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It is well known that libration motion of electrodynamic tethers operating in inclined
orbits is affected by dynamic instability due to the electromagnetic interaction between
the tether and the geomagnetic field. We study the application of two feedback control
methods in order to stabilize the periodic attitude motions of electrodynamic tethers in
elliptic inclined orbits. Both control schemes are based on the time-delayed autosynchro-
nization of the system. Numerical simulations of the controlled libration motion show
that both control techniques are able to transform the uncontrolled unstable periodic
motions into asymptotically stable ones. Such stabilized periodic attitude motions can be
taken as starting points for the operation of the tether. The control domains of both
methods have been computed for different values of the system parameters, as functions
of the two control parameters shared by both control schemes. The relative effectiveness
of the two techniques in the stabilization of the periodic attitude motion has also been
studied.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Electrodynamic tether (EDT) satellite systems are a
space technology that has been the object of wide research
and development in the last decades [1,2]. From a theore-
tical point of view, these systems offer quite interesting
models and problems in the field of non-linear dynamics.
EDT satellites consist basically of two masses separated by
a long conductive wire. When the tether is in orbit around
the Earth, moving through the ionosphere, the tether can
exchange free electrons with the ionospheric plasma. The
electrons are collected at one end of the tether, and
are then ejected from the other end. The conductive
plasma closes the circuit, so that a electric current flows
through the wire. The interaction of the current flowing
through the tether with the geomagnetic field provides an
d by Elsevier Ltd. All rights

ñarrea).
electrodynamic force acting on the tether. This electro-
magnetic force may affect both the attitude and orbital
dynamics of the EDT satellite.

The dynamics of EDT systems is a very interesting topic
in space engineering and astrodynamics because it offers a
variety of practical applications in spaceflight without the
use of chemical or nuclear power sources. In this way, EDT
spacecraft may provide means of satellite pointing, gen-
eration of electrical power, orbital debris mitigation and
removal, as well as thrust or drag to perform orbital
maneuvers. All of these EDT abilities are directly related
to the orientation and attitude motion of the tether. Hence,
during the last few years, many research efforts have been
performed in order to understand the attitude dynamics,
and control the libration motions of the EDT satellites [2].

It is well known that when an inert EDT, that is with
zero current, describes a circular orbit, the system has
stable equilibrium positions relative to the orbital reference
frame. In these stable equilibrium positions, the tether is
aligned with the local vertical due to the gravity gradient.
reserved.
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Nomenclature

A(t) generic vectorial function
B (Bx, By, Bz), Earth0s magnetic field in the orbital

frame, T
e eccentricity of the orbit
EXYZ inertial geocentric frame
F; Fθ ; Fφ feedback control signals
FLor Lorentz force acting on the tether, N
G system center of mass
Gxyz orbital frame
h orbital angular momentum, kg m2/s
I tether electric current, A

diag(0, Iy, Iz), inertia tensor of the tether in the
body frame, kg m2

i orbital inclination, rad
k; kθ ; kφ feedback control gains
L tether length, m
m m1þm2þmt, total mass of the system, kg
mt tether mass, kg
m1 lower-end mass, kg
m2 upper-end mass, kg
mn reduced mass of the system, kg
Qc θ ;Qc φ control generalized forces, N
Qed θ ;Qed φ electrodynamic generalized forces, N

R;Rθ ;Rφ parameters of the extended control method
Rte position vector of a tether element with

respect to E, m
r orbital radius of the tether, m
s position coordinate along the tether from G, m
t time, s
û unit vector along the tether
ɛ electrodynamic parameter
θ tether in-plane libration angle, rad
μg Earth0s gravitational constant, m3/s2

μm Earth0s magnetic dipole moment strength,
T m3

ν true anomaly, rad
τ feedback control delay
φ tether out-of-plane libration angle, rad
Ω right ascension of the ascending node of the

orbit, rad
ω tether angular velocity, rad/s
~ω argument of perigee of the orbit, rad

Superscripts

ð _⋆Þ dð⋆Þ=dt
ð⋆0Þ dð⋆Þ=dν
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These stable equilibrium positions disappear when the
tether describes an elliptic orbit. In this case, the satellite
attitude dynamics shows libration periodic motions instead
of those stable equilibrium positions [3–5].

When current is flowing through a tether that follows
an inclined circular or elliptic orbit, the stable equilibrium
positions along the local vertical also disappear and the
tether attitude dynamics becomes unstable. The source of
the instability is the electromagnetic interaction with the
magnetic field of the Earth. This interaction provides a
dynamical mechanism of energy interchange in the libra-
tion dynamics of the tether [6]. Under the assumption of a
constant uniform current through the tether, in the case
of inclined orbits, the attitude dynamics of the system
exhibits unstable periodic libration motions instead of
stable equilibrium positions aligned with the local vertical.
Some of these periodic attitude motions as well as their
stability properties have already been studied in the cases
of circular and elliptic orbits [8,7]. Unfortunately, in the
absence of damping or control, all these periodic libration
motions are unstable, so that even small initial oscillation
attitude motions become rotations in the long-term opera-
tion of the tether.

In recent decades, a great variety of new control
methods has been developed to be applied to dynamical
systems in order to transform unstable or chaotic motions
into regular or periodic ones [9]. Delayed feedback control
techniques constitute an interesting group among the
current available control methods. One advantage these
control schemes offer is that, in general, they need smaller
control forces than non-feedback techniques in order to
achieve the control of the system dynamics. In this sense,
Pyragas [10] proposed a feedback control scheme designed
to synchronize the current state of a system and a time
delayed version of itself. Taking this delayed time as the
period of an unstable periodic orbit, such a control scheme
can be used to stabilize the orbit. This method of control is
usually named time-delayed autosynchronization (TDAS).
Two important advantages of this method are related to
the feedback used: it does not require rapid switching
or sampling, nor does it require a reference signal corre-
sponding to the desired orbit. The TDAS technique has
been improved by Socolar et al. [11], Pyragas [12], and
Bleich and Socolar [13] using a more elaborated feedback,
the so-called extended time-delayed autosynchronization
(ETDAS), where TDAS appears as a limiting case. Frequ-
ently, dynamical systems exhibit unstable periodic orbits
which usually appear embedded in chaotic attractors.
Most of the research efforts were devoted to the control
of chaotic behavior which can be found in many of these
unstable orbits, a constant feature in low-dimensional
dynamical systems. Such orbits can be controlled with
small perturbation forces, which decrease as the system
approaches the stabilized periodic orbit where those con-
trol forces vanish.

Both time-delayed techniques have been applied to
control the attitude dynamics of spacecrafts. In this way,
Fujii et al. [14] have used the TDAS control to stabilize a
gravity-gradient satellite in the elliptic orbit. Kojima et al.
[15,16] have also applied this method to both inert, and
alive, electrodynamic tethered satellite systems in elliptic
orbits in order to control their libration motions. Peláez
and Lorenzini [17] used the TDAS technique to stabilize
the attitude motion of electrodynamic tethers working in



Fig. 1. Geocentric and orbital reference frames.
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inclined circular orbits. In this work, the authors found
that the TDAS scheme does not work well with electro-
dynamic tethers; though this control law delays the onset
of instability, it does not stabilize the unstable periodic
orbits for reasonable values of the control parameters.
They suggested the use of the ETDAS method because it
has been used with success in some cases where TDAS
failed. In this sense, the ETDAS scheme has been applied to
control the chaotic attitude motion of a magnetic space-
craft in the polar elliptic orbit [18]. Following the sugges-
tion of Peláez and Lorenzini, the ETDAS method has also
been applied, with success, by Iñarrea and Peláez [19] to
stabilize the libration motions of electrodynamic tethers in
inclined circular orbits.

The present paper goes one step forward in the applica-
tion of these time-delayed feedback control methods, TDAS
and ETDAS, to stabilize the unstable periodic libration
motions of electrodynamic tethers in inclined elliptic orbits.
The main idea is that stabilized periodic libration motions
can be used as suitable starting points for the operation of
the tether. The structure of the paper is organized as
follows. In Section 2, we describe the tether model used
in this study, the equations of the libration motion are also
derived, and the basic periodic libration motions of the
uncontrolled tether are described. Section 3 is devoted to
explaining the particular application of both TDAS and
ETDAS control methods to the tether dynamics in order to
transform the unstable basic periodic libration motions into
asymptotically stable ones. Section 4 is focused on the
comparison of the effectiveness of the TDAS and ETDAS
control techniques in the stabilization of the basic periodic
libration motions. To this end, the control domains of both
methods have been computed for different values of the
system parameters, by means of the alternative stability
proposed by Bleich and Socolar [13]. The conclusions of the
study are presented in Section 5.

2. Attitude dynamics of the tether

2.1. Model description

The electrodynamic tether satellite considered in this
paper is based on the so-called dumbbell model. In this
model, the EDT is made up by two end point masses, m1

and m2, connected by a rigid conductive rod of mass mt and
length L. This tether model with a rigid conductive rod
connecting both end subsatellites is a useful first approx-
imation to study the libration motions of the tether. Never-
theless, the rigid rod approach does not take into account
the elasticity and flexibility of a real tether. Therefore, this
model is not able to account for other internal motions of
the tether such as the longitudinal or transverse vibrations.
However, the goal of this paper is not related to these other
internal motions. On the other hand, any real tether in orbit
hanging suspended in the local vertical direction is subject
to tension along the tether due to its own weight. This
tension increases linearly with the tether length. As a
consequence of this, any real tether has a critical break
length [20,21] beyond which the tether breaks. This break
length is determined by the tether cross-section area, the
orbital angular velocity, and also by the material properties,
such as the density and Young0s modulus. These references
[20,21] include the values of those properties for some
strong materials, as well as the corresponding break
lengths, that can reach thousands of kilometres in the
geostationary orbit.

The EDT system is orbiting around the Earth subject to
the gravitational field that is modeled as due to a spherical
central planet. On the other hand, the EDT satellite has
plasma electric contactors at both ends, so that electric
current can flow through the tether by closing the circuit
via the ionospheric plasma. Therefore, the EDT is also
affected by the geomagnetic field through the electrody-
namic Lorentz force due to the tether electric current. In
this paper, the Earth0s magnetic field is modeled as a single
magnetic dipole aligned with the Earth0s axis of rotation,
and the tether electric current is assumed to be constant
and uniform along the tether length.

Besides the gravitational and electromagnetic forces,
the EDT system is also subject to suitable control forces
applied with the aim of stabilizing the attitude motion of
the tether. We assume that the center of mass G of the EDT
satellite follows a Keplerian elliptic orbit of eccentricity e
and inclination i. We also suppose that the total mass m of
the EDT system is large enough to neglect the effect of the
electrodynamic drag on the tether orbit. Therefore, it is
assumed that the trajectory followed by the satellite is a
frozen Keplerian elliptic orbit not affected by the attitude
motion of the EDT system.

In order to define the orbital position of the mass
center of the tether, we use an inertial right-handed ortho-
gonal geocentric reference frame EXYZ, with origin E
located at the center of mass of the Earth. The XY plane
is coincident with the equatorial plane, so that, the X-axis
is in the direction of the first Point of Aries, and the Z-axis
is aligned with the Earth0s rotation axis. In this reference
frame, the orientation of the satellite orbital plane is
described by two orbital parameters, the right ascension
of the ascending node Ω, and the inclination i, see Fig. 1.
The position of the tether center of mass G in the orbit is
defined by the orbital radius r, the argument of perigee ~ω
and the true anomaly, ν.

On the other hand, in order to describe the attitude
orientation of the EDT satellite, we use the right-handed
orthogonal orbital frame Gxyz, with origin coincident with
the tether center of mass. The direction of the x-axis is



Fig. 2. Orbital reference frame and angular coordinates of the tether
attitude.
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along the local vertical pointing to zenith, and the z-axis is
normal to the orbital plane. In this reference frame, the
orientation of the tether is described by two angular
coordinates: the out-of-plane angle φ, formed by the
tether and the orbital plane ð�π=2rφrπ=2Þ; and the
in-plane angle θ, formed by the x-axis and the projection
of the tether on the orbital plane ð�πrθrπÞ, see Fig. 2.

2.2. Equations of attitude motion

The kinetic energy T of the EDT spacecraft can be
expressed as

T ¼ 1
2m _r2þr2 _ν2

� �
þ1

2 ωT ω; ð1Þ

where ω is the attitude angular velocity vector of the EDT
about its center of mass G, is the tensor of inertia of the
system, and the dot means derivation with respect to time.
The first term of Eq. (1) is the kinetic energy corresponding
to the orbital motion of the satellite, whereas the second
term is the kinetic energy of the libration motion.

Expressed in the body frame attached to the tether, the
tensor of inertia is a diagonal one, that is,
¼ diagð0; Iy; IzÞ, being Iy¼ Iz the moments of inertia of

the system

Iy ¼ Iz ¼
m1m2þ 1

3mt m1þm2ð Þþ 1
12m

2
t

m

" #
L2 ¼mnL2; ð2Þ

where mn is the reduced mass of the EDT system. On
the other hand, the components of the attitude angular
velocity ω expressed in the body frame are given by

ω¼ fð _θþ _νÞ sin φ; � _φ; ð _θþ _νÞ cos φg: ð3Þ
Therefore, taking into account Eqs. (2) and (3), the kinetic
energy of the EDT satellite results in

T ¼ 1
2m _r2þr2 _ν2

� �
þ1

2 mnL2 _φ2þð _θþ _νÞ2 cos 2 φ
h i

: ð4Þ

Besides, the potential energy of the EDT system, due to
the gravity gradient and to the finite dimension of the
spacecraft, can be written in the following well-known
binomial Taylor expansion [6]:

U ¼ � μgm
r

þ μgmnL2

2r3
1�3 cos 2 θ cos 2 φ
� �

; ð5Þ
where μg is the gravitational parameter of the Earth. Thus,
the Lagrangian of the EDT satellite, excluding the electro-
dynamic and control forces, is given by

L¼ T�U ¼ m
2

_r2þr2 _ν2
� �

þ μgm
r

þ mnL2

2
_φ2þð _θþ _νÞ2 cos 2 φ

h i

� μgmnL2

2r3
1�3 cos 2 θ cos 2 φ
� �

: ð6Þ

In the above expression, the first two terms correspond to
the pure orbital motion of the spacecraft, and they do not
affect the attitude dynamics of the EDT system.

The equations of the libration motion can be obtained
via Lagrange0s equations

d
dt

∂L
∂ _qi

� �
¼ ∂L

∂qi
þQed iþQc i;

where Qed i and Qc i are the components of the generalized
forces associated with the electrodynamic interaction and
the control respectively, and qi are the generalized coordi-
nates, in this case, qi ¼ fθ;φg. Therefore, the equations of
the libration motion can be written as

mnL2½ð €θþ €νÞ cos 2 φ�2 _φð _θþ _νÞ sin φ cos φ�

¼ �3 μg mnL2

r3
sin θ cos θ cos 2 φþQed θþQc θ

mnL2 €φ ¼ �mnL2ð _θþ _νÞ2 sin φ cos φ�3μgmnL2

r3
cos 2 θ sin φ cos φ

þQed φþQc φ:

8>>>>>>>><
>>>>>>>>:

ð7Þ
The components of the generalized electrodynamic

force, ðQed θ ;Qed φÞ, can be computed by means of
D0Alembert0s principle of virtual work [22]. In this way,
the elemental components ðdQed θ ; dQed φÞ acting on an
element ds of the tether rod are given by

dQed θ ¼ dFLor �
∂Rte

∂θ
; dQed φ ¼ dFLor �

∂Rte

∂φ
; ð8Þ

where Rte is the position vector of the tether element ds
with respect to the mass center E of the Earth, and dFLor is
the elemental Lorentz force acting on the tether element.
The expression of this elemental Lorentz force is

dFLor ¼ Iðû � BÞ ds; ð9Þ
where I is the electric current in the tether, û is a unit
vector in the direction of the tether, and B, assumed to be
constant along the tether, is the magnetic field of the Earth
evaluated at the center of mass of the EDT satellite.
The components of the vectors û and Rte, expressed in
the orbital reference frame, can be written in the form

û ¼ f cos θ cos φ; sin θ cos φ; sin φg;

Rte ¼ frþs cos θ cos φ; s sin θ cos φ; s sin φg; ð10Þ
where s is the position coordinate of the tether element ds
measured along the tether with the origin at the center of
mass G.

Taking into account Eqs. (9) and (10), the elemental
components (8) result in the following expressions:

dQed θ ¼ cos φ½ sin φðBx cos θþBy sin θÞ�Bz cos φ�Is ds;
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dQed φ ¼ ðBy cos θ�Bx sin θÞIs ds; ð11Þ

where (Bx, By, Bz) are the components of the geomagnetic
field expressed in the orbital reference frame.

The components ðQed θ ;Qed φÞ of the total generalized
electrodynamic force acting on the tether rod can be
calculated integrating the elemental components (11)
along all the tether length. After this computation, the
following expressions are obtained:

Qed θ ¼
L2IΛ
2

cos φ sin φ Bx cos θþBy sin θ
� ��Bz cos φ

� 	
;

Qed φ ¼
L2IΛ
2

By cos θ�Bx sin θ
� �

; ð12Þ

where Λ¼ ðm1�m2Þ=m. In this computation, we have
assumed a uniform electric current I along the tether length.

We suppose that the terrestrial magnetic field B is
generated by a perfect dipole located at the mass center E
of the Earth and aligned with its rotation axis [23–25]. In
this way, the components of the magnetic field are
expressed in the orbital frame as

Bx ¼ �2
μm
r3

sin i sin νþ ~ωð Þ;

By ¼
μm
r3

sin i cos νþ ~ωð Þ;

Bz ¼
μm
r3

cos i;

8>>>>><
>>>>>:

ð13Þ

where μm is the geomagnetic dipole moment. Taking into
account Eqs. (12) and (13), the equations of the libration
motion (7) take the following form:

mnL2½ð €θþ €νÞ cos 2 φ�2 _φð _θþ _νÞ sin φ cos φ�

¼ �3μgmnL2

r3
sin θ cos θ cos 2 φ�μm

r3
L2IΛ
2

cos φf cos i cos φ

þ sin i sin φ½2 cos θ sin ðνþ ~ωÞ� sin θ cos ðνþ ~ωÞ�gþQc θ;

mnL2 €φ ¼ �mnL2ð _θþ _νÞ2 sin φ cos φ�3μgmnL2

r3
cos 2 θ sin φ cos φ

þμm
r3

L2IΛ
2

sin i cos θ cos νþ ~ωð Þþ2 sin θ sin νþ ~ωð Þ½ �þQc φ:

:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ

By means of a change of variable, the time t can be
replaced by the true anomaly ν as the independent vari-
able of the problem. This change of variable is performed
making use of the orbit equation _ν ¼m3μ2g ð1þe cos νÞ2=h3,
where h is the orbital angular momentum of the EDT
satellite. After some cumbersome algebra, the equations of
the attitude motions become

θ″¼ 2 θ0 þ1ð Þ e sin ν

1þe cos ν
þφ0 tan φ


 �
�3 sin θ cos θ

1þe cos ν

� ɛ
1þe cos ν

f cos iþ sin i tan φ½2 cos θ sin νþ ~ωð Þ

� sin θ cos νþ ~ωð Þ�gþ Qc θ

mnL2 _ν2
cos 2 φ

;

φ″¼ 2e sin ν

1þe cos ν
φ0 � ðθ0 þ1Þ2þ 3 cos 2 θ

1þe cos ν


 �
sin φ cos φ

þ ɛ
1þe cos ν

sin i cos θ cos νþ ~ωð Þþ2 sin θ sin νþ ~ωð Þ½ �

þ Qc φ

mnL2 _ν2
;

:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð15Þ
where the primes stand for the derivation with respect to
the true anomaly ν, and the electrodynamic parameter ɛ is
defined as

ɛ¼ μmIΛ
2μgmn

: ð16Þ

The parameter ɛ somehow gauges the ratio between
the Lorentz and the gravitational forces acting upon the
system, and it is also an indication of the strength of the
electrodynamic interaction. The last term of both equa-
tions in (15) corresponds to the forces applied to control
the libration dynamics of the EDT satellite. The expressions
of the control forces considered in this study are defined in
Section 3.

2.3. Uncontrolled tether: basic periodic motions

This section is focused on a certain set of unstable
periodic attitude motions of the tether in the absence of
control forces. This set of unstable periodic motions are the
target of the time-delayed control schemes that are
introduced in the next sections with the aim of stabilizing
the libration motions of the tether. In the uncontrolled
regime ðQc θ ¼Qc φ ¼ 0Þ, the equations of the attitude
motion (15) involve four free parameters: the argument
of perigee ~ω, the orbital inclination i, the eccentricity e,
and the electrodynamic parameter ɛ.

As is well known, for an inert tether with no current
flowing through the rod (ɛ¼0), in the circular orbit (e¼0),
the satellite exhibits four equilibrium attitude positions
with respect to the orbital reference frame. All of them are
located in the orbital plane (φ¼0). Two of these equili-
brium positions are unstable and the other two stable. In
the unstable positions, the tether is aligned with the local
horizontal (θ¼7π/2), whereas in the stable ones it is
oriented in the direction of the local vertical (θ¼0, π).
Apart from these equilibrium positions, the dynamics of an
inert tether in the circular orbit also exhibits periodic
attitude oscillatory motions, in angles θ and φ, with
periods equal to the periodicity of the true anomaly in
the orbital motion, that is 2π, or multiples of it. Some of
these periodic libration motions have been described in
Refs. [4,5,8].

When an inert tether satellite (ɛ¼0) is following an
elliptic orbit ðea0Þ the local vertical orientations are no
longer equilibrium positions. In this case, the spacecraft
exhibits unstable periodic libration motion instead of such
steady positions. Peláez and Andrés [8] have analyzed
some of these periodic motions and their stability.

On the other hand, for an alive EDT satellite, that is,
with current flowing through the tether ðɛa0Þ, even in an
inclined circular orbit, the local vertical direction is not an
equilibrium position either. In this case, the tether attitude
dynamics also have periodic libration motions. However,
all of them are unstable due to the dynamic instability
generated by the electrodynamic interaction with the
geomagnetic field [6]. Some of these periodic attitude
motions, along with stability properties, have been studied
in Ref. [7].

In this paper, we focus on the case of an alive EDT
following an inclined elliptic orbit. We are interested in a



Fig. 3. Shape of the basic periodic libration motions in the (θ,φ) plane for different values of the system parameters i, ɛ and e.
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certain group of periodic attitude motions, which we call
basic periodic motions. Indeed, having fixed the value of ~ω,
for each set of values of the other free parameters, there is
a particular periodic libration motion with the same period
as the orbital motion. This 2π-periodic motion is directly
related to the original stable equilibrium orientation of the
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tether attitude in the inert circular case (ɛ¼e¼0). In fact,
for each orbital inclination i, these particular periodic
libration motions collapse to the stable equilibrium posi-
tion along the local vertical when ɛ and e tend to zero.
These special periodic attitude motions are the basic
periodic motions considered in this paper. The dynamic
stability of these basic periodic motions has already been
analyzed by Peláez and Andrés [8]. In that study, the
authors found that the effect of the argument of perigee
~ω in the stability of the basic periodic motions is very
small compared to the effect of the eccentricity. That
is the reason why we have fixed the value of ~ω and, in
the present study, it will be set equal to zero.

In order to compute these basic (2π)-periodic motions,
for each fixed orbital inclination i, we have made a
numerical continuation of the solution of the stable
equilibrium position along the local vertical of the inert
circular case (ɛ¼e¼0), using ɛ and e as the continuation
parameters. This numerical continuation has been per-
formed by means of the freely distributed software pack-
age AUTO2007 [26,27]. This software carries out the
Fig. 4. Unstable behavior of a libration motion with initial conditions very close
and e¼0.1 after different orbital periods. In each case, only the libration motion
bifurcation analysis and continuation of solutions of sys-
tems of differential equations with respect to the para-
meters of the problem.

Fig. 3 shows the shape of these basic (2π)-periodic
motions in the plane of the angular coordinates (θ,φ), for
different values of the system parameters (i, ɛ, e). From this
figure, it is clear that the amplitude of the in-plane and the
out-of-plane oscillations grows with the orbital eccentri-
city in all cases. In this figure, only periodic motions
appear for relatively small eccentricity values. The reason
for this is the fact that, for each pair of fixed values of i and
ɛ, the continuation of the family for increasing e ends for
relatively small eccentricity values in a cyclic-fold bifurca-
tion [28]. In this bifurcation, the family of basic periodic
motions coalesces with another family of periodic motions
that has its origin in a 2π-periodic oscillation motion
of the inert circular case [8]. In this bifurcation, both
families of periodic motions disappear for higher values
of eccentricity.

Apart from these basic periodic motions, it is worth
noting that the uncontrolled EDT in the inclined elliptic
to the basic periodic solution (dashed line) corresponding to i¼401, ɛ¼0.5
during the last two orbital periods is plotted.
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orbit also has other 2π-periodic attitude motions. These
other periodic motions emanate from the unstable equili-
brium position along the local horizontal, or from periodic
libration motions of the inert circular case. Moreover, the
uncontrolled system exhibits other periodic motions
whose periods are multiples of 2π. These secondary
periodic libration motions arise from bifurcations suffered
by the basic periodic motions during the continuation
process by tuning parameters ɛ and e. Among the draw-
backs of all these other periodic motions, their high
instability and the large amplitude of their attitude oscilla-
tions may be mentioned.

When the system is not controlled, all of the basic 2π-
periodic motions are also unstable for any values of the
three free parameters i, ɛ and e [8].

Figs. 4 and 5 graphically represent two examples of the
unstable character of the basic periodic motions of
the uncontrolled tether. The dashed line represents the
basic periodic solution, and the continuous line repre-
sents a libration motion starting from initial conditions
very close to that periodic motion. The small dot is located
at the initial conditions of the attitude motion. These
uncontrolled motions have been computed by numerical
integration of the equations of motion (15) with Qc θ ¼
Qc φ ¼ 0. Fig. 4 corresponds to the case i¼401 and ɛ¼0.5
for a small value of the orbital eccentricity e¼0.1. The plot
represents the attitude motion followed by the tether after
20, 80 and 162 orbital periods (only the corresponding last
two periods are shown in the figure). From these graphs,
Fig. 5. Unstable behavior of a libration motion with initial conditions
very close to the basic periodic solution (dashed line) in the case of
i¼401, ɛ¼0.5 and e¼0.37 after different orbital periods. In (b), only the
libration motion during the last two orbital periods is plotted.
it is clear that although the motions start with initial
conditions close to the periodic solution, after 162 orbital
periods, the libration motion of the tether is very far away
from the periodic trajectory. In fact, the motion has under-
gone a transition from oscillation to rotation. Fig. 5 shows
another example of the instability of the basic periodic
solutions for the same case i¼401 and ɛ¼0.5, but for a
larger value of the orbital eccentricity e¼0.37. In this case,
the corresponding basic periodic motion is much more
unstable. As can be seen in Fig. 5b, after only 9 orbital
periods, the libration motion of the tether is very far away
from the periodic motion, undergoing the transition from
libration to rotation.

These two examples graphically demonstrate the fact
that the instability of the basic periodic attitude motions
increases with the eccentricity e. Peláez and Andrés [8]
have done an extensive analysis of the eigenvalues of the
monodromy matrix of the periodic motions of the uncon-
trolled electrodynamic tether. They studied the depen-
dence of the eigenvalues with the free parameters of the
system. They also showed that the instability of the basic
periodic motions increases with the eccentricity e.

3. Libration control with two time-delay
feedback methods

This section is devoted to the application of two time-
delayed feedback control methods to the system dynamics
in order to transform the unstable character of the basic
periodic attitude motions of the uncontrolled tether into
asymptotically stable periodic ones. The first one of these
schemes is the so-called time-delay autosynchronization
(TDAS) method [10]. The second control technique is a
natural extension of the first one and so, it is called the
extended time-delay autosynchronization (ETDAS) method
[11,12]. These two methods have two important advan-
tages: they do not require fast switching or sampling,
nor do they need a reference signal corresponding to the
desired regular motion. They only require the knowledge
of the period of the target periodic orbit.

With respect to the TDAS control scheme, Fig. 6 shows
the basic block diagram that describe the method. The
control variable y of the system is delayed at the output by
some amount of time τ, and then it is re-introduced into
the system through the feedback control signal F(t)¼
k[y(t�τ)�y(t)]. When considering periodic motions, the
delay time τ coincides with the period of the orbit. This
control perturbation can be adjusted through the para-
meter k in order to achieve the stabilization of the desired
periodic orbit, that is, k is a free parameter of the problem.
It is important to note that, when the controlled system
Fig. 6. Block diagram of the TDAS control method.



Fig. 7. Block diagram of the ETDAS control method.
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follows a periodic orbit of period τ, the control signal
F(t) vanishes for any value of k, because in that case
y(t�τ)¼y(t).

The application of the control signal F(t) to the system
implies the existence of additional control forces acting
on the tether satellite. These additional forces have to
be taken explicitly into account in the equations of the
attitude motion as the control terms. The TDAS control
technique has been already used to convert unstable
periodic motions into stable ones in the case of EDT in
inclined circular orbits [17]. Following that study, in order
to apply the TDAS method in this case, we assume that the
generalized control forces ðQc θ ;Qc φÞ of Eqs. (15) have the
following explicit form:

Qc θ ¼mnL2 _ν2 cos 2φ FθðνÞ; Qc φ ¼mnL2 _ν2FφðνÞ; ð17Þ

where the two control signals FθðνÞ and FφðνÞ, according to
the TDA technique, are given by

FθðνÞ ¼ kθ½ _θðν�τÞ� _θðνÞ�; FφðνÞ ¼ kφ½ _φðν�τÞ� _φðνÞ�: ð18Þ

This means that the control variables we choose are the
angular velocities _θ and _φ. The delay time τ must be the
period of the unstable periodic motions we want to stabi-
lize. As in this problem time has been replaced by the true
anomaly ν as the independent variable, the delay time
must be τ¼2π. In this way, there are two new parameters,
kθ and kφ, in the added control terms to achieve the
stabilization of the basic periodic librational motions of
the tether. Thus, taking into account Eqs. (17) and (18), the
equations of attitude motion under the application of the
TDAS control method can be written as

θ″ ¼ 2 θ0 þ1ð Þ e sin ν

1þe cos ν
þφ0 tan φ


 �
�3 sin θ cos θ

1þe cos ν

� ɛ
1þe cos ν

f cos iþ sin i tan φ½2 cos θ sin νþ ~ωð Þ
� sin θ cos ðνþ ~ωÞ�gþFθðνÞ;

φ″ ¼ 2e sin ν

1þe cos ν
φ0 � ðθ0 þ1Þ2þ 3 cos 2 θ

1þe cos ν


 �
sin φ cos φ

þ ɛ
1þe cos ν

sin i cos θ cos νþ ~ωð Þþ2 sin θ sin νþ ~ωð Þ½ �
þFφðνÞ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð19Þ

It should be noted that, when the controlled tether
follows a 2π-periodic orbit, both control signals Fθ and Fφ
vanish. Indeed, any 2π–periodic motion of the uncon-
trolled tether is also a 2π-periodic orbit of the controlled
one. Unfortunately, Peláez and Lorenzini showed in their
study [17] that the TDAS control method fails to stabilize
the basic periodic motions of the tether. Thus, this control
technique is not able to convert the unstable periodic
motions of the uncontrolled tether into asymptotically
stable ones. In that study, the authors proposed the use
of the ETDAS control scheme to stabilize the unstable
periodic motions of the EDT.

The basic block diagram of the ETDAS control method is
shown in Fig. 7. In this technique, the control variable y is
progressively delayed at the output by multiples of some
amount of time τ. All of these delayed control values y
(t� jτ) are then re-introduced into the system through the
feedback control signal given by

FðtÞ ¼ k ð1�RÞ ∑
1

j ¼ 1
Rj�1yðt� jτÞ�yðtÞ

" #
:

This control signal has two adjustable parameters, the
feedback gain k and the memory parameter 0rRo1.

As in the TDAS, when the ETDAS technique is applied to
a periodic motion, the delay time τ must coincide with the
period of the motion. However, the ETDAS method uses
information about many previous states of the system in
order to stabilize the periodic orbit with period τ. It is
worth emphasizing that, when the system controlled by
ETDAS follows a τ-periodic orbit, the control signal F(t) also
vanishes for any values of the control parameters R and k,
as it happens in the TDAS control scheme. Indeed, in
that case y(t� jτ)¼y(t) for all j, and then the identity
1=ð1�RÞ ¼∑1

k ¼ 0R
k leads to the vanishing of the control

signal F(t). Note also that, in the limit R-0, the ETDAS
method coincides with TDAS. That is, the TDAS control
technique is a limit case of ETDAS.

The ETDA control scheme has been already used with
success to convert unstable periodic motions into stable
ones in the case of electrodynamic tethers in inclined
circular orbits [19]. In order to apply the ETDAS method in
this case, we follow the same line of that study, and we
assume that the generalized control forces ðQc θ ;Qc φÞ of
Eqs. (15) have the same explicit form of (17). Nevertheless,
in this case, and according to the ETDAS technique, the two
control signals, FθðνÞ and FφðνÞ, are given by

FθðνÞ ¼ kθ ð1�RθÞ ∑
1

j ¼ 1
Rj�1
θ

_θðν� jτÞ� _θðνÞ
" #

;

FφðνÞ ¼ kφ ð1�RφÞ ∑
1

j ¼ 1
Rj�1
φ _φðν� jτÞ� _φðνÞ

" #
: ð20Þ

Therefore, in both methods we choose the same control
variables, that is, the angular velocities _θ and _φ. In this
case, we have four different control parameters kθ ; kφ, and
Rθ ;Rφ, with 0rRio1 to achieve the stabilization of the
basic periodic libration motions. As it happens in the TDAS
control scheme, when the tether controlled by ETDAS
follows a 2π-periodic motion, the control signals Fθ and
Fφ vanish. Therefore, any 2π-periodic motion of the uncon-
trolled tether is also a 2π-periodic orbit of the tether
controlled by the ETDAS method.

Both feedback control techniques, TDAS and ETDAS,
share an attractive feature. When any of these methods is
successfully applied to stabilize an initially unstable peri-
odic libration motion, it is transformed into an asympto-
tically stable one. Therefore, any motion of the controlled



Fig. 8. Example of the successful application of both control methods for the case i¼401, ɛ¼ 1:0 and e¼0.2. (a) Uncontrolled libration motion. (b and c)
TDAS controlled motion. (d and e) ETDAS controlled motion. The control parameters used are kθ ¼ kφ ¼ Rθ ¼ Rφ ¼ 0:5. The dashed line stands for the
corresponding basic periodic motion. In (c) and (e) only the libration during the three last orbital periods is represented. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 9. Example of application of both control methods for case, i¼201, ɛ¼0.5 and e¼0.35. In this case the TDAS control fails in the stabilization of the basic
periodic motion, but the ETDAS control successes. The control parameters used here are kθ ¼ 0:8; kφ ¼ 0:2 and Rθ ¼ Rφ ¼ 0:5. The dashed line stands for the
corresponding basic periodic motion. In (c) and (e) only the libration during the three last orbital periods is represented.
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system starting in the attraction basin of that stabilized
periodic libration would approach it over time and, after
a while, the control terms ðQc θ ;Qc φÞ become very small
because they would tend to zero when ν-1. Thus, if from
the very beginning the tether is operated close to the basic
periodic motion, it can be controlled with small controlling
forces. This is a very interesting feature of both control
methods. In this way, the growth of the oscillation
amplitude of angles θ and φ, due to the instability of the
uncontrolled tether, could be removed by the control
forces.

Figs. 8 and 9 show two examples of application of both
control methods to the tether libration dynamics. These
examples have been computed by the numerical integra-
tion of equations of motion (15), controlled by each one of
both techniques. The example shown in Fig. 8 corresponds
to the case i¼401, ɛ¼1.0 and e¼0.2. The red dashed line
represents the basic periodic attitude motion correspond-
ing to those values of the system parameters. The con-
tinuous black line stands for a libration motion with initial
conditions close to the basic periodic motion. Fig. 8a shows
the attitude motion of the uncontrolled tether during the
first 9.5 orbital periods. As it can be seen in this figure, the
uncontrolled motion goes far away from the basic periodic
motion, tending to develop a transition from libration to
rotation. Fig. 8b and c represents the attitude motion
controlled by the TDAS method with the same initial
conditions after 10 and 20 orbital periods respectively.
For the sake of clarity, Fig. 8c only shows the libration
motion during the three last orbital periods. Fig. 8d and e
plots the tether attitude motion controlled by the ETDAS
scheme with the same initial conditions after 10 and
20 orbital periods respectively. The values of the control
parameters used in these tests are the same in both
methods kθ ¼ kφ ¼ Rθ ¼ Rφ ¼ 0:5. As it can be seen in
Fig. 8, both control techniques success in the stabilization
of the basic periodic motion for those values of the control
parameters. After 20 orbital periods, the tether libration
practically coincides with the basic periodic motion.
Therefore, both control methods are able to remove the
unstable character of the basic periodic motion, transform-
ing it into an asymptotically stable one.

Fig. 9 shows another example of application of both
control schemes for the case i¼201, ɛ¼0.5 and e¼0.35.
Fig. 9a plots the uncontrolled attitude motion during the
first 7.5 orbital periods for initial conditions close to the
corresponding basic periodic motion. Fig. 9b and c and 9d
and e represent the evolution of the libration motion
controlled by the TDAS and ETDAS methods respectively.
In this example, the values of the control parameters have
been taken as kθ ¼ 0:8; kφ ¼ 0:2 and Rθ ¼ Rφ ¼ 0:5. Unlike
the first example, Fig. 9 shows that, in this case, the ETDAS
technique is more effective than the TDAS in stabilizing the
basic periodic motion. Indeed, in Fig 9c it is clear that after
26 orbital periods the tether attitude motion controlled by
TDAS has moved far away from the basic periodic motion,
tending to perform rotation. On the other hand, Fig. 9e
shows that after 20 orbital periods, the libration motion
controlled by ETDAS tends to coincide with the basic
periodic motion. Thus, in this case, and for these values
of the control parameters, the ETDAS control technique
successes in the stabilization of the basic periodic orbit,
whereas the TDAS fails. The results of these examples of
application of both control methods lead us to perform a
comparative study of the effectiveness of both control
schemes.
4. Effectiveness of the libration control

This section is focused on the comparison of the effec-
tiveness of the TDAS and ETDAS control methods in the
stabilization of the basic periodic libration motions of the
tether. To this end, we have carried out a stability analysis of
the basic periodic motions controlled by means of both
methods. This stability analysis has been performed using
the technique proposed by Bleich and Socolar [13]. This
technique has been already used to compute the control
domains in the case of electrodynamic tethers in inclined
circular orbits controlled by the EDTAS method [19]. For the
sake of the completeness of the paper, this stability analysis
method is briefly described in the following paragraphs.

Let us consider an uncontrolled dynamical system with
equations of motion

_y ¼ fðy; tÞ
where y is the n-dimensional vector which describes the
dynamical state of the system. An unstable periodic orbit
(UPO), yp(t), of the uncontrolled system with period τ is
known, and a nearby orbit y(t) is also considered. The goal
is to control the system so that the UPO becomes a
stable periodic orbit in such a way that the nearby
orbit y(t) tends asymptotically to the periodic orbit yp(t).
This implies that the difference between both orbits xðtÞ ¼
yðtÞ�ypðtÞ must satisfy the condition: limt-1xðtÞ ¼ 0. To
achieve this objective, the dynamical system is modified
by the addition of a suitable control signal to the equations
of motion. For the two feedback control methods consid-
ered in this paper, the corresponding controlled equations
of motion can be written as

_yðtÞ ¼ fðy; tÞþk M½yðt� jτÞ�yðtÞ� TDAS;

_yðtÞ ¼ fðy; tÞþkM ð1�RÞ ∑
1

j ¼ 1
Rj�1yðt� jτÞ�yðtÞ

" #
ETDAS; ð21Þ

where M is an n�n matrix which contains the informa-
tion about the specific way the feedback control signal is
applied to the system. Note that the periodic orbit yp(t) is
also a periodic solution of the controlled system (21). To
study the stability properties of the UPO yp(t) in the new
controlled system, the time derivative of the deviation xðtÞ
is written to first order as

_xðtÞ ¼ JðtÞ xðtÞþk M½xðt� jτÞ�xðtÞ� TDAS;

_xðtÞ ¼ JðtÞ xðtÞþk M ð1�RÞ ∑
1

j ¼ 1
Rj�1 xðt� jτÞ�xðtÞ

" #
ETDAS; ð22Þ

where J(t) is the Jacobian matrix of the uncontrolled
dynamical system.

The goal of the control method is to transform the UPO
into an asymptotically stable orbit. Therefore, a suitable
form for the solutions x(t) of (22) is xðtÞ ¼ pðtÞeλt=τ , where p
(t) is a τ-periodic function, p(tþτ)¼p(t), and λ is a complex
number with RðλÞo0. Inserting this solution into (22)



Fig. 10. Control domains of the TDAS (left) and ETDAS (right) methods in the parametric plane (kθ, kφ) for different values of the system parameters i, ɛ and
e. In the ETDAS method the control parameters are taken as Rθ ¼ Rφ ¼ 0:5. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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gives

_pðtÞ ¼ J tð Þ�λ

τ
Iþk M e� jλ�k M


 �
p tð Þ TDAS;

_pðtÞ ¼ J tð Þ�λ

τ
Iþk M 1�Rð Þ ∑

1

j ¼ 1
Rj�1 e� jλ�k M

" #
p tð Þ ETDAS;
where I is the identity matrix. The solution of these
differential equations for a given initial condition can be
written as

pðtÞ ¼ e� λt=τ UðtÞ pð0Þ; ð23Þ



Table 1
Success rates in percentage of both feedback control methods for
different values of the orbital parameters i and e, and the electrodynamic
parameter ɛ.

i (1) ɛ e % success TDAS % success ETDAS

20 0.5 0.1 0 95.2
0.2 93.2 93.2
0.35 69.2 91.8

1.0 0.1 85.0 95.2
0.13 91.8 95.2
0.17 89.8 91.1

40 0.5 0.1 0 94.3
0.2 91.1 93.7
0.3 91.8 90.5

1.0 0.1 0 61.0
0.15 79.4 87.5
0.2 83.9 90.7

60 0.5 0.1 0 96.6
0.2 89.6 94.1
0.3 92.7 95.2

1.0 0.1 0 25.8
0.2 63.0 70.3
0.3 29.0 29.9
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where U(t) is a matrix, which is the solution of the
following problem:

_UðtÞ ¼ ½JðtÞþk M ðe� λ� 1Þ� UðtÞ TDAS;

_U tð Þ ¼ J tð Þþk M
e� λ�1
1�R e� λ


 �
U tð Þ ETDAS;

ð24Þ

with the initial condition U(0)¼I. Since p(t) is a τ-periodic
function, the periodicity condition p(0)¼p(τ) can be writ-
ten as

½e� λ UðτÞ�I � pð0Þ ¼ 0;

where the relation (23) has been taken into account. As a
consequence, the following determinant vanishes:

gðμ�1Þ � det½ μ�1 UðτÞ�I � ¼ 0; ð25Þ

where μ� eλ is the Floquet multiplier.
The control method will be effective if, for any solution

of Eq. (24), the corresponding deviation xðtÞ ¼ pðtÞeλt=τ goes
asymptotically to zero, which means that all solutions of
Eq. (25) must satisfy RðλÞo0. Therefore, the asymptotic
stability of the periodic orbit yp in the controlled system
requires that all zeros of gðμ�1Þ lie outside the unit circle
as Jμ�1 J413RðλÞo0. For Ro1, the determinant
gðμ�1Þ has no poles inside the unit circle. Thus, by virtue
of the Cauchy0s argument principle [29], the number of
roots of gðμ�1Þ inside the unit circle is equal to the number
of times the path traced by gðμ�1Þ winds around the origin
as μ�1 runs completely over the unit circle. Hence, the
periodic orbit in the controlled system is stable if, and only
if, this number of encirclements vanishes.

Therefore, the determination of the stability character
of a particular periodic orbit in the controlled dynamical
system by means of this technique involves the following
consecutive tasks. First of all, the computation of the initial
conditions and period τ of that particular UPO in the
uncontrolled system. Second, the calculation of the matrix
U(τ) by the integration of Eq. (24) between 0 and τ.
Third, the computation of the determinant g(μ�1) for a
sequence of sufficiently closely spaced values of μ over the
unit circle. And last, the determination of the number of
encirclements of the origin corresponding to the path
traced by g(μ�1).

Although this method of stability analysis involves
some cumbersome calculations, it has several important
advantages. The method avoids the delicate matter of the
integration of the equations of motion of the controlled
system with time-delay. This alternative method of stabi-
lity analysis only requires the integration of the equations
of motion without the time-delay control terms over
only one period of the corresponding periodic orbit.
Basically, this method reduces to the calculation of the
number of encirclements of the origin of a curve in the
complex plane.

By means of this technique of stability analysis, we
have calculated the stability domains of the controlled
tether for both TDAS and ETDAS control methods. The
stability domains have been computed for different values
of the orbital parameters of the system i and e, and the
electrodynamic parameter ɛ. As the two control schemes
applied in this paper share the control parameters kθ and
kφ, the stability domains have been calculated in the
parametric plane (kθ, kφ) with 0rkir1, with the aim of
comparing the effectiveness of both control techniques.
For the sake of simplicity, this comparative study of the
control domains has been limited to the case in which the
EDTAS control parameters Rθ ¼ Rφ ¼ 0:5 as a medium value
in the range of these parameters.

Fig. 10 shows three representative examples of domains
of control for both TDAS and ETDAS methods in the para-
metric plane (kθ, kφ), calculated by means of this alternative
stability analysis for three different sets of values of the
parameters i, ɛ and e. Green regions stand for the domains
where the control method succeeds in stabilizing the peri-
odic motion, whereas red regions stand for the domains
where the control method fails. These domains of control
have been calculated upon a two-dimensional grid of values
of the control parameters (kθ, kφ) with steps of 0.05. For each
one of the control methods, we have carried out the stability
analysis of the controlled periodic motion corresponding to
each pair of the control parameters in order to know its
dynamical character.

The control domains shown in Fig. 10a and b corre-
spond to the examples of controlled libration motions
shown in Fig. 9, whereas the control domains shown in
Fig. 10c and d correspond to the examples of controlled
motions of Fig. 8. As can be seen in these figures, the
dynamical behaviors of those controlled motions are in
agreement with the corresponding control domains.
Indeed, the values of the control parameters (kθ, kφ) used
in the successful control cases lie in the stable regions
(green), whereas the values used in the unsuccessful case
lie in a unstable region (red). We can observe in Fig. 10
that, for those three cases of orbital and electrodynamic
conditions, the ETDAS control technique seems to be more
effective than the TDAS one in the stabilization of the basic
periodic libration motions of the tether.

In order to get a quantitative comparison of the effec-
tiveness of both control methods, the success rate of each
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technique has been computed for several values of the
orbital parameters i and e, as well as the electrodynamic
parameter ɛ. We have defined this success rate in the
following way. For each set of values of the system
parameters (i, ɛ, e), the corresponding control domain
has been calculated using a number NT of values of the
control parameters (kθ, kφ) evenly distributed. Let Ns be the
number of pair values (kθ, kφ) for which the control
method successes. Therefore, the success rate of the
control scheme for those values of the system parameters
will be the ratio Ns/NT. Table 1 shows the values of the
success rate of both control methods calculated for several
values of the system parameters. We have considered
three different orbital inclinations, and two values of the
electrodynamic parameter. For each pair of values (i,ɛ),
we have taken into account three different values of the
eccentricity.

From these results concerning the success rates, some
remarks can be pointed out. First of all, taking into account
all cases as a whole, the ETDAS control method is slightly
more effective than the TDAS method in the stabilization
of the basic periodic libration motions. It is worth noticing
that in most of the studied cases where e¼0.1, the TDAS
method fails completely with zero values of the success
rate. This fact seems to be in agreement with the failure of
the TDAS method in the stabilization of periodic motion in
the case of tethers in inclined circular orbits that has been
studied by Peláez and Lorenzini [17]. Indeed, Iñarrea and
Peláez showed that the ETDAS method is more effective
in stabilizing the periodic libration motions in the case of
inclined circular orbits [19].

On the other hand, in certain cases such as i¼601, ɛ¼1.0
and e¼0.3, the success rates of the control methods take
quite small values in comparison with the rest of the cases.
For these values of the system parameters, the corresponding
uncontrolled basic periodic motions are highly unstable with
large values of the modulus of the eigenvalues of the
associated monodromy matrix. The existence of such highly
unstable periodic libration motions in inclined orbits for
certain ranges of the system parameters has already been
pointed out by Peláez and Andrés [8]. Therefore, it is quite
reasonable that the success rates of both control methods are
quite lower in such unstable periodic motions.

According to the results shown in Table 1, the TDAS
control method is slightly less effective than the ETDAS
one. However, the greater simplicity of the TDAS method
makes it preferable to the ETDAS one in order to stabilize
the periodic libration motions of the tether. The more
complex ETDAS control method should be used only on
those cases of small orbital eccentricity, in which the TDAS
method fails completely.

With respect to the practical application of both control
techniques, in general, the experimental implementation
of a feedback control method involves three steps [30]: the
measurement of the actual state of the system, the gen-
eration of the suitable feedback signal, and finally the
adjusting of some available actuator of the system in order
to modify its evolution. The TDAS and ETDAS schemes
proposed in this paper are based on the libration angular
velocities ð _θ; _φÞ of the tether. Therefore, the practical
implementation of both control methods should include
the following devices and actions performed in loop. First,
rate-gyro sensors located at the tether end subsatellites
would measure the libration angular velocities. A periodic
sample of these measurements would be stored in the
memory of the control CPU. This CPU would perform the
algorithm of the control technique taking into account
both the actual and the previous values of the libration
angular velocities with delays of one orbital period τ
(TDAS) or multiples of it (ETDAS) in the past. In the calcu-
lation of the feedback signal, the CPU should use the
suitable values of the control parameters (feedback gains
ki and memory parameters Ri) to achieve the stabilization
of the tether libration motion towards the target periodic
attitude motion. Finally, the CPU would periodically send
the appropriate commands to the tether actuator devices
to produce the adequate control torques. These actuators
could be attitude thrusters or momentum wheels located
at the end subsatellites. It is worth recalling here that, the
control forces required in both methods will decrease
to zero as the tether libration motion approaches to the
target periodic motion.

5. Conclusions

In this work, we have studied the application of two
feedback control methods, TDAS and ETDAS, to control the
libration motion of an electrodynamic tether in an inclined
elliptic orbit. The tether system considered in this study is
based on the classical dumbbell model. The tether current
is assumed constant and uniform along the tether length.
The Earth0s magnetic field is modeled as a magnetic dipole
aligned with the rotation axis of the Earth. It is also
assumed that the tether trajectory is a frozen elliptic orbit
not affected by the attitude motion.

By means of numerical continuation of families of
periodic orbits, we have computed, in the uncontrolled
case, the basic periodic libration motions with the same
period as the orbital motion. All of these basic periodic
motions are unstable for any values of the free parameters
of the system: the orbital inclination i, the eccentricity e,
and the electrodynamic parameter ɛ. The basic idea is to
use these periodic attitude motions as the starting point
for the operation of the tether, trying to stabilize those
periodic motions by the application of two feedback
control methods based on the time-delayed autosynchro-
nization of the system.

Numerical simulations of the controlled libration motion
of the tether have shown that the ability of both control
techniques to get the stabilization of the basic periodic
attitude motions depends on the values of the system
parameters. In order to compare the relative effectiveness
of both control methods, a stability analysis of the controlled
periodic motions has been performed using an alternative
technique suitable for these time-delayed feedback schemes.
The control domains of both methods have been calculated
for several values of the system parameters, as functions of
the two control parameters (kθ, kφ) shared by both control
methods. From the control domains we have computed the
corresponding control success rates of both control techni-
ques. The comparison of those success rates has shown that
the ETDAS control scheme is slightly more effective than the
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TDAS method in the stabilization of the periodic attitude
motions. However, the more simplicity of the TDAS method
makes it preferable to the ETDAS technique. This more
complex method should be only applied in those cases of
small eccentricity in which the TDAS technique fails.

The analysis carried out in this paper should be
extended by the improvement of the tether model used
in this study. In this way, some of the simplifications
assumed here, as the rigid conductive tether, the constant
tether current, the geomagnetic field model, or the frozen
orbit, may be modified in order to study a more realistic
model of the system. Work along this research line is now
under consideration.
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