 escapes to infinity along the y axis and, as soon as b changes its sign, E2 appears at
the opposite side of the y axis. We will see later that b ¼ 0, together with 2a� 3b ¼ 0 and a ¼ 0, constitute the bifurcation
lines in the parameter plane. If one of these lines is crossed the number or the nature of equilibria changes.

We also note that, for x2 ¼ 1 and ab ¼ 0, a set of non isolated equilibria appears. If both a and b are zero, the dynamics
reduces to that of a linear system and can be easily figured out. However, if a and b are not zero at the same time, the dynam-
ics is more intricate as the nonlinear terms modify the behavior of the system.

The nature of equilibrium points can be characterized from two different points of view. On the one hand, we can estab-
lish its linear stability properties from the Jacobian matrix of the system (2) evaluated at the equilibria. On the other hand,
we can see the equilibria as the critical points of the effective potential
Ueff ¼ H�
1
2
ð _x2 þ _y2Þ ¼ 1

2
x2 2ay�x2 þ 1
� �

þ y2 2by�x2 þ 1
� �� �

ð4Þ
and establish their nature. We will start with the second approach, as it also provides information about the trapping and
escape dynamics. Consequently, we can establish the following result

Theorem 2.2. For the general Hénon–Heiles system (1):

(i) E1 is a minimum of the effective potential if x2 < 1 and a maximum if x2 > 1.
(ii) E2 is a minimum of the effective potential if bð2a� 3bÞ > 0 and x2 > 1; a maximum if bð2a� 3bÞ > 0 and x2 < 1 and a

saddle point if bð2a� 3bÞ 6 0.
(iii) E3;4 are always saddle points of the effective potential, when they exist.
Proof. The result is deduced from the Hessian matrix of the effective potential,
H ¼ 1�x2 þ 2ay 2ax

2ax 1�x2 þ 6by

 !
;

evaluated at critical points. For instance, for E2;H results to be
H ¼
ð2a�3bÞðx2�1Þ

3b 0
0 x2 � 1

 !
;

and therefore the character of the critical point E2 depends on the signs of bð2a� 3bÞ and x2 � 1. If bð2a� 3bÞ 6 0, the crit-
ical point is a saddle. On the other hand, if the inequality holds in the opposite direction, E2 is a maximum if x2 � 1 < 0 and a
minimum if x2 � 1 > 0. A similar discussion can be made for the rest of critical points. h

It is worth noting that, in the case x2 ¼ 1, no information can be deduced for the unique critical point if ab – 0, as the
Hessian matrix is the null matrix. This situation, as well as the case when a dense set of critical points exists, deserves a spe-
cial treatment and it is out of the scope of this paper. Thus, hereinafter we will focus on the case x2 – 1.

From Theorems 2.1 and 2.2 it follows that the parameter plane can be divided into different regions where the number of
critical points or their character changes. Two cases must be considered depending on the value of x : x2 > 1 and x2 < 1.
Fig. 1 shows the different regions in the parameter plane and Fig. 2 exhibits the effective potential and its projection onto the
xy plane for the configurations attained in each region. It can be seen that the role of maxima and minima is interchanged
when x2 crosses the limiting value 1.

Fig. 1 reveals the presence of a symmetry respect to the parameters a and b. Indeed, we have
Hðx; y;X;Y ; a; b;xÞ ¼ Hð�x;�y;�X;�Y;�a;�b;xÞ:
In addition, there is another symmetry respect to x, provided that
ðx; y;X;Y ; a; b;xÞ�!ðx; y;�X;�Y ; a; b;�xÞ:
These two symmetries allow us to restrict our analysis to the cases a > 0 or b > 0 and x > 0. In this way, from here on, we
will assume x > 0 and a > 0.

On the other hand, Fig. 2 shows the trapping regions located in the neighborhood of the minima and the escape channels
through the saddle points if the energy of the system is great enough. This is an interesting issue in the context of ionization
dynamics where these kind of systems appear. A careful analysis of phase space around the saddle points gives insight about
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Fig. 1. Parameter plane with the bifurcation lines for the critical points of the effective potential: a ¼ 0; b ¼ 0 and 2a� 3b ¼ 0.
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the ionization mechanism [2,9]. However, the dynamics around the maxima needs more insight. Indeed, it is known that the
effect of the rotating term can act as a stabilizer and orbits with energy above the maximum can remain not only bounded,
but confined in a small neighborhood of the critical point [8,13]. In this case, an important question is to determine the sta-
bility properties of the corresponding maximum and a necessary condition to have Lyapunov stability is linear stability. This
is the subject of the next section.

3. Linear stability

The linear stability of an equilibrium point ðx0; y0;X0;Y0Þ is derived from the eigenvalues of the Jacobian matrix associated
to the equations of the motion (2), which is written as
Jðx0; y0;X0;Y0Þ ¼

0 x 1 0
�x 0 0 1

�ð1þ 2ay0Þ �2ax0 0 x
�2ax0 �ð1þ 6by0Þ �x 0

0
BBB@

1
CCCA:
It is easy to see that eigenvalues of Jðx0; y0;X0;Y0Þ can be expressed as
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðM �

ffiffiffiffi
N
p
Þ

q
; ð5Þ
where
M ¼ x2 þ 1þ y0ðaþ 3bÞ;
N ¼ 4ða2x2

0 þx2Þ þ 4x2y0ðaþ 3bÞ þ y2
0ða� 3bÞ2:

ð6Þ
It is worth noting that the eigenvalues do not depend on the momenta X0 and Y0, so we can refer to the equilibrium points by
their coordinates x0 and y0. Now, we are in position to give the necessary conditions for linear stability. Indeed, the equilib-
rium ðx0; y0Þ is linear stable if and only if eigenvalues are pure imaginary and the Jacobian matrix is semisimple. Thence, we
can establish the following result about the linear stability of maxima E1 and E2 in the generalized Hénon–Heiles problem.

Theorem 3.1. E1 is a linear stable maximum if and only if x > 1. E2 is a linear stable maximum if and only if 1ffiffi
5
p < x < 1; b > 0

and
1�x4 þ 2x 1�x2
� �3=2

3ð5x4 � 2x2 þ 1Þ a < b <
2
3

a: ð7Þ
Proof. The equilibrium E1 is a maximum when x > 1. Eigenvalues of the Jacobian matrix are given by
k1;2 ¼ �ðxþ 1Þi; k3;4 ¼ �ðx� 1Þi:



Fig. 2. The effective potential and its projection for x2 > 1 and x2 < 1 in the different regions of the parameter plane.
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Taking into account that x > 1, we obtain four different pure imaginary eigenvalues and, therefore, E1 is linear stable.
The equilibrium E2 is a maximum when bð2a� 3bÞ > 0 and x < 1. Provided that, for E2; x0 ¼ 0 and y0 ¼ x2�1

3b , we obtain
for the expressions in (6)
M ¼ x2 þ 1þ ðx2�1Þðaþ3bÞ
3b ;

N ¼ 4x2 1þ ðx2�1Þðaþ3bÞ
3b

� �
þ ðx2�1Þða�3bÞ

3b

� �2
:

It can be seen that if N ¼ 0 and M > 0 we have multiple pure imaginary eigenvalues. However, it can be checked that the
corresponding Jacobian matrix is not semisimple. Therefore, it follows that the equilibrium E2 is linear stable if and only
if N > 0;M > 0 and M2 � N > 0. The last condition is always satisfied because



Fig. 3.
x ¼ 0:6
figure l
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M2 � N ¼ ð2a� 3bÞðx2 � 1Þ2

3b
;

and bð2a� 3bÞ > 0. Thus, we are left with the two inequalities M > 0 and N > 0. The first one is satisfied if and only if
b > a
1�x2

6x2 : ð8Þ
However, it must be bð2a� 3bÞ > 0 and this implies that (8) is satisfied if and only if 1=
ffiffiffi
5
p

< x < 1.
On the other hand, the inequality N > 0 holds if a and b do not belong to the region in between the two straight lines
b ¼ a
1�x4 � 2xð1�x2Þ3=2

3ð5x4 � 2x2 þ 1Þ :
An analysis of the slope of these lines and that given by (8), in the case 1=
ffiffiffi
5
p

< x < 1, yields the result stated in the
Theorem. h

It is interesting to note that the region of linear stability for the equilibrium E2 is delimited, in the plane ab, by two
straight lines, one of them with constant slope 2=3 and another one with a variable slope that is a function of x, given by
mðxÞ ¼
1�x4 þ 2x 1�x2

� �3=2

3ð5x4 � 2x2 þ 1Þ : ð9Þ
As the value of x increases, the slope mðxÞ decreases and, therefore, the size of the region of linear stability increases (see
Fig. 3). In the limit x ¼ 1=

ffiffiffi
5
p

the slope mðxÞ is equal to 2=3 and the region of linear stability is empty. On the contrary, if
x ¼ 1 the region of linear stability cover the whole region where E2 is a maximum.

4. Lyapunov stability

Linear stability is not enough to ensure Lyapunov stability, when the equilibrium point is a maximum of the effective
potential. To solve this question it is necessary to apply KAM theory and this implies to bring the Hamiltonian to its Birkhoff
normal form in a vicinity of the equilibrium point, in canonical action angle variables ðI1; I2; h1; h2Þ. To achieve this, a series of
canonical change of variables must be performed [16] and the normal form reads as
H ¼ x1I1 �x2I2 þ a20I2
1 þ a11I1I2 þ a02I2

2 þ OðI5=2Þ: ð10Þ
Here, x1 and x2 are the moduli of the eigenvalues of the linearized system at the equilibrium, a20; a11 and a02 are real num-
bers independent of the variables and the coefficients of OðI5=2Þ are finite Fourier series in the angles h1 and h2. Moreover, it is
assumed that x1 and x2 do not satisfy a resonance condition of order less or equal than four, that is, there not exist integers
n1 and n2 such that
n1x1 þ n2x2 ¼ 0; jn1j þ jn2j 6 4;
where jn1j þ jn2j is the order of the resonance. Once the Hamiltonian is in normal form, Arnold’s Theorem [1] gives conditions
for Lyapunov stability if some non degeneracy conditions are satisfied. Indeed, the corresponding equilibrium position is
Lyapunov stable if
D ¼ a20 x2
2 þ a11 x1x2 þ a02 x2

1 – 0: ð11Þ
4 2 2 4 a

3

2

1

1

2

3

b

4 2 2 4 a

3

2

1

1

2

3

b

Colored regions correspond to the region of linear stability for the maximum E2, in the plane ab, for two different values of x with 1=
ffiffiffi
5
p

< x < 1 (left
, right x ¼ 0:9). The lines b ¼ 2a

3 and b ¼ mðxÞa are painted in black and red color respectively. (For interpretation of the references to color in this
egend, the reader is referred to the web version of this article.)
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We do not enter here in the cumbersome process of the computation of the normal form and we omit the final expression,
due to its complexity. We will directly analyze, for E1 and E2, the relations the parameters a; b and x must satisfy, in order
that the non degeneracy condition (11) is fulfilled under the linear stability assumptions established in the previous section.

Let us begin analyzing the stability for E1 in the case of a maximum, when x > 1. We find that D vanishes if a and b are
located on the straight lines
b ¼ m1ðxÞa; b ¼ m2ðxÞa; ð12Þ
where the slopes m1ðxÞ and m2ðxÞ are given by
m1;2ðxÞ ¼
r1ðxÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2ðxÞ

p
45� 233x2 þ 1035x4 � 207x6 ; ð13Þ
and
r1ðxÞ ¼ 27þ 73x2 � 291x4 þ 63x6;

r2ðxÞ ¼ ð9�x2Þð9x2 � 1Þð9x4 þ 7Þð5x4 � 24x2 þ 3Þ:
Note that the two lines (12) exist if r2ðxÞP 0. This happens for x belonging to the interval ½j;3�, where
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ

ffiffiffiffiffiffiffiffiffi
129
p

5

s
:

Outside this interval the equilibrium point E1 is Lyapunov stable, provided a resonance condition of order less or equal than
four is not satisfied. These resonances take place when x ¼ 3, for a third order resonance, and when x ¼ 2, for a fourth order
resonance. We can summarize the previous discussion in the following result

Theorem 4.1. The equilibrium point E1 is Lyapunov stable if
x 2 ð1;2Þ [ ð2;jÞ [ ð3;1Þ; or x 2 ½j;3Þ and b – m1;2ðxÞa:

It is worth noting that, for the classical Hénon–Heiles system, E1 is Lyapunov stable, unless a resonance of third or fourth

order takes place. Indeed, aþ 3b ¼ 0 and a; b are located on a straight line with slope �1=3. However, the slopes m1ðxÞ and
m2ðxÞ reach this value when x ¼ 3, just in the case of a third order resonance. This case will be considered in Section 5.

Now, we perform a similar analysis for E2, when the conditions of Theorems 2.2 and 3.1 are satisfied. In this case, D van-
ishes if one of the following equations hold
b ¼ 0; pða; b;xÞ ¼
X
iþj¼6

aibjaij ¼ 0; ð14Þ
where the coefficients aij are given by
a60 ¼ 64� 256x2 þ 384x4 � 256x6 þ 64x8;

a51 ¼ �546þ 4104x2 � 9036x4 þ 7944x6 � 2466x8;

a42 ¼ �2277� 32364x2 þ 57186x4 � 8172x6 � 14373x8;

a33 ¼ 33642þ 175932x2 � 174744x4 þ 67284x6 � 102114x8;

a24 ¼ �117450� 426870x2 þ 419418x4 � 260010x6 � 465264x8;

a15 ¼ 170100þ 419904x2 � 775656x4 þ 1353024x6 þ 450036x8;

a06 ¼ �91125� 94770x2 þ 338256x4 � 867510x6 � 217971x8:
Note that b ¼ 0 matches with one of the lines delimiting the region where E2 is a maximum. Thus, we only have to analyze
the equation pða; b;xÞ ¼ 0. Let us note that pða; b;xÞ is a homogeneous polynomial in a and b, then its graph is a collection of
straight lines through the origin in the plane ab, for each value of x. The real roots of the polynomial in b; pð1; b;xÞ, deter-
mine the slope of the straight lines, which are of the form
b ¼ lkðxÞa; ð15Þ
lkðxÞ being a root of the polynomial pð1; b;xÞ and k an index running from 1 to the number of real roots (k 6 6). However,
the number of real roots is not fixed, as it depends on x. Indeed, from the resultant of pð1; b;xÞ, we deduce that the number
of real roots changes from four to two when x reaches the values 0:559284 and 0:998856, approximately. The question now
is to establish how many lines of the form (15) lie in the region of linear stability. Accordingly, we have to select those lkðxÞ
satisfying
mðxÞ < lkðxÞ < 2=3; ð16Þ
where mðxÞ is given by (9). It can be proven that there is only one lkðxÞ ¼ lðxÞ fulfilling the above condition if
1=

ffiffiffi
5
p

< x < 1, regardless if the number of real roots is two or four. This can be viewed in Fig. 4 where it is depicted in



m ω

2 3

Linear stability region

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

μ

Fig. 4. Roots of the polynomial pð1; b;xÞ, in blue, and the slopes of the lines delimiting the linear stability region for E2, namely mðxÞ and 2=3. Only one of
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red the slopes of lines delimiting the stability region, as a function of x, and in blue the slopes of the straight lines arising
from the solutions of pð1; b;xÞ ¼ 0. It is clear that only one solution verifies mðxÞ < lðxÞ < 2=3.

As a consequence, Arnold’s theorem cannot be applied if b ¼ lðxÞa, with lðxÞ the unique root of pð1; b;xÞ satisfying con-
dition (16). In addition, it can neither be applied if a resonance of order less or equal than four is satisfied. A resonance of
third order takes place if the eigenvalues associated to E2, given by (5) and (6), verify
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M þ
ffiffiffiffi
N
pq
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M �

ffiffiffiffi
N
pq

:

This equation is fulfilled if
b ¼
25� 18x2 � 7x4 � 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ 55x2Þð1�x2Þ3

q
3ð25� 50x2 þ 89x4Þ a: ð17Þ
Analogously, a resonance of fourth order occurs if
b ¼
25� 32x2 þ 7x4 � 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ 5x2Þð1�x2Þ3

q
3ð25� 50x2 þ 61x4Þ a: ð18Þ
An analysis of the slopes of the straight lines above shows that only the lines with the plus sign lie inside the region of linear
stability. Thus, we can summarize the Lyapunov stability of E2 in the following result

Theorem 4.2. The equilibrium point E2 is Lyapunov stable if it is linear stable and
b –
25� 18x2 � 7x4 þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ 55x2Þð1�x2Þ3

q
3ð25� 50x2 þ 89x4Þ a;

b –
25� 32x2 þ 7x4 þ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ 5x2Þð1�x2Þ3

q
3ð25� 50x2 þ 61x4Þ a;
and b – lðxÞa, with lðxÞ the unique root of pð1; b;xÞ satisfying (16).
5. Third and fourth order resonances

Theorems 4.1 and 4.2 fail to give stability conditions for E1 and E2 when the corresponding eigenvalues satisfy a resonance
of third or fourth order. In such cases, Birkhoff’s normal form is no longer as in (10). Indeed, for a third order resonance
(x1 ¼ 2x2) the normal form, around an equilibrium position, reads as
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H ¼ 2x2I1 �x2I2 þH3ðI1; I2; h1 þ 2h2Þ þ OðI2Þ
where H3ðI1; I2; h1 þ 2h2Þ is a homogeneous polynomial of third degree in I1=2
1 and I1=2

2 , whose coefficients are finite Fourier
series in the angle h1 þ 2h2.

For the case of a fourth order resonance (x1 ¼ 3x2), the normal form can be expressed as
H ¼ 3x2I1 �x2I2 þH4ðI1; I2; h1 þ 3h2Þ þ OðI5=2Þ;
H4ðI1; I2; h1 þ 3h2Þ being a homogeneous polynomial of second degree in I1 and I2, whose coefficients are finite Fourier series
in the angle h1 þ 3h2.

Markeev [15] established stability conditions for these resonances, that were generalized by Cabral and Meyer [6] and
Elipe et al. [7], including degenerate resonant cases of higher order. We can summarize the main result as follows.

Theorem 5.1. Let be h ¼ h1 þ 2h2 in the case of a third order resonance and h ¼ h1 þ 3h2 in the case of a fourth order resonance.
Then, the equilibrium point is Lyapunov stable if the function
WðhÞ ¼ H3;4ðx2;x1; hÞ ð19Þ
does not vanish. On the contrary, the equilibrium point is Lyapunov unstable if there exists h0 such that Wðh0Þ ¼ 0 and W0ðh0Þ – 0.
Our goal is to apply Theorem 5.1 to determine the stability of E1 and E2 in the resonant cases. After computing the normal

form for E1, the function WðhÞ in the case of a third order resonance is, excepting for a constant factor,
WðhÞ ¼ ðaþ 3bÞ cos h:
Thus, we can state the following stability result

Theorem 5.2. In the presence of a 1:2 resonance, the equilibrium point E1 is Lyapunov stable if and only if aþ 3b ¼ 0.
Proof. The proof is straightforward. If aþ 3b – 0 the function WðhÞ has simple zeroes and, by Theorem 5.1, the equilibrium
point is Lyapunov unstable. On the other hand, if aþ 3b ¼ 0 the analysis of stability must be pushed to the next order of the
normal form. By doing so, Cabral & Meyer’s theorem [6] can be applied, and the stability of E1 follows. h

It is worth noticing that, in general, a third order resonance is Lyapunov unstable. Stability is only achieved in a particular
case to which the classical Hénon–Heiles system belongs. This situation is reflected in the different behavior of the orbits
around the equilibrium point. In particular, in Fig. 5 it can be seen how the orbits look like near E1 in the stable and unstable
cases. In the stable case the orbits remain in a small neighborhood of E1, while in the unstable case, even though they are
bounded, they spread away from any arbitrary small vicinity of E1.

When a fourth order resonance takes place, the function WðhÞ in Theorem 5.1, for E1, takes the form
WðhÞ ¼ aþ b cos hþ c sin h; ð20Þ
where the following relations hold
a2 ¼
121a2 þ 122abþ 485b2
� �2

6350400
; b2 þ c2 ¼ ðaþ 3bÞ2ð3aþ 7bÞ2

1200
: ð21Þ
Now, it is possible to establish another stability result.
Orbits around E1 projected onto the plane xy for the stable case (left) and for the unstable one (right) in the presence of a 1:2 resonance. The orbits
en obtained by numerical integration.
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Theorem 5.3. Let m1 and m2 be given by
Fig. 6.
system
m1;2 ¼
61� 336

ffiffiffi
3
p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14 2265

ffiffiffi
3
p
� 887

� �r
882

ffiffiffi
3
p
� 485

;

and let us assume that a 1:3 resonance takes place. Then

(i) E1 is Lyapunov stable if m2 a < b < m1 a.
(ii) E1 is Lyapunov unstable if b < m2a, or b > m1 a.
Proof. From Eq. (20) and Theorem 5.1, it follows that E1 is a Lyapunov stable equilibrium if the inequality
a2 > b2 þ c2
holds. If the inequality is satisfied in the opposite direction, E1 is Lyapunov unstable. The limiting case that divides stability and
instability occurs when the equality takes place. From (21), this happens if and only if b ¼ m1;2 a and the result follows. h

As it happened in the case of the 1:2 resonance, for a and b corresponding to the classical Hénon–Heiles system, the equi-
librium point E1 is Lyapunov stable. In Fig. 6 the region of stability in the parameter plane ab is depicted, where it can be seen
that the case of the classical Hénon–Heiles (dashed line) lies inside the region of Lyapunov stability. Taking this into account,
as well as the results in Theorems 4.1 and 5.2, we can conclude that E1 is a superstable equilibrium for the classical case, as it
is Lyapunov stable, regardless of the value of x.

Now, we proceed to analyze the Lyapunov stability of E2 in the presence of the resonances 1:2 and 1:3. We recall that E2 is
a maximum of the effective potential when x < 1 and 2a� 3b > 0. Moreover, it is linearly stable when 1=

ffiffiffi
5
p

< x < 1; b > 0
and
mðxÞa < b <
2
3

a;
where mðxÞ is given by (9).
After computing the corresponding normal form for the 1:2 resonance, we obtain for the function WðhÞ
WðhÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3bð2a� 3bÞ

p
þ 3ðaþ bÞ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffi
2a�3b

3b

qr

6
ffiffiffi
3
p
ð1�x2Þ

ffiffiffiffiffiffiffiffiffiffi
2a�3b

b

q� �3=4 cos h:
It is easy to check that the numerator of WðhÞ cannot vanish for any value of a and b. Thus we arrive to the following result

Theorem 5.4. In the presence of a 1:2 resonance, the equilibrium point E2 is always Lyapunov unstable.
Proof. The function WðhÞ has simple roots and, by Theorem 5.1, the equilibrium point is Lyapunov unstable. h

For the case of the resonance 1:3, the function WðhÞ has the expression given in Eq. (20). Then, the stability properties of E2

are deduced from the sign of c3 ¼ a2 � ðb2 þ c2Þ. After some cumbersome algebra we obtain
c3 ¼ �
b 54

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2a�3bÞ

b

q
bpða; bÞ þ 5qða; bÞ

� �
15052800ð1�w2Þ4ð2a� 3bÞ3

; ð22Þ
Lyapunov stability region for the equilibrium point E1 in the case of a 1:3 resonance. The dashed line corresponds to the classical Hénon–Heiles
, inside the stability region.



M. Iñarrea et al. / Applied Mathematics and Computation 253 (2015) 159–171 169
where
Fig. 7.
stability
pða; bÞ ¼ 709569a5 þ 9426632a4bþ 3367462a3b2 � 34507476a2b3 � 3804975ab4 þ 22050900b5
;

and
qða; bÞ ¼ 1323135a6 þ 99066294a5bþ 212989291a4b2 � 555254916a3b3 � 1023722739a2b4 þ 1848639294ab5

� 520503975b6
:

Taking into account (22) we can state the following result

Theorem 5.5. In the presence of a 1:3 resonance, the equilibrium E2 is Lyapunov stable if
1ffiffiffi
5
p < x < 0:5438736060079052 . . . :
On the contrary, E2 is Lyapunov unstable if
0:5438736060079052 . . . < x < 1:
Proof. We note that the sign of c3 is the sign of the numerator of the expression given in Eq. (22). Moreover, the numerator
changes its sign when it is equal to zero. This happens if
sða; bÞ ¼ 5423b ð2a� 3bÞpða; bÞ2 � 25qða; bÞ2 ¼ 0;
which is a homogeneous equation of twelfth degree in a and b. As a consequence, the solutions are straight lines of the form
b ¼ rk a, where rk is a real root of the polynomial sð1; bÞ. Computing the roots of sð1; bÞ, we find two real roots whose values
are approximately
r1 � 0:038506249611936064; r2 � 0:6427508461205317:
However, only the second one is a solution of c3 ¼ 0. Taking into account the value of r2 and the resonance condition (18), we
obtain the value x ¼ 0:5438736060079052 . . ., dividing the stable and unstable cases. In Fig. 7 it can be seen the change of
sign of c3 in the interval ð1=

ffiffiffi
5
p

;1Þ, when x crosses the critical value. h
6. Higher order resonances

Higher order resonances must be taken into account in the case that the non degeneracy condition (11) is not satisfied.
The first resonances to be analyzed are those of order less than or equal to six. In this way, we find two resonances of fifth
order, 1:4 and 2:3, and the resonance of sixth order, 1:5.

For the case of the equilibrium point E1 it is easy to compute the values of x for such resonances, provided that
x1 ¼ xþ 1 and x2 ¼ x� 1. Thus, we obtain for the resonances 1:4, 2:3 and 1:5 values of x equal to 5/3, 5 and 3/2 respec-
tively. All of these values are located outside the interval ½j;3Þ given in Teorem 4.1 and, consequently, E1 is stable for these
resonant cases. Moreover, if we push forward the normal form up to sixth order for the degenerate cases of Theorem 4.1, that
is to say
The plot of c3, the coefficient in the normal form that determines the stability of the equilibrium point, as a function of x. A positive sign implies
for E2, while a negative one implies instability. The sign changes when x ¼ 0:543873606� 10�11.
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Fig. 8. The slope of the resonance lines 1:4, 2:3 and 1:5 and the slope of the degenerate case arising from Theorem 4.2. The four curves coincide at
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p
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x 2 ½j;3Þ; b ¼ m1;2ðxÞa;
where m1;2ðxÞ are given by (13), we are able to prove that E1 is Lyapunov stable. As a consequence, the only cases of insta-
bility are those reported in Theorems 5.2 and 5.3.

The same can be done for the equilibrium point E2. We can obtain the resonance curves for the three cases 1:4, 2:3 and
1:5. After some manipulations we arrive at
Resonance 1 : 4 b ¼
289� 450x2 þ 161x4 þ 17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þ3ð31x2 þ 225Þ

q
867� 1734x2 þ 1635x4 a:

Resonance 2 : 3 b ¼
169� 50x2 � 119x4 þ 13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þ3ð551x2 þ 25Þ

q
507� 1014x2 þ 2235x4 a:

Resonance 1 : 5 b ¼
169� 288x2 þ 119x4 þ 26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þ3ð36� 11x2Þ

q
507� 1014x2 þ 807x4 a:
The equilibrium E2 will be stable for one of these three resonances if Theorem 4.2 is satisfied. That is, the slopes of the lines
defining the resonances are not roots of the polynomial pð1; b;xÞ, given in (14), in the interval ðmðxÞ;2=3Þ, for x 2 ð1=

ffiffiffi
5
p

;1Þ.
Substituting the value of the slopes in pð1; b;xÞ we arrive at a polynomial equation in x with no roots in ðmðxÞ;2=3Þ if
x 2 ð1=

ffiffiffi
5
p

;1Þ. In fact, the slopes match the polynomial equation at the limiting values x ¼ 1 and x ¼ 1=
ffiffiffi
5
p

. This can be seen
in Fig. 8, where the slopes of the resonance lines and the slope of the degenerate case, b ¼ lðxÞa, are depicted. As a conse-
quence, E2 is Lyapunov stable if a resonance of order fifth or sixth takes place.

7. Conclusions

In this paper we have studied the Lyapunov stability of the equilibrium points of a generalized Hénon–Heiles system in a
rotating frame. We have shown the existence of equilibria similar to those appearing in the restricted three body problem,
corresponding to maxima of the effective potential. For these points an exhaustive analysis covering almost all possible val-
ues of the parameters has been made. In particular, if the rotating frequency is greater than unity, we have proven that the
origin is always a Lyapunov stable equilibrium, if the parameters a and b satisfy the relation of the classical case, that is
b ¼ �a=3. In this sense the origin can be regarded as a superstable equilibrium for the classical system.
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