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Abstract. For every closed model category with zero object, Quillen gave

the construction of Eckman-Hilton and Puppe sequences.
In this paper, we remove the hypothesis of the existence of zero object and

construct (using the category over the initial object or the category under the
final object) these sequences for unpointed model categories.

We illustrate the power of this result in abstract homotopy theory given

some interesting applications to group cohomology and exterior homotopy
groups.

1. Introduction

The usual tools of Algebraic Topology have permitted to obtain many classifi-
cations and to analyse some topological properties. However, there are families of
spaces whose study requires an adaptation of the standard techniques.

For a non compact space it is advisable to consider as neighbourhoods at infinity
the complements of closed-compact subsets. The Proper Homotopy Theory arises
when we consider spaces and maps which are continuous at infinity. In order to have
a category with limits and colimits it is interesting to extend the proper category
to obtain a complete and cocomplete category. The category of exterior spaces
satisfies these properties, contains the proper category and has limits and colimits.
The study of non compact spaces and more generally exterior spaces has interesting
applications, for example, Siebenmann [30] or Brown and Tucker [6] used proper
invariants of non compact spaces to obtain some properties and classifications of
open manifolds. We can also use exterior spaces to find applications in the study
of compact-metric spaces. A compact metric space can be embedded in the Hilbert
cube, its open neighbourhoods provide the Hilbert cube with the structure of an
exterior space. In this way, the homotopy invariants of exterior spaces become
invariants of metric-compact spaces.

To develop the Algebraic Topology at infinity (or in the category of exterior
spaces) it is useful to consider some analogues of the standard Hurewicz homotopy
groups. If instead of n-spheres we use sequences of n-spheres converging to infinity,
then we obtain the Brown-Grossman proper homotopy groups, see [5] , [21] . On
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the other hand, if we move an n-sphere continuously towards infinity, we get infin-
ity semitubes which represent elements of the Steenrod proper homotopy groups,
see [11], [12]. The analogues of the previous groups have been considered for the
category of exterior spaces, see [17], [18]. In this homotopy theory the role of a
base point is played by a base ray; that is, an exterior map from the exterior space
of non negative real numbers R+ to an exterior space X .

One of the problems that arises in the study of Steenrod and Brown-Grossman
groups is that the category of exterior spaces under R+ does not have a zero object
and this fact implies some difficulties in the study of the exactness of some sequences
or in the construction of the suspension of an exterior space, which is the base for
the corresponding stable theories.

On the other hand, in the theory of Postnikov invariants of non simple spaces,
for a 0-connected space X it plays an important role its first Postnikov section X →
X [1], where X [1] is an Eilenberg-Mac Lane space K(G, 1) with G ∼= π1(X) . Using
cohomology with coefficients in a G-module H (a particular case is the cohomology
of a group) and working in the category of spaces over K(G, 1) one can define the
Postnikov invariants as elements of cohomology groups with coefficients and these
invariants can be used to reconstruct the space X. Nevertheless, we find again the
same problem: the category of spaces over K(G, 1) does not have a zero object.

In order to give a common solution to these questions, in this paper we have
developed some techniques that can be used to construct Eckman-Hilton and Puppe
sequences in model categories without zero object. Once these constructions have
been developed for an arbitrary model category, we return to the categories of
exterior spaces under R+ and spaces over K(G, 1), and apply the properties of the
corresponding Eckman-Hilton and Puppe homotopy sequences.

For example, using the homotopy sequences associated to the category of spaces
over K(G, 1), we obtain that the cohomology of a group G with coefficients in a G-
module H can be interpreted as certain homotopy groups of twisted Eilenberg-Mac
Lane spaces (K(G,H; 1, n)) in the category of spaces under and over K(G, 1):

Theorem 4.5 Let H be a G-group and n ≥ 0 . Then

(i) Hn(G;H) ∼= πrf0 (K(G,H; 1, n)) ,
(ii) for any integer q ≥ 0 , Hn(G;H) ∼= πrfq (K(G,H; 1, n+ q)) .

In the case of the category of exterior spaces under R+, when we apply the homo-
topy sequences developed for a closed moded category without zero object, we find
a long exact sequence that gives a nice connection between the two main families of
exterior homotopy groups: Brown-Grossmann homotopy groups, πBq (X,σ|N), and
Steenrod homotopy groups, πSq (X,σ).

Theorem 5.2 Let X be an exterior space and let σ : R+ → X be a base ray,
then there is an exact sequence

· · · → πBq+1(X,σ|N)→ πSq (X,σ)→ πBq (X,σ|N) −→ πBq (X,σ|N)→

· · · → πB1 (X,σ|N)→ πS0 (X,σ)→ πB0 (X,σ|N) −→ πB0 (X,σ|N) .

The long exact sequence given by Quigley [34] in Shape Theory and the sequence
given by Porter [29] in proper homotopy theory can be obtained as particular cases
of the long exact sequence above given for exterior spaces.



EXACT SEQUENCES AND CLOSED MODEL CATEGORIES 3

2. Preliminaries

In this section, we fix the notation and recall some of the notions and results
that will be used in this paper.

2.1. Closed model categories. Given a category C, if there exists an initial
object (final object) it will be denoted by ∅ (∗). The opposite category is denoted
by Cop. If A be an object in C , the categories under A and over A will be
denoted by CA , CA, respectively. In this paper, objects and morphisms in CA

will be underlined, f : X → Y , and for the category under A the overlined notation
f : X → Y will be used. A category C is said to be pointed if there exist initial
and final objects and they are isomorphic. This object is usually denoted by ∗ and
it is called the zero object.

Remark that for every category C one has the following properties:
(i) CA always has initial object A = idA : A→ A ,
(ii) if A is the initial object of C , then CA ∼= C ,

(iii) if A is the final object of C , then CA is a pointed category, where A : A→
A is the zero object.

and we also have the corresponding dual properties.
If A is any given object in a category C,

(CA)A = (CA)A

is a pointed category that it will also be denoted by CA
A . An object in this category

X = A
iX // X

rX // A is determined by morphisms iX and rX in C such that

rX iX = idA, a morphism f : X → Y is given by a morphism f : X → Y in C such

that fiX = iY and rY f = rX . The zero object of CA
A is A = A

idA // A
idA // A .

For a given object A in a category C , we can consider the forgetful functors
U : CA → C and V : CA → C , given by U(X) = X , U(f) = f and V (X) = X ,
V (f) = f .

If C has finite coproducts, then U has a left adjoint At(·) : C → CA given as
follows. If X is an object in C , AtX is the canonical morphism AtX : A→ AtX .

Dually, if C has finite products, then V has a right adjoint A×(·) : C → CA,
which assigns to an object X in C , the object A×X which is the projection
A×X → A .

The notion of closed model category, introduced by Quillen [32], is the following:

Definition 2.1. A closed model category is a category C endowed with three
distinguished classes of morphisms called cofibrations, fibrations and weak equiva-
lences, satisfying the following axioms CM1–CM5 below:
CM1: C is closed under finite limits and colimits.
CM2: If f and g are morphisms such that the composition fg is defined then if two
of them f, g and fg are weak equivalences, so is the third.

We say a morphism f in C is a retract of g if there are morphisms ϕ : f → g
and ψ : g → f in the category of maps in C, such that ψϕ = id.
CM3: If f is a retract of g, and g is a cofibration, fibration or weak equivalence,
then so is f .

A morphism which is both fibration (resp. cofibration) and weak equivalence is
said to be a trivial fibration (resp. trivial cofibration).
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CM4: Given a commutative diagram of solid arrows:

A
u //

i

��

X

p (D)

��
B

v //

>>

Y

the dotted arrow exists and the triangles commute, in either of the following situa-
tions:

(i) i is a cofibration and p is a trivial fibration,
(ii) i is a trivial cofibration and p is a fibration.

CM5: Any morphism f may be factored in two ways:
(i) f = pi, where i is a cofibration and p is a trivial fibration,
(ii) f = qj, where j is a trivial cofibration and q is a fibration.

If the dotted arrow exists in any diagram of the previous form (D) , then we say
that i : A→ B has the left lifting property (LLP) with respect to p : X → Y , and
p has the right lifting property (RLP) with respect to i.

An object X of C is said to be cofibrant if the unique morphism ∅ → X is a
cofibration; dually X is called fibrant if X → ∗ is a fibration. We denote by Cc ,
Cf and Ccf the full subcategories of C determined by the cofibrant objects , the
fibrant objects and the cofibrant and fibrant objects, respectively.

Given a closed model category C, the category of fractions obtained by formal
inversion of the weak equivalences is denoted by Ho(C) , see [16], [32]. Given X,Y
objects in C , we denote

[X,Y ] = HomHo(C)(X,Y ).

If X is a cofibrant object and Y is a fibrant object, then the relation of right
homotopy is equal to the relation left homotopy, ∼, and the set of morphisms
divided by the homotopy relation will be denoted by

π[X,Y ] = HomC(X,Y )/ ∼ .

Moreover, in this case [X,Y ] = π[X,Y ] .
It is well known, see [32] , the following result:

Proposition 2.1. If C has the structure of a closed model category, then the
opposite category Cop inherits a closed model category structure taking as cofibra-
tions, fibrations and weak equivalences the opposites of the classes of fibrations,
cofibrations and weak equivalences, respectively.

Definition 2.2. Let C be a closed model category and let A be an object in C .
A morphism f̄ in CA is said to be a cofibration, a fibration or a weak equivalence
if and only if U(f̄) is a cofibration, a fibration or a weak equivalence in C . In a
dual way, a morphism f in CA is said to be a cofibration, a fibration or a weak
equivalence if and only if V (f) is a cofibration, a fibration or a weak equivalence in
C .

We refer the reader to [32] for a proof of the following:

Proposition 2.2. Let C be a closed model category and let A be an object in
C . Then, the categories CA and CA, with the classes of morphisms given above,
has the structure of a closed model category.
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We denote by Ho(CA) and Ho(CA), the respective localizated categories. Given
X : A→ X and Y : A→ Y , we will use the following notation

[X,Y ]A = HomHo(CA)(X,Y ) .

If X is cofibrant and Y is fibrant in CA ; that is X : A → X is a cofibration
and Y → ∗ is a fibration in C , then the relation of right homotopy is equal to
the relation left homotopy, ∼, and the set of morphisms divided by the homotopy
relation will be denote by

π[X,Y ]A = HomCA(X,Y )/ ∼ .

In this case we also have [X,Y ]A = π[X,Y ]A .
In a dual way, given X : X → A and Y : Y → A , we will use the following

notation
[X,Y ]A = HomHo(CA)(X,Y ) .

If X is cofibrant and Y is fibrant in CA ; that is ∅ → X is a cofibration and
Y : Y → A is a fibration in C , then the relation of right homotopy is equal to
the relation left homotopy, ∼, and the set of morphisms divided by the homotopy
relation will be denote by

π[X,Y ]A = HomCA(X,Y )/ ∼ .

In this case we also have [X,Y ]A = π[X,Y ]A .

In this paper we consider the following closed model category structure in Top:
Given a map f : X −→ Y in Top, f is said to be a fibration if it is a fibre map
in the sense of Serre; f is a weak equivalence if f induces isomorphism πq(f) for
q ≥ 0 and for any choice of base point and f is a cofibration if it has the LLP
with respect to all trivial fibrations. For this structure we refer the reader to
Quillen [32]. Then, Top∗ inherits the following closed model category structure: A
pointed map f : (X, ∗) → (Y, ∗) is said to be a fibration (resp. weak equivalence,
cofibration) if in the non pointed setting the map f : X → Y is a fibration (resp.
weak equivalence, cofibration). We recall that both categories of spaces and pointed
spaces have compatible simplicial structures, see [32], [20] . Ho(Top) , Ho(Top∗)
will denote the corresponding localized categories obtained by formal inversion of
weak equivalences defined above.

2.2. Fibration and cofibration sequences on a pointed closed model cat-
egory. Let C be a closed model category. For a morphism f : X → Y in C the
fibre F of f in C is given by the pullback

F

��

// X

f

��
∅ // Y

and the cofibre C of f in C is given by the pushout

X //

f

��

∗

��
Y // C
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The suspension object ΣX of X is the cofibre of XctXc → Xc×I , where Xc×I
is a cylinder object of a cofibrant approximation Xc of X. In a dual way, the loop
object ΩX of X is the fibre of XI

f → Xf×Xf , where XI
f is a path object of a fibrant

approximation Xf of X . Thus we have induced functors Σ,Ω: Ho(C)→ Ho(C) .
Now if we suppose that C is a closed model category with the additional property

of being pointed, then the functor Σ: Ho(C)→ Ho(C) is left adjoint to Ω: Ho(C)→
Ho(C) . Moreover, in this case we have the following notions of fibration sequence
given in [32] .

Definition 2.3. A diagram in Ho(C) of the form

X −→Y −→Z , X × ΩZ −→X

is said to be a fibration sequence in Ho(C) if there is a fibration p : E → B in Cf ,
such that the induced diagram in Ho(C)

F
i−→E

p−→B , F × ΩB m−→F

is isomorphic in Ho(C) to the given diagram . Here F is the fibre of p and m the
left action of the group object ΩB.

In a dual way we can consider cofibration sequences, see [32] .
For a pointed closed model category C , Quillen [32] proved the following result:

Proposition 2.3. Let F i−→E
p−→B be a fibration sequence in Ho(C) . Then

for each object A in C there is a sequence

· · · −→ [A,Ωq+1B] ∂∗−→ [A,ΩqF ]
(Ωqi)∗−→ [A,ΩqE]

(Ωqp)∗−→ · · ·
· · · −→ [A,ΩE]

(Ωp)∗−→ [A,ΩB] ∂∗−→ [A,F ] i∗−→ [A,E]
p∗−→ [A,B]

that is exact in the following sense:
(i) p−1

∗ (0) = Im i∗.
(ii) i∗∂∗ = 0 and i∗α1 = i∗α2 ⇐⇒ α2 = α1 · λ for some λ ∈ [A,ΩB].
(iii) ∂∗(Ωp)∗ = 0 and ∂∗λ1 = ∂∗λ2 ⇐⇒ λ2 = (Ωp)∗µ · λ1 for some µ ∈ [A,ΩE].
(iv) The sequence of group homomorphisms from [A,ΩE] to the left is exact in

the usual sense.

In a dual way, one has the corresponding result for cofibration sequences.
The closed model categories has been developed very much the last decade with

applications to algebraic topology and algebraic geometry. For an interesting survey
you can see [9] . Some useful monographs devoted this subject are written by M.
Hovey [25] , P.S. Hirschhorn [24] and W.G. Dwyer, P. S. Hirschhorn, D.M. Kan and
J. Smith [10] . Some advances on application to algebraic topology can be seen in
[7], [13], [23].

2.3. Twisted Eilenberg-Mac Lane spaces. Given a group G , let K(G, 1)
be an Eilenberg-Mac Lane space; that is, a 0-connected CW-complex such that
π1(K(G, 1)) ∼= G and for q > 1 , πq(K(G, 1)) ∼= 0 . Suppose that H is an
abelian group and η : G → Aut(H) determines an action of G on H , then H
has the structure of a G-module (ZG-module). For n ≥ 2 denote by K(G,H; 1, n)
a CW-complex such that π1(K(G,H; 1, n)) ∼= G , πn(K(G,H; 1, n)) ∼= H , for
q 6∈ {1, n} πq(K(G,H; 1, n)) is trivial and the action of π1(K(G,H; 1, n)) ∼= G
on πn(K(G,H; 1, n)) ∼= H is given by η . For n = 1 , we take K(G,H; 1, 1) the
Eilenberg-Mac Lane space K(H o G, 1) associated with the semidirect product
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H o G of G by H and for n = 0 , K(G,H; 1, 0) is the covering space of K(G, 1)
induced by the representation map η : G → Aut(H) , where the covering map is
denoted by ρ0 : K(G,H; 1, 0) → K(G, 1) . We recall that for any b ∈ K(G, 1) ,
we have that ρ−1

0 (b) ∼= H (you can think on ρ0 as a sheaf of abelian groups) and
to simplify notation, we suppose that if b0 is the base point of K(G, 1) , then
ρ−1

0 (b0) = H . For h ∈ H denote by Gh = {g ∈ G|g.h = h} . It is well known
that π1(K(G,H; 1, 0), h) ∼= Gh and π0(K(G,H; 1, 0)), h) ∼= G\H , where G\H is
the space of the orbits of the left action of G on H .

All the spaces above (twisted Eilenberg-Mac Lane complexes) have a natural
fibration ρn : K(G,H; 1, n) → K(G, 1) and a canonical section σn : K(G, 1) →
K(G,H; 1, n) , which is a cofibration such that ρnσn = idK(G,1) . We note that for
each n ≥ 0 , ρn : K(G,H; 1, n) → K(G, 1) is an object in the category TopK(G,1)

which is denoted by K(G,H; 1, n) .
Let X be a 0-connected CW-complex such that π1(X) ∼= G and consider the

Postnikov section X → X [1] = K(G, 1) . We can factor this map as

X
j //

X ##G
GG

GG
GG

GG X ′

X′{{vvv
vv

vv
vv

K(G, 1)

where j is a trivial cofibration and X ′ is a fibration. Then X is isomorphic to X ′

in Ho(TopK(G,1)) . Therefore if it is necessary one can suppose that the canonical
map X → K(G, 1) is a fibration. For more properties about twisted Eilenberg-Mac
Lane spaces we refer the reader to [1], [27].

2.4. The closed model category of exterior spaces E. One of the main ap-
plications of proper homotopy theory is the study of non compact spaces. For
example, the classification of non compact surfaces given by Kérékjárto in 1923
used the notion of ideal point that can be considered as the first invariant of proper
homotopy theory. Freudenthal [14] generalized this notion introducing the end
point of a space and the end of a group. We can also cite the works of Siebenmann;
he analyzed, in his thesis [30], the obstruction of finding a boundary to an open
manifold in dimension greater than five and, in [31], he also proved important s-
cobordism theorems. The proof of the Poincaré conjecture in dimension four was
given by Freedman [15] by using s-cobordism theorems and techniques of proper
homotopy theory.

We also want to mention the relationship between proper homotopy theory and
shape theories, for this subject we refer the reader to [11]. For an interesting survey
of the algebraic aspects of proper homotopy theory we refer the reader to [28]. We
can summarize by saying that there are important applications of proper homotopy
theory to the study of manifolds, ends of a group, shape and prohomotopy theories,
etc.

Let X and Y be topological spaces. A continuous map f : X → Y is said to be
proper if for every closed compact subset K of Y , f−1(K) is a compact subset of
X. The category of spaces and proper maps will be denoted by P.

One of the main problems of the proper category is that there are few limits and
colimits. By this reason, it is difficult to develop some homotopy constructions as
homotopy fibres or loop spaces.
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In [18], [17] there is a solution for this problem introducing the notion of exterior
space. The category of exterior spaces and exterior maps, E , is complete and
cocomplete and contains P as a full subcategory. Furthermore, E has a closed
simplicial model category structure in the sense of Quillen [32] ; hence, it establishes
a good framework for the study of proper homotopy theory.

The localized category Ho(E) has also interesting applications to shape and
strong shape theory, see [17]. In shape theory, the role of Hurewicz homotopy
groups is played by homotopy progroups, see [11], [26] or equivalently by Brown-
Grossmann homotopy groups, see [21]. In strong shape theory, one of the main
strong shape invariants are the Steenrod homotopy groups, see [11].

We recall in this subsection the notion of exterior space. Roughly speaking, an
exterior space is a topological space X with a neighbourhood system at infinity.

Definition 2.4. An exterior space (or exterior topological space) (X, ε ⊂ τ)
consists of a topological space (X, τ) together with a non empty collection ε of open
subsets satisfying,
E1: If E1,E2∈ ε then E1 ∩ E2 ∈ ε,
E2: if E ∈ ε , U ∈ τ and E ⊂ U , then U ∈ ε.

An open E which is in ε is said to be an exterior-open subset or, briefly, an e-
open subset. The family of e-open subsets ε is called the externology of the exterior
space. A map f : (X, ε ⊂ τ)→ (X ′, ε′ ⊂ τ ′) is said to be exterior if it is continuous
and f−1(E) ∈ ε, for all E ∈ ε′.

Given an space (X, τ), we can always consider the trivial exterior space taking
ε = {X} and the total exterior space if one takes ε = τ . An important role is played
by the family εXcc of the complements of closed-compact subsets of a topological
space X , that will be called the cocompact externology. We denote by N and R+

the exterior spaces of non negative integers and non negative real numbers having
the usual topology and the cocompact externology.

The full embedding e : P ↪→ E carries an space X to the exterior space Xe which
is provided with the topology of X and εXcc. A proper map f : X → Y is carried to
the exterior map fe : Xe → Ye given by fe = f.

Definition 2.5. Let X be an exterior space, Y a topological space. Consider
on X × Y the product topology and the distinguished open subsets E of X × Y
such that for each y ∈ Y there exists Uy ∈ τY , y ∈ Uy and Ey ∈ εX such that
Ey × Uy ⊂ E. This exterior space will be denoted by X×̄Y.

This construction gives a functor E×Top→ E, where Top denotes the category
of topological spaces. When Y is a compact space then E is an e-open subset of
X×̄Y if and only if it is an open subset and there existsG ∈ εX such thatG×Y ⊂ E.
Furthermore, if Y is a compact space and εX = εXcc then εX×̄Y = εX×Ycc .

Let EN be the category of exterior spaces under N . In this context, it is usual
to denote an object by a pair (X, ρ) , where ρ : N→ X is an exterior map, which is
called a base sequence in X . A morphisms in EN given by a commutative triangle
in E

N
ρX

~~~~
~~

~~
~

ρY

��@
@@

@@
@@

X
f

// Y
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is usually denoted by f : (X, ρX)→ (Y, ρY ).

Definition 2.6. Let f , g be in HomEN((X, ρX), (Y, ρY )), then we say f is
e-homotopic to g relative to N, written f 'N

e g, if there is an exterior map F :
X×̄I → Y such that F (x, 0) = f(x), F (x, 1) = g(x) and F (ρX(k), t) = ρY (k), for
all x ∈ X, k ∈ N and t ∈ I. The map F is called an exterior homotopy relative to
N from f to g and we sometimes write F : f 'N

e g.

In [17], it is proved that HomEN((N×̄Sq, idN×̄∗), (X, ρ))/ 'N
e has the structure

of a group for q ≥ 1 , which is abelian for q ≥ 2 ; if q = 0 we get a pointed set.

Definition 2.7. Let (X, ρ) be an object of EN . For q ≥ 0 , the q-th Brown-
Grossman exterior homotopy group of (X, ρ) is given by

πBq (X, ρ) = HomEN((N×̄Sq, idN×̄∗), (X, ρ))/ 'N
e .

In an analogous way, one can consider the category ER+ of exterior spaces under
R+ . In this case, an object in ER+ will be denoted by (X,σ) , where σ : R+ → X
is an exterior map, which is called a base ray in X . A morphism in ER+ will
be denoted by f : (X,σX) → (Y, σY ). Similarly, we define the exterior homotopy
relation relative to R+ , 'R+

e . Then , see [18] , the set of exterior homotopy classes
relative to R+ , HomER+ ((R+×̄Sq, idR+×̄∗), (X,σ))/ 'R+

e admits the structure of a
group for q ≥ 1, which is abelian if q ≥ 2 ; and for q = 0 a pointed set is obtained.

Definition 2.8. Let (X,σ) be an object of ER+ . For every q ≥ 0 , the q-th
Steenrod exterior homotopy group of (X,σ) is given by

πSq (X,σ) = HomER+ ((R+×̄Sq, idR+×̄∗), (X,σ))/ 'R+
e .

In order to obtain exact sequences for exterior Brown-Grossman and Steenrod
homotopy groups, we will consider in the category E the closed model structure
given by the following classes of maps.

Definition 2.9. Let f : X → Y be an exterior map.
(i) f is a exterior weak equivalence, if either

(a) if HomE(N, X) = ∅ then HomE(N, Y ) = ∅ ,
or

(b) if HomE(N, X) 6= ∅ then πBq (f) : πBq (X, ρ)→ πBq (Y, fρ) is an isomor-
phism for all ρ ∈ HomE(N, X) , q ≥ 0.

(ii) f is an exterior fibration if it has the RLP with respect to ∂0 : N×̄Dq →
N×̄(Dq × I) for all q ≥ 0, where ∂0(n, x) = (n, x, 0).

A map which is both an exterior fibration and an exterior weak equiva-
lence is said to be an exterior trivial fibration.

(iii) f is an exterior cofibration if it has the LLP with respect to any exterior
trivial fibration.

A map which is both an exterior cofibration and an exterior weak equiv-
alence is said to be an exterior trivial cofibration.

Then, see [17] , one has the following result.

Theorem 2.1. The category of exterior spaces, E, together with the classes of
exterior fibrations, exterior cofibrations and exterior weak equivalences has a closed
simplicial model category structure.

To see recient applications of the category of exterior spaces to proper homotopy
theory we refer the reader to [19].
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3. Long exact sequences in an arbitrary closed model category

Given a closed model category C , then one has induced closed model structures
in the category over the initial object ∅ and in the category under the final object
∗ . We use the fact that these relative and fibre categories have zero object to
construct useful long exact sequences.

3.1. The categories over A and under A. In this section we suppose that C is
a closed model category and A is an object in C ; by Proposition 2.2 one has that
CA and CA inherit the structure of a closed model category.

Next we analyse some properties of the adjoint functores V and A×(·) with
respect to the model structures. Recall that if C , C′ are closed model categories,
and F : C → C′ is a functor which preserves weak equivalences between cofibrant
objects, F induces a left derived functor FL : Ho(C)→ Ho(C′) given by FL(X) =
F (Xc), where Xc is a cofibrant approximation of X (dually we have right derived
functors), see [32] .

Theorem 3.1. Let C be a closed model category and suppose that the object A is
fibrant. Then the functors V : CA → C and A×(·) : C→ CA induce on the localized
categories the functors V L : Ho(CA) → Ho(C) and (A×(·))R : Ho(C) → Ho(CA)
where V L is the left derived functor and (A×(·))R is the right derived functor. The
induced functors satisfy that V L is left adjoint to (A×(·))R ( briefly they will also
be denoted by V and A×(·)) .

Proof. We will apply Theorem 3 of Section 4 of Chapter I from [32]. For this
purpose it suffices to see that V preserves cofibrations and carries weak equiva-
lences between cofibrant objects in CA to weak equivalences in C , and that A×(·)
preserves fibrations and carries weak equivalences between fibrant objects to weak
equivalences in CA .

From Definition 2.2 it follows that V preserves cofibrations, fibrations and weak
equivalences. Since A×(·) is right adjoint to V , it follows that A×(·) preserves
fibrations.

Suppose that f : X → Y be a weak equivalence between fibrant objects in C ,
since A is fibrant, we have that idA × f : A × X → A × Y is a weak equivalence
between fibrant objects in C . Taking into account that idA × f = V (A×f) , we
obtain that A×f is a weak equivalence in CA . To see that idA × f is a weak
equivalence you can apply Proposition 2.6 of chapter I and the dual of Lemma 1.2
of Chapter II of [2] . An alternative proof can be obtained using the fact that
Ho(C) has finite products. �

In the following results we use notions and notations given by Quillen in section
2 of Chapter I of [32] about left homotopies, right homotopies, cylinders, left ho-
motopies between left homotopies, et cetera, in a closed model category C which
needn’t be pointed. In particular if X is cofibrant and Y is fibrant and f, g : X → Y
are morphisms in C , πl(X,Y ; f, g) denotes the set of homotopy classes of left ho-
motopies from f to g .

Proposition 3.1. Let A be a fibrant object in C . Suppose that Z in CA

satisfies that [V Z,A] = ∗ and πl(V Z,A;Z,Z) = ∗ . Then for any object F in CA ,
we have that [Z,F ]A ∼= [V Z, V F ] .
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Proof. Firstly, since each object has cofibrant and fibrant approximations, we can
assume that Z is cofibrant and F is fibrant in CA . If V Z = Z and V F = F , this
is equivalent to say that Z is cofibrant and F : F → A is a fibration in C . Since
A is fibrant, so F is also fibrant in C . We recall that a map in [Z,F ]A can be
represented by the homotopy class [f ]A of a map f : Z → F given by the following
commutative diagram

Z
f //

Z ��@
@@

@@
@@

F

F��~~
~~

~~
~

A

We consider the map ϕ : [Z,F ]A → [V Z, V F ] given by ϕ([f ]A) = [V f ]. First
we will see that ϕ is surjective . Given f : Z → F Since [Z,A] = ∗ , there is a
homotopy G : Z × I → A such that G∂0 = Ff and G∂1 = Z , where

Z t Z

∂0+∂1 $$J
JJJJJJJJ
id+id // Z

Z × I
σ

<<yyyyyyyy

is the cylinder of Z .
Now we can consider the commutative diagram

Z
f //

∂0

��

F

F

��
Z × I G //

eG <<

A

where the lift G̃ exists because F is fibration and ∂0 is a trivial cofibration. More-
over, FG̃∂1 = G∂1 = Z so we have [G̃∂1]A ∈ [Z,F ]A verifying ϕ([G̃∂1]A) = [G̃∂1] =
[f ] .

Next we prove that ϕ is injective: Let [f ]A, [f ′]A ∈ [Z,F ]A such that ϕ([f ]A) =
ϕ([f ′]A), that is f ∼ f ′ in C . Let H : Z × I → F be a homotopy such that
H∂0 = f,H∂1 = f ′ . We note that FH and Zσ are left homotopies from Z to Z
in C . We can consider Z × I t

ZtZ
Z × I as the push–out of ∂0 + ∂1 and ∂0 + ∂1 .

Now if we factor the map ∆ = id + id as the composition of a cofibration j0 + j1
and a trivial fibration σ̄ we obtain the following commutative diagram:

(Z × I) t
ZtZ

(Z × I) ∆=id+id //

j0+j1
&&NNNNNNNNNNNN

Z × I

Z ′

σ̄

=={{{{{{{{{
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Since πl(V Z,A;Z,Z) = ∗, there is a map L : Z ′ → A such that the following
diagram is commutative:

(Z × I) t
ZtZ

(Z × I)FH+Zσ//

j0+j1
&&NNNNNNNNNNNN

σ+σ

��

A

Z Z ′
σσ̄oo

L

OO

Since j0 is a trivial cofibration and F is a fibration, there is L̃ : Z ′ → F such
that the following diagram is commutative

Z × I H //

j0

��

F

F

��
Z ′

L //

eL <<

B

We note that FL̃j1 = Zσ , then L̃j1 is a morphism in CA from Zσ to F . Since
L̃j1∂0 = L̃j0∂0 = H∂0 = f , L̃j1∂1 = L̃j0∂1 = H∂1 = f ′ , then L̃j1 is a homotopy
from f to f ′ in CA .

�

Lemma 3.1. Let A be a fibrant and cofibrant object in C . Suppose that Z is
cofibrant in CA . Then

(i) If [V (ΣZ), A] = ∗ , implies πl(V Z,A;Z,Z) = ∗ .
(ii) In the case A = ∅ , we also have that [V (ΣZ), A] = ∗ if and only if

πl(V Z,A;Z,Z) = ∗ .

Proof. The suspension ΣZ of the cofibrant object Z : Z → A in CA is induced by
the following pushout

Z t Z

∂0+∂1

��

Z+Z // A

i2
��

Z × I
i1
// (Z × I) t

ZtZ
A

as the morphism

ΣZ : (Z × I) t
ZtZ

AZσ+idA// A

Notice that since A is cofibrant, V (ΣZ) is cofibrant in C .
Let h, h′ : Z×I → A be two left homotopies between Z and Z . Then h, h′ induce

k, k′ : V (ΣZ) → A given by k = h + idA , k′ = h′ + idA . Since [V (ΣZ), A] = ∗ ,
there is a right homotopy M : V (ΣZ)→ AI between k, k′ , where

A

s
  @

@@
@@

@@
@

(id,id) // A×A

AI
(d0,d1)

;;xxxxxxxxx

is the cocylinder of A .
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Consider a correspondence H : Z× I → AI from h′ to a right homotopy l′ : Z →
AI between Z and Z .

Using H and Mi1 , one has that h, h′ correspond to sZ.l′, l′ , respectively. Since
sZ.l′ and l′ represent the same class , it follows that h, h′ represent the same element
in πl(Z,A;Z,Z) .

In order to prove (ii), in the case A = ∅ , let k, k′ : V (ΣZ)→ ∅ , then h, h′ : Z×∅
given by h = ki1 , h′ = k′i1 are left homotopies from Z to Z and k = h + id∅ ,
k′ = h′ + id∅ since ki2 = k′i2 = id∅ .

Taking into account πl(Z, ∅;Z,Z) ∼= ∗ , there is P : Z ′ → ∅ a left homotopy from
h to h′ . Take P : Z ′ → ∅ a left homotopy from h to h .

Since j0 is a trivial cofibration and (d0, d1) is a fibration, there is N : Z ′ → ∅I
such that the following diagram is commutative

Z × I sh //

j0

��

∅I

(d0,d1)

��
Z ′

(P,P ′) //

N

;;

∅ × ∅

Taking T = Nj1 + s : V (ΣZ)→ ∅I we have a right homotopy from k to k′ .
�

Corollary 3.1. If ∅ is a fibrant object in C and Z in C∅ satisfies that [V Z, ∅] =
∗ and [V (ΣZ), ∅] = ∗ , then for any object F in C∅ , we have that [Z,F ]∅ ∼=
[V Z, V F ] .

Dually, we analyse the corresponding properties of the adjoint functors At(·)
and U with respect to the model structures in C and CA .

Theorem 3.2. Let C be a closed model category and suppose that the object
A is cofibrant. Then the functors At(·) : C→ CA and U : CA → C induce on the
localized categories the functors (At(·))L : Ho(C) → Ho(CA) and UR : Ho(CA) →
Ho(C) where (At(·))L is the left derived functor and UR is the right derived functor.
The induced functors satisfy that (At(·))L is left adjoint to UR ( briefly they will
also be denoted by At(·) and U ).

Proposition 3.2. Let A be a cofibrant object in C . Suppose that Z in CA

satisfies that [A,UZ] = ∗ and πl(A,UZ;Z,Z) = ∗ . Then for any object F in CA ,
we have that [F ,Z]A ∼= [UF,UZ] .

Lemma 3.2. Let A be a cofibrant and fibrant object in C . Suppose that Z is
fibrant in CA . Then

(i) If [A,U(ΩZ)] = ∗ , implies πl(A,UZ;Z,Z) = ∗ .
(ii) In the case A = ∗ , we also have that [A,U(ΩZ)] = ∗ if and only if

πl(A,UZ;Z,Z) = ∗ .

Corollary 3.2. If ∗ is a cofibrant object in C and Z in C∗ satisfies that
[∗, UZ] = ∗ and [∗, U(ΩZ)] = ∗ , then for any object F in C∗ , we have that
[F ,Z]∗ ∼= [UF,UZ] .

3.2. Exact sequences. For a map f : X → Y in a closed model category C we
use the model structure of C∅ to construct exact sequences associated with f .
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Given a map p : E → B in C , the “fibre” of p in C∅ is the object F : F → ∅
given by the following pullback

F

F

��

// E

p

��
∅ // B

It is interesting to note that the “fibre” F of p in C∅ is isomorphic to the fibre
of ∅×p in the pointed category C∅ . On the other hand, if f is a morphism in C∅ ,
the fibre of f is the “fibre” of V f .

For a given map f : X → Y in C , we can consider a commutative diagram

E
p // B

X

OO

f
// Y

OO

where p is a fibration, E,B are fibrant and the vertical maps are trivial cofibrations.
Then p is isomorphic to f in the localized category and it is said that p is an
approaching fibration of the map f .

Definition 3.1. Let C be a closed model category such that ∅ is fibrant. If
p : E → B is an approaching fibration of a morphism f : X → Y in C , the “fibre”
of p in C∅ is said to be the “homotopy fibre” of f in C∅ and it will be denoted by
F (f) .

Notice that all possible “homotopy fibres” of f in C∅ are weak equivalent.

Theorem 3.3. Let C be a closed model category such that ∅ is fibrant. Let
f : X → Y a morphism in C and let F (f) : F (f) → ∅ be the “homotopy fibre” of
f in C∅ and Z : Z → ∅ an object in C∅ . Then

(i) there is a long exact sequence
· · · −→ [Z,Ωq+1(∅×Y )]∅ → [Z,Ωq(F (f))]∅ → [Z,Ωq(∅×X)]∅ → · · ·
· · · → [Z,Ω(∅×X)]∅ → [Z,Ω(∅×Y )]∅ → [Z,F (f)]∅ → [Z, ∅×X]∅ → [Z, ∅×Y ]∅
(ii) the sequence given at (i) is isomorphic to the exact sequence
· · · −→ [V Σq+1Z, Y ] −→ [ΣqZ,F (f)]∅ −→ [V ΣqZ,X] −→ · · ·
· · · −→ [V ΣZ,X] −→ [V ΣZ, Y ] −→ [Z,F (f)]∅ −→ [Z,X] −→ [Z, Y ]
(iii) If Z satisfies that [V (ΣkZ), ∅] = ∗ , for k ≥ 0 , then the sequences given at

(i) and (ii) are isomorphic to the exact sequence
· · · −→ [V Σq+1Z, Y ] −→ [V ΣqZ,F (f)] −→ [V ΣqZ,X] −→ · · ·
· · · −→ [V ΣZ,X] −→ [V ΣZ, Y ] −→ [Z,F (f)] −→ [Z,X] −→ [Z, Y ] .

Proof. Given a morphism f : X → Y and an approaching fibration p : E → B of
f , consider the diagram F (f) → E ← X → Y , where F (f) : F (f) → ∅ be the
“homotopy fibre” of f in C∅ . Let i : F (f)→ X be the morphism in Ho(C) given by
F (f)→ E ← X and let î : F (f)→ ∅×X be the morphism in Ho(C∅) corresponding
to i by the adjunction

Ho(C∅)
V //

Ho(C)
∅×(.)
oo
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given in Theorem 3.1 .
Then the diagram F (f)→ X → Y induces the fibration sequence in Ho(C∅)

F (f)
î→∅×X

∅×f
→ ∅×Y

Since C∅ is a pointed closed model category, we can apply Proposition 2.3 to
obtain the exact sequence given in (i).

Using the adjoint functors

Ho(C∅)
Σ //

Ho(C∅)
Ω
oo

and the previous adjunction one has (ii) .
If Z satisfies the hypothesis of (iii), one can apply Corollary 3.1 to obtain the

result given in (iii). �

Given a morphism f : X → Y in C , if we consider a commutative diagram in
C∅

∅×X
∅×f
// ∅×Y

A

OO

i // B

OO

where the vertical maps are trivial fibrations and i is a cofibration between cofibrant
spaces. We say that i is an approaching cofibration of ∅×f .

Definition 3.2. Given a map f : X → Y in C , if i is an approaching cofibration
of ∅×f , the cofibre C(f) of i given by the push out

A //

i

��

∅

��
B // C(f)

is said the “homotopy cofibre” of f in C∅

If we want to construct a long exact sequence associated to a morphism f : X →
Y we can proceed as follows:

Theorem 3.4. Let f : X → Y be a morphism in a closed model category C.
Then for any Z object in C

(i) there is a long exact sequence
· · · → [Σq+1(∅×X), ∅×Z]∅ → [Σq(C(f)), ∅×Z]∅ → [Σq(∅×Y ), ∅×Z]∅ → · · ·
· · · → [Σ(∅×X), ∅×Z]∅ → [C(f), ∅×Z]∅ → [∅×Y, ∅×Z]∅ → [∅×X, ∅×Z]∅ .
(ii) If ∅ is a fibrant object in C , then the sequence given at (i) is isomorphic to

the exact sequence
· · · → [V Σq+1(∅×X), Z]→ [V ΣqC(f), Z]→ [V Σq(∅×Y ), Z] → · · ·
· · · → [V Σ(∅×X), Z]→ [V (C(f)), Z]→ [V (∅×Y ), Z] → [V (∅×X), Z] .
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Proof. Since ∅×X → ∅×Y → C(f) is a cofibration sequence in Ho(C∅), by the dual
of Proposition 2.3 it follows the exact sequence given at (i). To prove (ii), taking
into account that ∅ is fibrant we can apply Theorem 3.1 .

�

Dually, for a map f : X → Y in a closed model category C we can use the the
model structure of C∗ to construct more exact sequences associated with f .

Given a map i : A → B in C , the “cofibre” of i in C∗ is the object C : ∗ → C
given by the following pushout

A

i

��

// ∗

C

��
B // C

Note that the “cofibre” C of i in C∗ is isomorphic to the cofibre of ∗ti in the
pointed category C∗ . On the other hand, if f is a morphism in C∗ , the cofibre of
f is the “cofibre” of Uf .

For a given map f : X → Y in C , we can consider a commutative diagram

X
f // Y

A

OO

i
// B

OO

where i is a cofibration, A,B are cofibrant and the vertical maps are trivial fi-
brations. Then the approaching cofibration i is isomorphic to f in the localized
category.

Definition 3.3. Let C be a closed model category such that ∗ is cofibrant. If
i : A → B is an approaching cofibration of a morphism f : X → Y in C , the
“cofibre” of i in C∗ is said to be the “homotopy cofibre” of f in C∗ and it will be
denoted by C(f) .

As above, all possible “homotopy cofibres” of f in C∗ are weak equivalent.

Theorem 3.5. Let C be a closed model category such that ∗ is cofibrant. Let
f : X → Y a morphism in C and let C(f) : ∗ → C(f) be the “homotopy cofibre” of
f in C∗ and Z : ∗ → Z an object in C∗ . Then

(i) there is a long exact sequence
· · · −→ [Σq+1(∗tX), Z]∗ → [Σq(C(f)), Z]∗ → [Σq(∗tY ), Z]∗ → · · ·
· · · → [Σ(∗tY ), Z]∗ → [Σ(∗tX), Z]∗ → [C(f), Z]∗ → [∗tY, Z]∗ → [∗tX,Z]∗

(ii) the sequence given at (i) is isomorphic to the exact sequence
· · · −→ [X,UΩq+1(Z)]→ [C(f),ΩqZ]∗ → [Y,UΩq(Z)]→ · · ·
· · · → [Y,UΩ(Z)]→ [X,UΩ(Z)]→ [C(f), Z]∗ → [Y,U(Z)] → [X,U(Z)]
(iii) If Z satisfies that [∗, U(ΩkZ)] = ∗ , for k ≥ 0 , then the sequences given at

(i) and (ii) are isomorphic to the exact sequence
· · · −→ [X,UΩq+1(Z)]→ [C(f), UΩqZ]→ [Y,UΩq(Z)]→ · · ·
· · · → [Y,UΩ(Z)]→ [X,UΩ(Z)]→ [C(f), U(Z)]→ [Y,U(Z)] → [X,U(Z)] .
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Given a morphism f : X → Y in C , we are going to consider a commutative
diagram in C∗

∗tX
∗tf //

��

∗tY

��
E p

// B

where the vertical maps are trivial cofibrations and p is a fibration between fibrant
spaces, that is, p is an approaching fibration of ∗tf .

Definition 3.4. Given a map f : X → Y in C , if p is an approaching fibration
of ∗tf , the fibre F (f) of p given by the pullback

F (f) //

��

E

p

��
∗ // B

is said the “homotopy fibre” of f in C∗

and we have

Theorem 3.6. Let f : X → Y be a morphism in a closed model category C.
Then for any Z object in C

(i) there is a long exact sequence
· · · → [∗tZ,Ωq+1(∗tY )]∗ → [∗tZ,Ωq(F (f))]∗ → [∗tZ,Ωq(∗tX)]∗ → · · ·
· · · → [∗tZ,Ω(∗tY )]∗ → [∗tZ,F (f)]∗ → [∗tZ, ∗tX]∗ → [∗tZ, ∗tY ]∗ .
(ii) If ∗ is a cofibrant object in C , then the sequence given at (i) is isomorphic

to the exact sequence
· · · → [Z,UΩq+1(∗tY )] → [Z,UΩq(F (f))]→ [Z,UΩq(∗tX)]→ · · ·
· · · → [Z,UΩ(∗tY )]→ [Z,U(F (f))]→ [Z,U(∗tX)]→ [Z,U(∗tY )] .

4. Applications to cohomology with coefficients and group
cohomology

Firstly, we include a proof sketch of the following result which gives a homotopy
representation of cohomology with local coefficients. We refer the reader to J.M.
Møller [27] for a version in terms of mapping spaces.

Theorem 4.1. Let X be a 0-connected CW-complex such that π1(X) ∼= G and
consider the canonical map X : X → K(G, 1). Then for every n ≥ 0 , the n-th
cohomology group of X with local coefficients in the G-module H can be given as
the following hom-set in the localized category Ho(TopK(G,1)) :

Hn(X;H) ∼= HomHo(TopK(G,1))
(X,K(G,H; 1, n)) = [X,K(G,H; 1, n)]

which is also isomorphic to the corresponding set of fibre (vertical) homotopy classes
over K(G, 1) .

Proof. For n ≥ 2 , we have the fibration

K(H,n) in−−−−−→K(G,H; 1, n)
ρn−−−−−→K(G, 1)
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and the section σn : K(G, 1) → K(G,H; 1, n) . We note that all the spaces are
0-connected and that for q ≥ 0 one has the induced bundle of groups

Hq = {πq(ρ−1
n (b), σn(b))|b ∈ K(G, 1)} .

For q 6= n we have a trivial bundle and for q = n , one has that πn(ρ−1
n (b), σn(b)) ∼=

H . We can suppose that πn(ρ−1
n (b0), σn(b0)) = H , where b0 is the base point of

K(G, 1) . We also note that σnX : X → K(G,H; 1, n) is a lifting for the map
ρn : K(G,H; 1, n)→ K(G, 1) . Now we can apply the Theorem 6.13 of chapter VI
of [36] to obtain that

Hn(X;H) ∼= [X,K(G,H; 1, n)] = HomHo(TopK(G,1))
(X,K(G,H; 1, n))

For n = 1 , one has that K(G,H; 1, 1) = K(HoG, 1) , and we have the fibration

K(H, 1) i1−−−−−→K(H oG, 1)
ρ1−−−−−→K(G, 1)

then we have that HomHo(TopK(G,1))
(X,K(G,H; 1, 1)) is isomorphic to

HomHo((Top∗)K(G,1))
((X,x0), (K(H oG, 1), ∗))/action of π1(K(H, 1), ∗)

It is easy to check that this is isomorphic to

Der(G,H)/P (G,H)

where Der(G,H) is the abelian group of derivations (crossed homomorphism) of G
in H and P (G,H) is the group of principal derivations, see section 3 of of chapter
VI of [36] or section 2 of chapter IV of [4] . Now we apply Theorem 3.3 of of chapter
VI of [36] to obtain that

Der(G,H)/P (G,H) ∼= H1(X;H)

For n = 0 , one has the covering map

H
i0−−−−−→K(G,H; 1, 0)

ρ0−−−−−→K(G, 1)
then we have that HomHo(TopK(G,1))

(X,K(G,H; 1, 0)) is isomorphic to

HomTopK(G,1)
(X,K(G,H; 1, 0))

Taking into account that π1(K(G,H; 1, 0)), h) ∼= Gh and let HG = {h ∈ H|Gh =
G} . By the usual lifting properties of coverings maps one has that the map
X : X → K(G, 1) has a lifting Xh : X → K(G,H; 1, 0) such that Xh(x0) = h if
and only if Gh = G . Therefore HomTopK(G,1)

(X,K(G,H; 1, 0)) is isomorphic to
HG and it is well known that HG ∼= H0(X;H) .

�

The final object id : K(G, 1) → K(G, 1) in the category TopK(G,1) is denoted
by K(G, 1) . Now, if we take the final object K(G, 1) in TopK(G,1) , we can con-

sider the category TopK(G,1)
K(G,1) = TopK(G,1)

K(G,1) , the forgetful functor U : TopK(G,1)
K(G,1) →

TopK(G,1) and its left adjoint K(G, 1)t(.) : TopK(G,1) → TopK(G,1)
K(G,1) ; see subsec-

tion 2.1 . The left adjoint carries the object X to the object K(G, 1)tX .
We also have that

K(G, 1) σn−−−−−→K(G,H; 1, n)
ρn−−−−−→K(G, 1)

an object in TopK(G,1)
K(G,1) , which is denoted by K(G,H; 1, n) and the forgetful functor

U : TopK(G,1)
K(G,1) → TopK(G,1) verifies that U(K(G,H; 1, n)) = K(G,H; 1, n) .
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With this notation we have the following result:

Theorem 4.2. Let X be a 0-connected CW-complex such that π1(X) ∼= G and
consider the canonical map X : X → K(G, 1). Then for every n ≥ 0 , the n-th
cohomology group of X with local coefficients in the G-module H can be given up
to isomorphism as a hom-set in the localized category Ho(TopK(G,1)

K(G,1)) :

Hn(X;H) ∼= Hom
Ho
“
Top

K(G,1)
K(G,1)

”(K(G, 1)tX,K(G,H; 1, n))

which is also isomorphic to the corresponding set of relative fibre homotopy classes
under and over K(G, 1) .

Proof. We can apply Theorem 3.2 taking as C = TopK(G,1) and A = K(G, 1)
which is a cofibrant object in TopK(G,1) to obtain an adjunction on the localized
categories. The result follows from the theorem above and from the existence of
this adjunction. �

As a particular case of Theorem 4.1 the cohomology of G with coefficients in a
G-module H can also be interpreted as a set of fibre homotopy classes.

Theorem 4.3. For every n ≥ 0 the n-th cohomology group of G with coefficients
in a G-module H can be given up to isomorphism as a hom-set in the localized
category Ho(TopK(G,1))

Hn(G;H) ∼= [K(G, 1),K(G,H; 1, n)] = HomHo(TopK(G,1))
(K(G, 1),K(G,H; 1, n))

which is also isomorphic to the corresponding set of fibre (vertical and non pointed)
homotopy classes of sections of the map ρn : K(G,H; 1, n)→ K(G, 1) .

Proof. It suffices to take X = K(G, 1) in Theorem 4.1 and to apply that the
cohomology of K(G, 1) with local coefficients in the G-module H is isomorphic to
the cohomology of G with coefficients in the G-module H . �

Notice that K(G, 1)tK(G, 1) is isomorphic to K(G, 1)×S0 where S0 = {−1, 1}
and σ : K(G, 1)→ K(G, 1)×S0 , is given by σ(b) = (b,−1) and ρ : K(G, 1)×S0 →
K(G, 1) , ρ(b, t) = b .

Theorem 4.4. For every n ≥ 0 the n-th cohomology group of G with coefficients
in a G-module H can be given up to isomorphism as a hom-set in the localized
category Ho(TopK(G,1)

K(G,1)) :

Hn(G;H) ∼= Hom
Ho
“
Top

K(G,1)
K(G,1)

”(K(G, 1)× S0,K(G,H; 1, n))

which is also isomorphic to the corresponding set of relative fibre homotopy classes
under and over K(G, 1) .

Proof. Take X = K(G, 1) in Theorem 4.2 . �

Let Σ the suspension functor of the closed model category Ho(TopK(G,1)
K(G,1)) , recall

that we are thinking on Σ as a left derived functor. Since K(G, 1)×S0 is cofibrant,
it easy to check that

Σq(K(G, 1)× S0) = K(G, 1)× Sq

where the retraction map of K(G, 1) × Sq is given by the first projection and the
section map is induced by the base point of the q-sphere.
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Definition 4.1. Let X be an object in TopK(G,1)
K(G,1) . For any integer q ≥ 0 , the

q-th (relative and fibre) homotopy group of X is given by

πrfq (X) = Hom
Ho
“
Top

K(G,1)
K(G,1)

”(Σq(K(G, 1)× S0), X)

= Hom
Ho
“
Top

K(G,1)
K(G,1)

”(K(G, 1)× Sq, X)

Recall that on the localized category Ho(C) of a model category C with zero
object ∗ we have a loop functor Ω that is given as a right derived functor. In
the case of a fibrant object Y , if Y I denotes a cocylinder of Y , the object ΩY
can given as the fibre of Y I×Y ∗ → Y . In the proof of the following proposition
the same symbol Ω is used to denote the loop functors on the localized categories
Ho(TopK(G,1)

K(G,1)) and Ho(Top∗) .

Proposition 4.1. For any G-module A , and n ≥ 0 , Ω(K(G,A; 1, n + 1)) is
isomorphic in Ho(TopK(G,1)

K(G,1)) to K(G,A; 1, n) .

Proof. The loop functor construction on the model category TopK(G,1)
K(G,1) for the

fibrant object K(G,A; 1, n+ 1)) is given by the fibration sequence

Ω(K(G,A; 1, n+1))→ K(G,A; 1, n+1)I
×

K(G,A; 1, n+ 1)
K(G, 1)→ K(G,A; 1, n)

Denote

PK(G,A; 1, n+ 1) = K(G,A; 1, n+ 1)I
×

K(G,A; 1, n+ 1)
K(G, 1)

in this case we can take

V UPK(G,A; 1, n+1) = {u : I → K(G,A; 1, n+1)|ρnu = constant, u(1) = σnρn(u(1))}
and ρP : V UPK(G,A; 1, n + 1) → K(G, 1) , σP : K(G, 1) → V UPK(G,A; 1, n +
1) are given by ρP (u) = ρn(u(1)) and σP (b)(t) = σn(b) , b ∈ K(G, 1) , t ∈ I .
Therefore one has the fibration sequence

Ω(K(G,A; 1, n+ 1))→ PK(G,A; 1, n+ 1)→ K(G,A; 1, n+ 1)
where V UΩ(K(G,A; 1, n+ 1)) can be given as

{u : I → K(G,A; 1, n+ 1)|ρnu = constant, u(1) = σnρn(u(1)) = u(0)}
and ρΩ : V UΩK(G,A; 1, n+ 1)→ K(G, 1) , σΩ : K(G, 1)→ V UΩK(G,A; 1, n+ 1)
are given by domain and codomain restrictions of ρP and σP .

Therefore we also have in Top∗ the fibration

ΩK(A,n+ 1)→ UV Ω(K(G,A; 1, n+ 1))→ K(G, 1)

where the base points are constant paths induced by b0 the base point ofK(G, 1) and
for n > 1 , πn(V UΩ(K(G,A; 1, n+1))) is isomorphic to A as G-modules. For n = 1 ,
π1(V UΩ(K(G,A; 1, 1 + 1))) is isomorphic to the semidirect product H oG of the
G-module H and the group G and for n = 0 , there is a canonical weak equivalence
Ω(K(G,A; 1, 1))→ K(G,A; 1, 0) in TopK(G,1)

K(G,1) .
�

Theorem 4.5. Let H be a G-module and n ≥ 0 . Then
(i) Hn(G;H) ∼= πrf0 (K(G,H; 1, n)) ,
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(ii) for any integer q ≥ 0 , Hn(G;H) ∼= πrfq (K(G,H; 1, n+ q)) .

Proof. The first part follows directly from Theorem 4.4 and Definition 4.1 . The
second part follows from Proposition 4.1 and the adjunction of the loop and sus-
pension functors.

�

Remark 4.1. It is interesting to note that in the category under and over
K(G, 1) a map induce isomorphism on the Hurewicz homotopy groups if and only if
it induces isomorphisms on the cohomology groups with coefficients in any G-module
H . Notice that if we consider the category of Ω-spectra of the form {K(G,H, 1, n)},
where H is a G-module, the fact that an Ω-spectrum map become an isomorphism
can be expressed in terms of group cohomology.

Proposition 4.2. Suppose that 0→ H ′
α−−−−−→H β−−−−−→H ′′ → 0 is a short

exact sequence of G-modules. Then for each n ≥ 0 the epimorphism β : H → H ′′

induces a fibration map pβn : K(G,H; 1, n) → K(G,H ′′; 1, n) such that ρ′′np
β
n = ρn,

pβnσn = σ′′n such that if pβn|ρ−1
n (b0) denotes the restriction to the fibre, one has that

for n ≥ 0 , πn(pβn|ρ−1
n (b0)) = β , for n > 1 , πn(pβn) = πn(pβn|ρ−1

n (b0)) = β , for
n = 1 , π1(pβ1 ) ∼= β o idG, and for n = 0 , π0(pβ0 ) ∼= G\β (the map induced by β on
the orbit spaces).

If the morphism associated with the map pβn is denoted by pβ
n

: K(G,H; 1, n) →
K(G,H ′′; 1, n) in TopK(G,1)

K(G,1) , we also have that the fibre of the fibration pβ
n

is

isomorphic to K(G,H ′; 1, n) in Ho(TopK(G,1)
K(G,1)) .

Proof. For n = 0 we can apply that the category of pointed covering maps whose
fibres are abelian groups over the CW-complex K(G, 1) is equivalent to the cat-
egory of G-modules. Therefore the epimorphism β : H → H ′′ induces a cover-
ing transformation pβ0 : K(G,H; 1, 0) → K(G,H ′′; 1, 0) . It is easy to check that
pβ0σ0 = σ′′0 . Since ρ′′0p

β
0 = ρ0 it follows that pβ0 is also a covering map, so pβ0 is a

fibration. Using the equivalence functor between the categories, we also have that
π0(pβ0 |ρ

−1
0 (b0)) ∼= pβ0 |ρ

−1
0 (b0) ∼= β .

For n = 1 , we have that the epimorphism β : H → H ′′ induces the group
homomorphisms β o idG : H o G → H ′′ o G . Therefore there is an induced
map fβ1 : K ′(H o G, 1) → K(H ′′ o G, 1) , where K ′(H o G, 1) also denotes an
Eilenberg-Mac Lane space associated with the semidirect product H o G . Using
that σ1 is a cofibration and ρ′′1 is a fibration in Top we can find a homotopy from
fβ1 to gβ1 and the new map satisfies that gβ1 σ1 = σ′′1 , ρ′′1g

β
1 = ρ1 . In the case

n > 1 , since β : H → H ′′ is a G-module homomorphism, it is easy to find a map
fβn : K ′(G,H; 1, n) → K(G,H; 1, n) , where K ′(G,H; 1, n) (also) denotes a CW-
complex with two non trivial homotopy groups π1 = G and the G-module πn = H .
Using that σn is a cofibration and ρ′′n is a fibration in Top we can find a homotopy
from fβn to gβn and as before the new map satisfies that gβnσn = σ′′n , ρ′′ng

β
1 = ρn .

Denote by gβ
n

: K ′(G,H; 1, n) → K(G,H ′′; 1, n) the corresponding morphism in

TopK(G,1)
K(G,1) .

Next, for n ≥ 1 , we use the factorization properties of the closed model category
TopK(G,1)

K(G,1) to factor the map gβ
n

as
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K ′(G,H; 1, n)
j //

gβ
n ((QQQQQQQQQQQQ

K(G,H; 1, n)

pβ
nvvnnnnnnnnnnnn

K(G,H ′′; 1, n)

where j is a trivial cofibration and pβ
n

is a fibration.

Therefore for n ≥ 0 , we have the induced fibrations pβn , pβ
n

in Top , TopK(G,1)
K(G,1) ,

respectively.
We also note that the space K(G, 1) has a base point b0 and then K(G, 1)

can also be considered as a pointed space. Therefore one has an induced functor
W : TopK(G,1)

K(G,1) → Top∗ , W (Y ) = ρ−1
Y (b0) , based at σY (b0) , where ρY is the

canonical retraction map and σY is the section map of the object Y . The functor W
preserves fibrations and weak equivalences between fibrant objects. To see that W
preserve weak equivalences between fibrant objects you can take a weak equivalence
between fibrant objects h : X → Y and using the homotopy group sequence of the
fibrations W (X) → X → K(G, 1) and W (Y ) → Y → K(G, 1) and the five lemma
you obtain that W (h) is a weak equivalence.

The functor W has also a left adjoint functor K(G, 1)∨(.) : Top∗ → TopK(G,1)
K(G,1) ,

which carries the pointed space X to the object K(G, 1)∨X , where the underlying
space is the pointed union K(G, 1) ∨ X with the obvious retraction and section
maps. This functor preserves cofibrations and weak equivalences.

Therefore this pair of adjoint functors induces an adjunction in the localized
categories: (K(G, 1)∨(.))L : Ho(Top∗) → Ho(TopK(G,1)

K(G,1)) and its right adjoint

WR : Ho(TopK(G,1)
K(G,1))→ Ho(Top∗) .

Now take the fibre F βn of pβ
n

in TopK(G,1)
K(G,1) and consider the long sequence

· · · → Ω(K(G,H ′′; 1, n))→ F βn → K(G,H; 1, n)→ K(G,H ′′; 1, n)

Note that
W (K(G,H ′′; 1, n)) ∼= K(H ′′, n)

W (K(G,H; 1, n)) ∼= K(H,n)

W (F βn ) = ρ−1

Fβn
(b0)

W (Ω(K(G,H ′′; 1, n))) ∼= ΩK(H ′′, n)
and observe that Hom

Top
K(G,1)
K(G,1)

(K(G, 1)∨S0, X) ∼= W (X) . Then applying the func-

tor Hom
Ho(Top

K(G,1)
K(G,1))

((K(G, 1)∨(S0))L,−) to the sequence above (sinceK(G, 1)∨S0

is cofibrant, (K(G, 1)∨S0)L = K(G, 1)∨S0) and taking into account the adjunction
between the suspension and loop functors on Ho(TopK(G,1)

K(G,1)) and the adjunction
above one has the long exact sequence

· · · → πq+1(K(H ′′, n))→ πq(ρ−1

Fβn
(b0))→ πq(K(H,n))→ πq(K(H ′′, n))→ · · ·
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and this implies that for n ≥ 0 , ρ−1

Fβn
(b0) is an Eilenberg Mac Lane space of type

K(H ′, n) and πn(pβn|ρ−1
n (b0)) = β .

Next we consider in Top∗ the long exact sequence of homotopy groups of the
fibration sequence ρ−1

Fβn
(b0)→ F βn → K(G, 1) to obtain the long exact sequence

· · · → πq+1(K(G, 1))→ πq(ρ−1

Fβn
(b0))→ πq(F βn )→ πq(K(G, 1))→ · · ·

For n > 1 we have that πn(F βn ) ∼= H ′ and π1(F βn ) ∼= G as groups and the other
homotopy groups are trivial.

Since the diagram

πn(ρ−1

Fβn
(b0)) //

��

πn(K(H,n))

��
πn(F βn ) // πn(K(G,H; 1, n))

is commutative and πn(F βn )→ πn(K(G,H; 1, n)) is a G-module homomorphism it
follows that πn(F βn ) ∼= H ′ as G-modules.

For n = 1 we obtain the short exact sequence

0→ π1(ρ−1

Fβ1
(b0))→ π1(F β1 )→ π1(K(G, 1))→ 1

Since this sequence splits we can apply Proposition 2.1 of Chapter IV in [4] to
obtain that π1(F β1 ) ∼= H ′ oG .

For n = 0 from the construction of the covering maps K(G,H; 1, 0)→ K(G, 1) ,
K(G,H ′′; 1, 0) → K(G, 1) it follows that F β0 → K(G, 1) is the covering map asso-
ciated with the G-module H ′ .

Therefore for n ≥ 0 , F βn is an space of type K(G,H ′; 1, n) and F βn is isomorphic
to K(G,H ′; 1, n) in Ho(TopK(G,1)

K(G,1)) .
�

Proposition 4.3. Suppose that 0→ H ′
α−−−−−→H β−−−−−→H ′′ → 0 is a short

exact sequence of G-modules. Then there exists a sequence

· · · → K(G,H ′′; 1, n−1)→ K(G,H ′; 1, n)→ K(G,H; 1, n)→ K(G,H ′′; 1, n)→ · · ·

where n ∈ Z ( for n < 0 , K(G,H; 1, n) is the zero object K(G, 1) ) and such
that for every object X in TopK(G,1)

K(G,1) we have the following exact sequence

· · · → [X,K(G,H ′′; 1, n− 1)]→ [X,K(G,H ′; 1, n)] → [X,K(G,H; 1, n)]→

→ [X,K(G,H ′′; 1, n)]→ [X,K(G,H ′; 1, n+ 1)]→ · · ·

Proof. Given n ≥ 0 and the epimorphism β : H → H ′′ we can apply Proposition
4.2 to obtain the long sequence

· · · → Ω(K(G,H; 1, n))→ Ω(K(G,H ′′; 1, n))→
K(G,H ′; 1, n)→ K(G,H; 1, n)→ K(G,H ′′; 1, n)→ · · ·

Now by Proposition 4.1 , we change Ω(K(G,A; 1, n)) by K(G,A; 1, n−1) to obtain
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· · · → K(G,H; 1, n− 1)→ K(G,H ′′; 1, n− 1)→
K(G,H ′; 1, n)→ K(G,H; 1, n)→ K(G,H ′′; 1, n)→ · · ·

We repeat the argument with n+ 1 and we have the long sequence

· · · → K(G,H; 1, n)→ K(G,H ′′; 1, n)→
K(G,H ′; 1, n+ 1)→ K(G,H; 1, n+ 1)→ K(G,H ′′; 1, n+ 1)→ · · ·

Since the last written map of the first sequence is the same that the first written
map of the second we are able to construct a new sequence changing from one to
the next sequence through the common map. In this way, we obtain the sequence
given in the thesis of this proposition having the corresponding exactness property.

�

Theorem 4.6. Let X be a 0-connected CW-complex such that π1(X) ∼= G and
consider the canonical map X : X → K(G, 1). If 0→ H ′ → H → H ′′ → 0 is a
short exact sequence of G-modules, then the long exact sequence associated with the
object K(G, 1)tX of TopK(G,1)

K(G,1) :

· · · → [K(G, 1)tX,K(G,H ′′; 1, n− 1)]→ [K(G, 1)tX,K(G,H ′; 1, n)]

→ [K(G, 1)tX,K(G,H; 1, n)]→ → [K(G, 1)tX,K(G,H ′′; 1, n)]→ · · ·
is isomorphic to the long exact sequence

· · · → [X,K(G,H ′′; 1, n− 1)]→ [X,K(G,H ′; 1, n)]

→ [X,K(G,H; 1, n)]→ [X,K(G,H ′′; 1, n)]→ · · ·
which is isomorphic to the long exact sequence of cohomology groups of X with local
coefficients in the short exact sequence

· · · → Hn−1(X;H ′′)→ Hn(X;H ′)→ Hn(X;H)→ Hn(X;H ′′)→ · · ·

Proof. Firstly take K(G, 1)tX in Proposition 4.3 , secondly apply Theorem 3.2 to
obtain the second long exact sequence and finally apply Theorem 4.1 to get the last
exact sequence.

�

Remark 4.2. If we take X = K(G, 1) × Sq and change n by n + q in Propo-
sition 4.3 , and afterwards apply Theorem 4.5 to obtain the long exact sequence of
cohomology groups of a group with coefficients in a short exact sequence 0→ H ′ →
H → H ′′ → 0 of G-modules. Then for any q ≥ 0 we obtain that the long exact
sequence

· · · → πrfq (K(G,H ′′; 1, n− 1 + q))→ πrfq (K(G,H ′; 1, n+ q))

→ πrfq (K(G,H; 1, n+ q))→ πrfq (K(G,H ′′; 1, n+ q))→ · · ·
is isomorphic to the long exact sequence of cohomology groups of the group G

· · · → Hn−1(G;H ′′)→ Hn(G;H ′)→ Hn(G;H)→ Hn(G;H ′′)→ · · ·
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5. Applications to Brown-Grossmann and Steenrod homotopy groups

By the results of section 2, the categories ER+ and ER+
R+

inherits from E the
induced closed model structures. The corresponding localized categories will be
denoted by Ho(ER+) and Ho(ER+

R+
) . An object X in ER+

R+
will usually be denoted

by a triple (X,σ, l) where σ : R+ → X and l : X → R+ are exterior maps such that
lσ = idR+ , and a morphism in ER+

R+
given by a commutative diagram in E

R+

σX

~~||
||

||
|| σY

  A
AA

AA
AA

A

X
lX

  B
BB

BB
BB

B
f // Y

lY

~~}}
}}

}}
}}

R+

will be denoted by f : (X,σX , lX)→ (Y, σY , lY ) .
Recall that the initial object of E is the exterior space ∅ and the final object is

∗ with the trivial externology ε∗ = {∗} . In the category ER+ the initial object is
R+ = (R+, idR+) and the final object is ∗ = (∗, σ∗) . The category ER+

R+
is pointed

and the zero object is R+ = (R+, idR+ , idR+) . We remark that in E and in ER+

all the objects are fibrant.
Let in : N → R+ the inclusion. For q ≥ 0 let SqB be the exterior space obtained

by the following pushout in E

N in //

idN×̄∗
��

R+

jq

��
N×̄Sq

j′q

// SqB

Let pq : N×̄Sq → R+ be the map pq(k, x) = k for (k, x) ∈ N×̄Sq and prq : SqB →
R+ the induced exterior map prq = pq + idR+ . Then we denote by SqB = (SqB , jq)
and SqB = (SqB , jq,prq) the corresponding objects in ER+ and ER+

R+
, respectively.

Note that SqB t S
q
B = (SqB tR+ S

q
B , in1jq) is given by the following pushout in E

R+

jq //

jq

��

SqB

in1

��
SqB in0

// SqB tR+ S
q
B

and the cylinder SqB×I of SqB in ER+ is ((SqB)I , ∂1jq) where (SqB)I is the relative
cylinder of SqB in E given by the factorization of idSqB + idSqB in E as the composite
of an exterior cofibration and an exterior weak equivalence

SqB tR+ S
q
B

∂0+∂1 // (SqB)I
τ // SqB
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Then the suspension Σ(SqB) = (L, in′1,prqτ + idR+) is the object determined by the
pushout in E

SqB tR+ S
q
B

prq+prq//

∂0+∂1

��

R+

in′1
��

(SqB)I
in′0

//L

Thus one can see that Σ(SqB) is isomorphic to Sq+1
B in ER+

R+
.

Analogously, if we denote by SqS the exterior space R+×̄Sq and by SqS , SqS the

objects in ER+
R+

and ER+ , respectively, given by SqS = (SqS , iq,pr′q) , SqS = (SqS , iq) ,
where iq = idR+×̄∗ and pr′q(r, x) = r , for every (r, x) ∈ R+×̄Sq , we obtain that

the suspension Σ(SqS) is isomorphic to Sq+1
S in ER+

R+
.

Let X be an exterior space with a base ray σ : R+ → X and denote σ|N the
composite σin : N→ X .

Then, using the closed model category structure of E , the Brown-Grossman and
Steenrod exterior homotopy groups can be reinterpreted as the following hom-sets:

πBq (X,σ|N) ∼= HomHo(ER+ )((S
q
B , jq), (X,σ)),

πSq (X,σ) ∼= HomHo(ER+ )((S
q
S , iq), (X,σ)).

Suppose that we have an exterior map f : X → Y , then we obtain an induced base
ray fσ in Y . Taking in E the pullback

F

l

��

// X

f

��
R+

fσ
// Y

then, the exterior space F is said to be the ray fibre of f with respect to the exterior
base ray σ . Thus we have the object (F, ω, l) in ER+

R+
, where ω = (idR+ , σ) .

Applying the results of section 3, we are going to obtain, as in standard homo-
topy, long exact sequences associated to an exterior fibration.

Theorem 5.1. Let X be an exterior space and σ : R+ → X a base ray. If
f : X → Y is an exterior fibration with ray fibre F , then there are the following
exact sequences:

(i)

· · · → πBq+1(Y, fσ|N)→ πBq (F, ω|N)→ πBq (X,σ|N)→ πBq (Y, fσ|N)→ · · ·

· · · → πB1 (Y, fσ|N)→ πB0 (F, ω|N)→ πB0 (X,σ|N)→ πB0 (Y, fσ|N)

(ii)

· · · → πSq+1(Y, fσ)→ πSq (F, ω)→ πSq (X,σ)→ πSq (Y, fσ)→ · · ·

· · · → πS1 (Y, fσ)→ πS0 (F, ω)→ πS0 (X,σ)→ πS0 (Y, fσ)
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Proof. Consider the closed model category C = ER+ whose initial object ∅ is
(R+, idR+) . Recall that all objects in ER+ are fibrant. Notice that f : (X,σ) →
(Y, fσ) is a morphism in C whose “homotopy fibre” in C∅ = ER+

R+
is exactly (F, ω, l) .

Taking the object S0
B in ER+

R+
, one has that V Σq(S0

B) = (SqB , jq) and

HomHo(ER+ )((S
q
B , jq), (R+, idR+)) ∼= πBq (R+, idR+ |N) ∼= ∗

for all q ≥ 0 . Then we can apply (iii) of Theorem 3.3 to obtain the exact sequence

· · · → HomHo(ER+ )((S
q+1
B , jq+1), (Y, fσ))→ HomHo(ER+ )((S

q
B , jq), (F, ω))→

HomHo(ER+ )((S
q
B , jq), (X,σ))→ HomHo(ER+ )((S

q
B , jq), (Y, fσ))→ · · ·

which is isomorphic to the one given in (i) above.
In an analogous way, taking now the object S0

S in ER+
R+

, one has that V Σq(S0
S) =

(SqS , iq) and

HomHo(ER+ )((S
q
S , iq), (R+, idR+)) ∼= πSq (R+, idR+) ∼= ∗

for all q ≥ 0 . Then we can apply again (iii) of Theorem 3.3 to obtain the exact
sequence given in (ii) above.

�

Next as a consequence of the results of section 3 we are going to prove that the
Brown-Grossman and the Steenrod exterior homotopy groups are related by a long
exact sequence which is an analogue for exterior spaces of the exact sequence given
by Quigley [34] in shape theory or by Porter [29] in proper homotopy theory.

Theorem 5.2. Let X be an exterior space and let σ : R+ → X be a base ray,
then there is an exact sequence

· · · → πBq+1(X,σ|N)→ πSq (X,σ)→ πBq (X,σ|N) −→ πBq (X,σ|N)→

· · · → πB1 (X,σ|N)→ πS0 (X,σ)→ πB0 (X,σ|N) −→ πB0 (X,σ|N) .

Proof. We consider the exterior map sh: S0
B → S0

B given by sh(j0(t)) = j0(t) for
every t ∈ R+ and sh(j′0(n, 1)) = j′0(n + 1, 1) , sh(j′0(n,−1)) = j′0(n,−1) for every
n ∈ N .

Let
sh: S0

B = (S0
B , j0)→ S0

B = (S0
B , j0)

be the corresponding morphism in the ER+ . Next we study its “homotopy cofibre”
C(sh) in ER+

R+
defined in Definition 3.2 . Note that the functor R+×(.) : ER+ →

ER+
R+

, where R+ = (R+, idR+) , carries sh into R+×sh: R+×S0
B → R+×S0

B given
by the commutative diagram

R+

µ

zzvvvvvvvvv
µ

$$H
HHHHHHHH

R+ × S0
B

idR+×sh
//

P1 $$H
HHHHHHHH

R+ × S0
B

P1zzvvvvvvvvv

R+
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where µ = (idR+ , j0) and P1 is the projection P1(t, x) = t for every (t, x) ∈ R+×S0
B .

We remark that R+×sh is a cofibration between cofibrant objects in ER+
R+

, so C(sh)
is the object given by the triple (C, in1, P1+idR+) , where C is given by the pushout
diagram in E

R+ × S0
B

P1 //

R+×sh

��

R+

in1

��
R+ × S0

B in0

//C

Therefore C(sh) is isomorphic in ER+
R+

to S0
S = (S0

S , i0,pr′0) .

On the other hand, the morphism in ER+
R+

d : S0
B = (S0

B , j0,pr0)→ R+×S0
B = (R+, µ, P1)

given by d(j0(t)) = µ(t) for every t ∈ R+ , d(j′0(n, x)) = (n, j′0(n, x)) for every
(n, x) ∈ N×S0 , is a trivial cofibration between cofibrant objects in ER+

R+
. There-

fore for q ≥ 0 the suspension Σq(R+×S0
B) is isomorphic to SqB in Ho(ER+

R+
) , so

V (Σq(R+×S0
B)) is isomorphic to SqB in Ho(ER+) .

Now suppose that X is an exterior space and σ : R+ → X a base ray in X .
We can apply (ii) of Theorem 3.4 to the category C = ER+ and to the morphism
sh: S0

B → S0
B and taking into account the remarks above we obtain the long exact

sequence

· · · → HomHo(ER+ )((S
q+1
B , jq+1)), (X,σ)) // HomHo(ER+ )((S

q
S , iq)), (X,σ)) //

HomHo(ER+ )((S
q
B , jq)), (X,σ)) sh∗ // HomHo(ER+ )((S

q
B , jq)), (X,σ)) //

· · · → HomHo(ER+ )((S
1
B , j1)), (X,σ)) // HomHo(ER+ )((S

0
S , i0)), (X,σ)) //

HomHo(ER+ )((S
0
B , j0)), (X,σ)) sh∗ // HomHo(ER+ )((S

0
B , j0)), (X,σ)) //

which is isomorphic to the long exact sequence given in the thesis of the theorem.
�
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174, Birkhäuser Verlag, Basel-Boston-Berlin, 1999.
[21] J.W. Grossman. Homotopy groups of pro-spaces, Illinois J. Math. 20 (1976), 622–625.

[22] L.J. Hernández. Application of simplicial M-sets to proper homotopy and strong shape the-

ories, Transactions of the A.M.S. 347 (1995), no. 2, 363–409.
[23] L.J. Hernández. Closed model categories for uniquely S-divisible spaces, J. Pure and Appl.

Alg 182 (2003), 223–237.
[24] P.S. Hirschhorn. Model categories and their localizations, Mathematical Surveys and Mono-

graphs, vol. 99, Am. Math. Soc., 2003.

[25] M. Hovey. Model categories, Mathematical Surveys and Monographs 63, AMS, Providence,
RI, 1999 (x + 209 pages).
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