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ABSTRACT. For every closed model category with zero object, Quillen gave
the construction of Eckman-Hilton and Puppe sequences.

In this paper, we remove the hypothesis of the existence of zero object and
construct (using the category over the initial object or the category under the
final object) these sequences for unpointed model categories.

We illustrate the power of this result in abstract homotopy theory given
some interesting applications to group cohomology and exterior homotopy
groups.

1. INTRODUCTION

The usual tools of Algebraic Topology have permitted to obtain many classifi-
cations and to analyse some topological properties. However, there are families of
spaces whose study requires an adaptation of the standard techniques.

For a non compact space it is advisable to consider as neighbourhoods at infinity
the complements of closed-compact subsets. The Proper Homotopy Theory arises
when we consider spaces and maps which are continuous at infinity. In order to have
a category with limits and colimits it is interesting to extend the proper category
to obtain a complete and cocomplete category. The category of exterior spaces
satisfies these properties, contains the proper category and has limits and colimits.
The study of non compact spaces and more generally exterior spaces has interesting
applications, for example, Siebenmann [30] or Brown and Tucker [6] used proper
invariants of non compact spaces to obtain some properties and classifications of
open manifolds. We can also use exterior spaces to find applications in the study
of compact-metric spaces. A compact metric space can be embedded in the Hilbert
cube, its open neighbourhoods provide the Hilbert cube with the structure of an
exterior space. In this way, the homotopy invariants of exterior spaces become
invariants of metric-compact spaces.

To develop the Algebraic Topology at infinity (or in the category of exterior
spaces) it is useful to consider some analogues of the standard Hurewicz homotopy
groups. If instead of n-spheres we use sequences of n-spheres converging to infinity,
then we obtain the Brown-Grossman proper homotopy groups, see [5] , [21] . On
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the other hand, if we move an n-sphere continuously towards infinity, we get infin-
ity semitubes which represent elements of the Steenrod proper homotopy groups,
see [11], [12]. The analogues of the previous groups have been considered for the
category of exterior spaces, see [17], [18]. In this homotopy theory the role of a
base point is played by a base ray; that is, an exterior map from the exterior space
of non negative real numbers R to an exterior space X .

One of the problems that arises in the study of Steenrod and Brown-Grossman
groups is that the category of exterior spaces under Ry does not have a zero object
and this fact implies some difficulties in the study of the exactness of some sequences
or in the construction of the suspension of an exterior space, which is the base for
the corresponding stable theories.

On the other hand, in the theory of Postnikov invariants of non simple spaces,
for a 0-connected space X it plays an important role its first Postnikov section X —
X where XM is an Eilenberg-Mac Lane space K (G, 1) with G = 7, (X) . Using
cohomology with coefficients in a G-module H (a particular case is the cohomology
of a group) and working in the category of spaces over K (G, 1) one can define the
Postnikov invariants as elements of cohomology groups with coefficients and these
invariants can be used to reconstruct the space X. Nevertheless, we find again the
same problem: the category of spaces over K(G,1) does not have a zero object.

In order to give a common solution to these questions, in this paper we have
developed some techniques that can be used to construct Eckman-Hilton and Puppe
sequences in model categories without zero object. Once these constructions have
been developed for an arbitrary model category, we return to the categories of
exterior spaces under R and spaces over K (G, 1), and apply the properties of the
corresponding Eckman-Hilton and Puppe homotopy sequences.

For example, using the homotopy sequences associated to the category of spaces
over K(G,1), we obtain that the cohomology of a group G with coefficients in a G-
module H can be interpreted as certain homotopy groups of twisted Eilenberg-Mac
Lane spaces (K(G, H;1,n)) in the category of spaces under and over K(G,1):

Theorem 4.5 Let H be a G-group and n > 0 . Then
(i) H"(G; H) =y (K(G, H;1,n))
(i) for any integer ¢ >0, H™(G; H) = i/ (K(G,H;1,n + q)) .

In the case of the category of exterior spaces under R, when we apply the homo-
topy sequences developed for a closed moded category without zero object, we find
a long exact sequence that gives a nice connection between the two main families of
exterior homotopy groups: Brown-Grossmann homotopy groups, ﬂf(X ,0|n), and
Steenrod homotopy groups, 775 (X,0).

Theorem 5.2 Let X be an exterior space and let o: Ry — X be a base ray,
then there is an exact sequence

- = wa(X,U\N) — 7T5(X, o) — ﬂf(X,O’|N) — Wf(X,U|N) —
=1 (X,0ln) = 75 (X, 0) = 75 (X, 0ln) — 7 (X, 0ln) -

The long exact sequence given by Quigley [34] in Shape Theory and the sequence
given by Porter [29] in proper homotopy theory can be obtained as particular cases
of the long exact sequence above given for exterior spaces.
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2. PRELIMINARIES

In this section, we fix the notation and recall some of the notions and results
that will be used in this paper.

2.1. Closed model categories. Given a category C, if there exists an initial
object (final object) it will be denoted by () (x). The opposite category is denoted
by C°. If A be an object in C , the categories under A and over A will be
denoted by C4 | C4, respectively. In this paper, objects and morphisms in C4
will be underlined, f: X — Y, and for the category under A the overlined notation
f: X — Y will be used. A category C is said to be pointed if there exist initial
and final objects and they are isomorphic. This object is usually denoted by * and
it is called the zero object.
Remark that for every category C one has the following properties:
(i) C# always has initial object A =ids4: A — A,
(ii) if A is the initial object of C , then C* = C |
(iii) if A is the final object of C , then C* is a pointed category, where A: A —
A is the zero object.

and we also have the corresponding dual properties.

If A is any given object in a category C,

(ChHz=(Ca)*

is a pointed category that it will also be denoted by C4 . An object in this category
X=A x> X —%s A is determined by morphisms ¢x and rx in C such that
rxtx = id4, a morphism E: X — Y is given by a morphism f: X — Y in C such
that fix =iy and ry f = rx . The zero object of Cﬁ is A= A%A&A .

For a given object A in a category C , we can consider the forgetful functors
U:CA - CandV:Cy - C ,givenby UX) =X ,U(f)=fand V(X) = X,
V(f)=1.

If C has finite coproducts, then U has a left adjoint AO(-): C — C# given as
follows. If X is an object in C , ALIX is the canonical morphism AUX: A — AUX .

Dually, if C has finite products, then V has a right adjoint Ax(:): C — Cug,
which assigns to an object X in C , the object AxX which is the projection
AxX —A.

The notion of closed model category, introduced by Quillen [32], is the following:

Definition 2.1. A closed model category is a category C endowed with three
distinguished classes of morphisms called cofibrations, fibrations and weak equiva-
lences, satisfying the following axioms CM1-CM5 below:

CM1: C is closed under finite limits and colimits.
CM2: If f and g are morphisms such that the composition fg is defined then if two
of them f,g and fg are weak equivalences, so is the third.

We say a morphism f in C is a retract of g if there are morphisms ¢ : f — g
and ¢ : g — f in the category of maps in C, such that Yp = id.

CM3: If f is a retract of g, and g is a cofibration, fibration or weak equivalence,
then so is f.

A morphism which is both fibration (resp. cofibration) and weak equivalence is
said to be a trivial fibration (resp. trivial cofibration).
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CM4: Given a commutative diagram of solid arrows:

A—">X

7
zl lp (D)

B——=Y

the dotted arrow exists and the triangles commute, in either of the following situa-
tions:

(i) 4 is a cofibration and p is a trivial fibration,

(ii) 4 is a trivial cofibration and p is a fibration.
CMb5: Any morphism f may be factored in two ways:

(i) f = pi, where i is a cofibration and p is a trivial fibration,

(ii) f = qj, where j is a trivial cofibration and q is a fibration.

If the dotted arrow exists in any diagram of the previous form (D) , then we say
that ¢ : A — B has the left lifting property (LLP) with respect to p: X — Y, and
p has the right lifting property (RLP) with respect to .

An object X of C is said to be cofibrant if the unique morphism ) — X is a
cofibration; dually X is called fibrant if X — % is a fibration. We denote by C. ,
C; and C.y the full subcategories of C determined by the cofibrant objects , the
fibrant objects and the cofibrant and fibrant objects, respectively.

Given a closed model category C, the category of fractions obtained by formal
inversion of the weak equivalences is denoted by Ho(C) , see [16], [32]. Given X,Y
objects in C , we denote

[X, Y] = HomHo(c) (X, Y)

If X is a cofibrant object and Y is a fibrant object, then the relation of right
homotopy is equal to the relation left homotopy, ~, and the set of morphisms
divided by the homotopy relation will be denoted by

7[X,Y] = Home(X,Y)/ ~ .

Moreover, in this case [X,Y] =7[X,Y] .
It is well known, see [32] , the following result:

Proposition 2.1. If C has the structure of a closed model category, then the
opposite category COP inherits a closed model category structure taking as cofibra-
tions, fibrations and weak equivalences the opposites of the classes of fibrations,
cofibrations and weak equivalences, respectively.

Definition 2.2. Let C be a closed model category and let A be an object in C .
A morphism f in CA is said to be a cofibration, a fibration or a weak equivalence
if and only if U(f) is a cofibration, a fibration or a weak equivalence in C . In a
dual way, a morphism f in Ca is said to be a cofibration, a fibration or a weak

equivalence if and only z?V(f) s a cofibration, a fibration or a weak equivalence in

C. ;
We refer the reader to [32] for a proof of the following:

Proposition 2.2. Let C be a closed model category and let A be an object in
C . Then, the categories C* and C 4, with the classes of morphisms given above,
has the structure of a closed model category.
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We denote by Ho(C#) and Ho(C ), the respective localizated categories. Given
X:A—-XandY: A—Y , we will use the following notation

[Y, ?]A = HOInHO(CA)(Y, ?) .

If X is cofibrant and Y is fibrant in C# ; that is X: A — X is a cofibration
and Y — x is a fibration in C , then the relation of right homotopy is equal to
the relation left homotopy, ~, and the set of morphisms divided by the homotopy
relation will be denote by

7[X,Y]* = Homga (X,Y)/ ~ .
In this case we also have [X,Y]4 = 7[X,Y]4 .
In a dual way, given X: X — Aand Y:Y — A | we will use the following
notation
[X,Y]4 = Hompgc,)(X,Y) .

If X is cofibrant and Y is fibrant in C4 ; that is § — X is a cofibration and
Y:Y — A is a fibration in C , then the relation of right homotopy is equal to
the relation left homotopy, ~, and the set of morphisms divided by the homotopy
relation will be denote by

7[X,Y]4 = Homg, (X,Y)/ ~ .
In this case we also have [X, Y|4 =7[X,Y]4 .

In this paper we consider the following closed model category structure in Top:
Given a map f: X — Y in Top, f is said to be a fibration if it is a fibre map
in the sense of Serre; f is a weak equivalence if f induces isomorphism w4 (f) for
q > 0 and for any choice of base point and f is a cofibration if it has the LLP
with respect to all trivial fibrations. For this structure we refer the reader to
Quillen [32]. Then, Top™ inherits the following closed model category structure: A
pointed map f: (X,*) — (Y, %) is said to be a fibration (resp. weak equivalence,
cofibration) if in the non pointed setting the map f: X — Y is a fibration (resp.
weak equivalence, cofibration). We recall that both categories of spaces and pointed
spaces have compatible simplicial structures, see [32], [20] . Ho(Top) , Ho(Top™)
will denote the corresponding localized categories obtained by formal inversion of
weak equivalences defined above.

2.2. Fibration and cofibration sequences on a pointed closed model cat-
egory. Let C be a closed model category. For a morphism f: X — Y in C the
fibre F' of f in C is given by the pullback

F—X

N

) —Y

and the cofibre C' of f in C is given by the pushout

X ——

*
|
C

Y ——
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The suspension object XX of X is the cofibre of X, UX, — X, x I , where X, x [
is a cylinder object of a cofibrant approximation X, of X. In a dual way, the loop
object QX of X is the fibre of XJ{ — Xy x Xy, where X]{ is a path object of a fibrant
approximation Xy of X . Thus we have induced functors ¥, Q: Ho(C) — Ho(C) .

Now if we suppose that C is a closed model category with the additional property
of being pointed, then the functor ¥: Ho(C) — Ho(C) is left adjoint to Q: Ho(C) —
Ho(C) . Moreover, in this case we have the following notions of fibration sequence
given in [32] .

Definition 2.3. A diagram in Ho(C) of the form

X —Y—2Z ,XxQZ—X

is said to be a fibration sequence in Ho(C) if there is a fibration p: E — B in Cy,
such that the induced diagram in Ho(C)

F“E2B | FxQBF
is isomorphic in Ho(C) to the given diagram . Here F is the fibre of p and m the
left action of the group object QB.

In a dual way we can consider cofibration sequences, see [32] .
For a pointed closed model category C , Quillen [32] proved the following result:

Proposition 2.3. Let F - E -2 B be a fibration sequence in Ho(C) . Then

for each object A in C there is a sequence

— [A,0H1B] 2 (4,00F] T (4,078

A, % a,0B] 25 (A F] 5 (A E] 25 (A, B
that is exact in the following sense:
(i) p; (0) = T 7.
(i) . 8 =0 andz 01 =12 <= ag = a1\ for some X € [A,QB].
(iil) 0k ()« = 0 and O 1 = Oxda <= A2 = (p)up- A1 for some p € [A,QE].
(iv) The sequence of group homomorphisms from [A,QE] to the left is exact in
the usual sense.

(Q9p)«

In a dual way, one has the corresponding result for cofibration sequences.

The closed model categories has been developed very much the last decade with
applications to algebraic topology and algebraic geometry. For an interesting survey
you can see [9] . Some useful monographs devoted this subject are written by M.
Hovey [25] , P.S. Hirschhorn [24] and W.G. Dwyer, P. S. Hirschhorn, D.M. Kan and
J. Smith [10] . Some advances on application to algebraic topology can be seen in
(7], [13], [23].

2.3. Twisted Eilenberg-Mac Lane spaces. Given a group G , let K(G,1)
be an Eilenberg-Mac Lane space; that is, a 0-connected CW-complex such that
m(K(G,1)) = G and for ¢ > 1, me(K(G,1)) = 0 . Suppose that H is an
abelian group and 7n: G — Aut(H) determines an action of G on H , then H
has the structure of a G-module (ZG-module). For n > 2 denote by K(G, H;1,n)
a CW-complex such that m (K(G,H;1,n)) = G , 7, (K(G,H;1,n)) =2 H , for
g & {1,n} m(K(G,H;1,n)) is trivial and the action of m (K (G, H;1,n)) = G
on m,(K(G,H;1,n)) = H is given by . For n = 1, we take K(G,H;1,1) the
Eilenberg-Mac Lane space K(H x G, 1) associated with the semidirect product
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H x G of Gby H and for n =0, K(G, H;1,0) is the covering space of K(G,1)
induced by the representation map n: G — Aut(H) , where the covering map is
denoted by po: K(G,H;1,0) — K(G,1) . We recall that for any b € K(G,1) ,
we have that py'(b) = H (you can think on pg as a sheaf of abelian groups) and
to simplify notation, we suppose that if by is the base point of K(G,1) , then
pot(bo) = H . For h € H denote by G, = {g € G|g.h = h} . Tt is well known
that m (K(G, H;1,0),h) = Gy, and 7o(K (G, H;1,0)),h) = G\H , where G\H is
the space of the orbits of the left action of G on H .

All the spaces above (twisted Eilenberg-Mac Lane complexes) have a natural
fibration p,: K(G,H;1,n) — K(G,1) and a canonical section o,: K(G,1) —
K (G, H;1,n) , which is a cofibration such that p,0, = idg(g,1) . We note that for
each n >0, pp: K(G,H;1,n) — K(G,1) is an object in the category Top (¢ 1)
which is denoted by K (G, H;1,n) .

Let X be a 0-connected CW-complex such that 71 (X) = G and consider the
Postnikov section X — X[ = K(G,1) . We can factor this map as

X ! X’

N A

K(G,1)

where j is a trivial cofibration and X’ is a fibration. Then X is isomorphic to X’
in Ho(Top (¢,1y) - Therefore if it is necessary one can suppose that the canonical
map X — K(G,1) is a fibration. For more properties about twisted Eilenberg-Mac
Lane spaces we refer the reader to [1], [27].

2.4. The closed model category of exterior spaces E. One of the main ap-
plications of proper homotopy theory is the study of non compact spaces. For
example, the classification of non compact surfaces given by Kérékjarto in 1923
used the notion of ideal point that can be considered as the first invariant of proper
homotopy theory. Freudenthal [14] generalized this notion introducing the end
point of a space and the end of a group. We can also cite the works of Siebenmann;
he analyzed, in his thesis [30], the obstruction of finding a boundary to an open
manifold in dimension greater than five and, in [31], he also proved important s-
cobordism theorems. The proof of the Poincaré conjecture in dimension four was
given by Freedman [15] by using s-cobordism theorems and techniques of proper
homotopy theory.

We also want to mention the relationship between proper homotopy theory and
shape theories, for this subject we refer the reader to [11]. For an interesting survey
of the algebraic aspects of proper homotopy theory we refer the reader to [28]. We
can summarize by saying that there are important applications of proper homotopy
theory to the study of manifolds, ends of a group, shape and prohomotopy theories,
etc.

Let X and Y be topological spaces. A continuous map f : X — Y is said to be
proper if for every closed compact subset K of Y, f~1(K) is a compact subset of
X. The category of spaces and proper maps will be denoted by P.

One of the main problems of the proper category is that there are few limits and
colimits. By this reason, it is difficult to develop some homotopy constructions as
homotopy fibres or loop spaces.
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In [18], [17] there is a solution for this problem introducing the notion of exterior
space. The category of exterior spaces and exterior maps, E , is complete and
cocomplete and contains P as a full subcategory. Furthermore, E has a closed
simplicial model category structure in the sense of Quillen [32] ; hence, it establishes
a good framework for the study of proper homotopy theory.

The localized category Ho(E) has also interesting applications to shape and
strong shape theory, see [17]. In shape theory, the role of Hurewicz homotopy
groups is played by homotopy progroups, see [11], [26] or equivalently by Brown-
Grossmann homotopy groups, see [21]. In strong shape theory, one of the main
strong shape invariants are the Steenrod homotopy groups, see [11].

We recall in this subsection the notion of exterior space. Roughly speaking, an
exterior space is a topological space X with a neighbourhood system at infinity.

Definition 2.4. An esterior space (or exterior topological space) (X,e C T)
consists of a topological space (X, T) together with a non empty collection e of open
subsets satisfying,

E1l: ]f El,EQE € then E1NEy € g,
E2: ifEce,Uectand ECU , thenU € ¢.

An open E which is in ¢ is said to be an exterior-open subset or, briefly, an e-
open subset. The family of e-open subsets € is called the externology of the exterior
space. A map f:(X,e C1)— (X', C71')is said to be exterior if it is continuous
and f~Y1(E) € ¢, for all E € €'.

Given an space (X, 7), we can always consider the trivial exterior space taking
e = {X} and the total exterior space if one takes ¢ = 7. An important role is played
by the family X of the complements of closed-compact subsets of a topological
space X , that will be called the cocompact externology. We denote by N and R
the exterior spaces of non negative integers and non negative real numbers having
the usual topology and the cocompact externology.

The full embedding e : P — E carries an space X to the exterior space X, which
is provided with the topology of X and €X. A proper map f : X — Y is carried to
the exterior map f. : X, — Y. given by f. = f.

Definition 2.5. Let X be an exterior space, Y a topological space. Consider
on X XY the product topology and the distinguished open subsets E of X XY
such that for each y € Y there exists Uy, € 7v, y € U, and E, € €x such that
E, x U, C E. This exterior space will be denoted by X XY.

This construction gives a functor E x Top — E, where Top denotes the category
of topological spaces. When Y is a compact space then E is an e-open subset of
X XY if and only if it is an open subset and there exists G € e x such that GXY C E.
Furthermore, if Y is a compact space and ex = sgi then ex 5y = Eiixy .

Let EN be the category of exterior spaces under N . In this context, it is usual
to denote an object by a pair (X, p) , where p: N — X is an exterior map, which is

called a base sequence in X . A morphisms in EN given by a commutative triangle

in E
N
o\
_—
X 7 Y
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is usually denoted by f: (X, px) — (Y, py).

Definition 2.6. Let f, g be in Homgn((X, px), (Y, py)), then we say f is
e-homotopic to g relative to N, written f ~ g, if there is an exterior map F :
XxI =Y such that F(x,0) = f(z), F(z,1) = g(z) and F(px(k),t) = py(k), for
allz € X, ke Nandtel. The map F 1is called an exterior homotopy relative to
N from f to g and we sometimes write F : f ~X g.

In [17], it is proved that Homgn((NXS?, idyx*), (X, p))/ ~ has the structure
of a group for ¢ > 1 , which is abelian for ¢ > 2 ; if ¢ = 0 we get a pointed set.

Definition 2.7. Let (X, p) be an object of EN . For ¢ > 0, the q-th Brown-
Grossman exterior homotopy group of (X, p) is given by

g (X, p) = Hompn (NX S, idnx+), (X, p))/ = .

e

In an analogous way, one can consider the category EF+ of exterior spaces under
R, . In this case, an object in E*+ will be denoted by (X, o) , where o: Ry — X
is an exterior map, which is called a base ray in X . A morphism in ER+ will
be denoted by f : (X,0x) — (Y,0y). Similarly, we define the exterior homotopy
relation relative to R | z]§+ . Then , see [18] , the set of exterior homotopy classes
relative to Ry , Homge, ((Ry xS, idr, x*), (X, 0))/ ~¢+ admits the structure of a
group for ¢ > 1, which is abelian if ¢ > 2 ; and for ¢ = 0 a pointed set is obtained.

Definition 2.8. Let (X, 0) be an object of E®+ . For every ¢ > 0, the q-th
Steenrod exterior homotopy group of (X, o) is given by

7T5(X7O') = Hompgz, (Ry %S9, idg, x*),(X,0))/ R

In order to obtain exact sequences for exterior Brown-Grossman and Steenrod
homotopy groups, we will consider in the category E the closed model structure
given by the following classes of maps.

Definition 2.9. Let f: X — Y be an exterior map.

(i) f is a exterior weak equivalence, if either
(a) if Homg(N, X) =0 then Homg(N,Y) =10,
or
(b) if Homg(N, X) # 0 then w2(f) : 72(X, p) — B (Y, fp) is an isomor-
phism for all p € Homg(N, X) , ¢ > 0.
(ii) f is an exterior fibration if it has the RLP with respect to Oy : Nx D9 —
NX(D? x I) for all ¢ > 0, where dg(n,x) = (n,x,0).
A map which is both an exterior fibration and an exterior weak equiva-
lence is said to be an exterior trivial fibration.
(i) f is an exterior cofibration if it has the LLP with respect to any exterior
trivial fibration.
A map which is both an exterior cofibration and an exterior weak equiv-
alence is said to be an exterior trivial cofibration.

Then, see [17] , one has the following result.

Theorem 2.1. The category of exterior spaces, E, together with the classes of
exterior fibrations, exterior cofibrations and exterior weak equivalences has a closed
simplicial model category structure.

To see recient applications of the category of exterior spaces to proper homotopy
theory we refer the reader to [19].
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3. LONG EXACT SEQUENCES IN AN ARBITRARY CLOSED MODEL CATEGORY

Given a closed model category C , then one has induced closed model structures
in the category over the initial object () and in the category under the final object
x . We use the fact that these relative and fibre categories have zero object to
construct useful long exact sequences.

3.1. The categories over A and under A. In this section we suppose that C is
a closed model category and A is an object in C ; by Proposition 2.2 one has that
C 4 and C# inherit the structure of a closed model category.

Next we analyse some properties of the adjoint functores V and Ax(-) with
respect to the model structures. Recall that if C , C’ are closed model categories,
and F': C — C’ is a functor which preserves weak equivalences between cofibrant
objects, F induces a left derived functor FL: Ho(C) — Ho(C'’) given by FL(X) =
F(X,.), where X, is a cofibrant approximation of X (dually we have right derived
functors), see [32] .

Theorem 3.1. Let C be a closed model category and suppose that the object A is
fibrant. Then the functors V: C4 — C and AX(-): C — C4 induce on the localized
categories the functors VI: Ho(Ca) — Ho(C) and (Ax(-))f: Ho(C) — Ho(Ca4)
where V' is the left derived functor and (Ax(-))T is the right derived functor. The
induced functors satisfy that VL is left adjoint to (Ax ()T ( briefly they will also
be denoted by V' and Ax(-)) .

Proof. We will apply Theorem 3 of Section 4 of Chapter I from [32]. For this
purpose it suffices to see that V preserves cofibrations and carries weak equiva-
lences between cofibrant objects in C4 to weak equivalences in C , and that Ax(+)
preserves fibrations and carries weak equivalences between fibrant objects to weak
equivalences in C4 .

From Definition 2.2 it follows that V preserves cofibrations, fibrations and weak
equivalences. Since Ax(-) is right adjoint to V , it follows that Ax(-) preserves
fibrations.

Suppose that f: X — Y be a weak equivalence between fibrant objects in C |
since A is fibrant, we have that idgy x f: A x X — A x Y is a weak equivalence
between fibrant objects in C . Taking into account that idg x f = V(Axf) , we
obtain that AX f is a weak equivalence in C4 . To see that idg x f is a weak
equivalence you can apply Proposition 2.6 of chapter I and the dual of Lemma 1.2
of Chapter II of [2] . An alternative proof can be obtained using the fact that
Ho(C) has finite products. O

In the following results we use notions and notations given by Quillen in section
2 of Chapter I of [32] about left homotopies, right homotopies, cylinders, left ho-
motopies between left homotopies, et cetera, in a closed model category C which
needn’t be pointed. In particular if X is cofibrant and Y is fibrant and f,g: X — Y
are morphisms in C , m(X,Y; f, g) denotes the set of homotopy classes of left ho-
motopies from f to g .

Proposition 3.1. Let A be a fibrant object in C . Suppose that Z in C,
satisfies that [VZ, Al =« and m(VZ, A; Z, Z) = x . Then for any object F in C4 ,
we have that [Z,F|a 2 [VZ,VF] .
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Proof. Firstly, since each object has cofibrant and fibrant approximations, we can
assume that Z is cofibrant and F is fibrant in C4 . If VZ = Z and VF = F , this
is equivalent to say that Z is cofibrant and F': ' — A is a fibration in C . Since
A is fibrant, so F is also fibrant in C . We recall that a map in [Z, F]4 can be
represented by the homotopy class [f]4 of a map f: Z — F given by the following
commutative diagram B B

Z%F
AN e
A
We consider the map ¢: [Z, F]la — [VZ,VF] given by ¢([f]la) = [V f]. First

we will see that ¢ is surjective . Given f: Z — F Since [Z, A] = % , there is a
homotopy G: Z x I — A such that GOy = F f and GO, = Z , where

70U id4id 7
Z x1

is the cylinder of Z .
Now we can consider the commutative diagram

Z —>F

& 7
OO\L pa

Zx1-5 >4

where the lift G exists because Fis ~ﬁbration and Oy is a trivial cgﬁbration.NMore—
over, FG0O; = GOy = Z so we have [GO1]|a € [Z, F|a verifying ¢([Gd1]a) = [GO1] =

/] o
Next we prove that ¢ is injective: Let [f]a,[f]a € [Z, F]a such that ¢([f]a) =

o([f']a), that is f ~ f"in C . Let H: Z x I — F be a homotopy such that

HOy = f,HO, = f' . We note that FH and Zo are left homotopies from Z to Z
in C . We can consider Z x I ZHZ Z x I as the push—out of 9y + 0, and 0y + 01 .

Now if we factor the map A = id + id as the composition of a cofibration jy + j1
and a trivial fibration & we obtain the following commutative diagram:

(Zx1) U (ZxD A2

Z/
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Since m(VZ,A;Z,Z) = *, there is a map L: Z' — A such that the following
diagram is commutative:

FH+Zo
(Z x I)ZHZ(Z x 12157 4

o+o D L
Jo+J1
oo

Z<—27

Since jo is a trivial cofibration and F is a fibration, there is L: Z' — F such
that the following diagram is commutative

ZxI-2sp

2Lt .p

‘We note that Eijl = Zo , then @ is a morphism in C,4 from Zo to F . Since
Lj10y = Ljodo = HOy = f , Lj101 = Ljo0y = HO; = f' , then Lj; is a homotopy
from f to f in Cy4 .

O

Lemma 3.1. Let A be a fibrant and cofibrant object in C . Suppose that Z is
cofibrant in C4 . Then
(i) If [V(2Z2),A] = * , implies m(VZ, A, Z,Z) = x .
(i) In the case A = 0 , we also have that [V(XZ),A] = * if and only if
WZ(VZ7A5ZaZ) =* .

Proof. The suspension XZ of the cofibrant object Z: Z — A in C, is induced by
the following pushout

as the morphism
. Zo+ida
SZ:(Zx 1) | AZG
Notice that since A is cofibrant, V(XZ) is cofibrant in C .
Let h,h': Zx1I — A be two left homotopies between Z and Z . Then h, ' induce

kE:V(XZ) — Agiven by k = h+1ida , ¥ = h' +1ida . Since [V (XZ), 4] = * ,
there is a right homotopy M: V(XZ) — Al between k, k' , where

A— YA

\ %1)

AI
is the cocylinder of A .
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Consider a correspondence H: Z x I — A’ from h/ to a right homotopy I: Z —
AT between Z and Z .

Using H and Mi; , one has that h, h’ correspond to sZ.l’,1’ , respectively. Since
sZ.l' and I’ represent the same class , it follows that h, h’ represent the same element
inm(Z,A;,Z,2) .

In order to prove (ii), in the case A =0, let k,k': V(XZ) — 0 , then h,h': Z x ()
given by h = kiy; , ' = k'i; are left homotopies from Z to Z and k = h + idy ,
k' = 1 +idy since kis = k'ip = idy .

Taking into account m;(Z,0; Z, Z) = « , there is P: Z’ — () a left homotopy from
hto h' . Take P: Z' — () a left homotopy from h to h .

Since jo is a trivial cofibration and (do,d;) is a fibration, there is N: Z" — (f
such that the following diagram is commutative

ZXIL)@I

777
jol N l(do;dl)
(PP
7' ——=0x0

Taking T'= Nj; + s: V(XZ) — 0! we have a right homotopy from k to k’ .

O

Corollary 3.1. If 0 is a fibrant object in C and Z in Cy satisfies that [V Z, )]
x and [V(XZ),0] = * , then for any object F in Cy , we have that [Z, Fly
VZ,VE].

'l

Dually, we analyse the corresponding properties of the adjoint functors AU(-)
and U with respect to the model structures in C and C4 .

Theorem 3.2. Let C be a closed model category and suppose that the object
A is cofibrant. Then the functors AU(-): C — C# and U: C* — C induce on the
localized categories the functors (AO(+))L: Ho(C) — Ho(C#) and UT: Ho(C4) —
Ho(C) where (AT(-))% is the left derived functor and UF is the right derived functor.
The induced functors satisfy that (AU(-))* is left adjoint to UR ( briefly they will
also be denoted by AU(-) and U ).

Proposition 3.2. Let A be a cofibrant object in C . Suppose that Z in CA

satisfies that [A,UZ] = % and m)(A,UZ; Z,Z) = * . Then for any object F in C* |
we have that [F, Z|* = [UF,UZ] .

Lemma 3.2. Let A be a cofibrant and fibrant object in C . Suppose that Z is
fibrant in CA . Then
() If [A,UQZ)] = = , implies m(A,UZ; Z,Z) = * .
(ii) In the case A = x , we also have that [A,U(QZ)] = * if and only if
m(AUZ, Z,7) =% .

Corollary 3.2. If * is a cofibrant object in C andf? in C* satisfies that
(x,UZ] = x and [+,U(QZ)] = x , then for any object I in C* , we have that
[F,Z]* > [UF,UZ] .

3.2. Exact sequences. For a map f: X — Y in a closed model category C we
use the model structure of Cy to construct exact sequences associated with f .



14 M. GARCIA PINILLOS L.J. HERNANDEZ PARICIO AND M.T. RIVAS RODRIGUEZ

Given a map p: E — B in C , the “fibre” of p in Cy is the object F': FF — )
given by the following pullback
F
Y
0

It is interesting to note that the “fibre” F of p in Cy is isomorphic to the fibre
of @xp in the pointed category Cy . On the other hand, if f is a morphism in Cy ,
the fibre of f is the “fibre” of V f . B

For a given map f: X — Y in C , we can consider a commutative diagram

—_—

=

-
=

[

Sy

E—>B
XT>Y

where p is a fibration, F/, B are fibrant and the vertical maps are trivial cofibrations.
Then p is isomorphic to f in the localized category and it is said that p is an
approaching fibration of the map f .

Definition 3.1. Let C be a closed model category such that O is fibrant. If
p: E — B is an approaching fibration of a morphism f: X —Y in C , the “fibre”
of p in Cy is said to be the “homotopy fibre” of f in Cy and it will be denoted by
F(f) -

Notice that all possible “homotopy fibres” of f in Cy are weak equivalent.

Theorem 3.3. Let C be a closed model category such that () is fibrant. Let
f: X =Y a morphism in C and let F(f): F(f) — 0 be the “homotopy fibre” of
fin Cy and Z: Z — O an object in Cy . Then

(i) there is a long exact sequence

o [Z2,Q7HOxY)]y — [Z,QUF ()] — [Z,Q29(0xX)]g — -

= [Z,Q0xX)]p — [Z,20xY)]p — [Z, F(f)lo — [2,0xX]p — [Z,0xY]y

(i) the sequence given at (i) is isomorphic to the exact sequence

= VR Z Y] — B2, F(H)le — [VEIZ,X]— -

- — [VEZ,X] — [VEZ)Y]— [Z,F(f)lg — [2,X] — [Z,Y]

(iii) If Z satisfies that [V (XFZ),0] = % , for k > 0 , then the sequences given at
(i) and (ii) are isomorphic to the exact sequence

e [VSITLZ Y] — [VRIZ, F(f)] — [VZiZ, X] — -

= [VEZ,X] — [VEZY] — [Z,F(f)] — [2,X] — [2,Y].

Proof. Given a morphism f: X — Y and an approaching fibration p: £ — B of
f , consider the diagram F(f) — F « X — Y | where F(f): F(f) — 0 be the
“homotopy fibre” of f in Cy . Let i: F(f) — X be the morphism in Ho(C) given by
F(f) — E «— X andlet i: F(f) — @xX be the morphism in Ho(Cy) corresponding
to ¢ by the adjunction -

%
Ho(Cy) —__ Ho(C)

-

0x(.)
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given in Theorem 3.1 .
Then the diagram F(f) — X — Y induces the fibration sequence in Ho(Cy)

Ff) S 0xx S oxy

Since Cy is a pointed closed model category, we can apply Proposition 2.3 to

obtain the exact sequence given in (i)
Using the adjoint functors
b

Ho(Cyp) ~

Ho(Cyp)

and the previous adjunction one has (ii)

If Z satisfies the hypothesis of (iii), one can apply Corollary 3.1 to obtain the
result given in (iii). O
Given a morphism f: X — Y in C , if we consider a commutative diagram in

Cy
(Z)><f

)

OxX
A
where the vertical maps are trivial fibrations and 7 is a cofibration between cofibrant

spaces. We say that i is an approaching cofibration of @x f
Definition 3.2. Givenamap f: X — Y in C , ifi is an approaching cofibration

of OX [, the cofibre C(f) of i given by the push out

[

|-
-~

0
!
alf)

sy

is said the “homotopy cofibre” of f in Cy
If we want to construct a long exact sequence associated to a morphism f: X —

Y we can proceed as follows
Theorem 3.4. Let f: X — Y be a morphism in a closed model category C

Then for any Z object in C
(i) there is a long exact sequence
— [BIH0xX),0x 2]y — [RU(C(f)), 0x Z]y — [R4(0xY),0x Z]p —
[E(0xX),0xZ]g — [C(f),0xZ]p — [0xY,0xZ]g — [0x X, 0x Z]p .
then the sequence given at (i) is isomorphic to

— [VEI(0xY), Z
V(0xX),Z] .

0
[V(0xY), 2] —

RPN
(ii) If 0 is a fibrant object in C ,

the exact sequence
— [VEH(0xX), Z] — [VZIC(f), Z]

]
— [VEW0xX), 2] — [V(C(f), 2] —
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Proof. Since Px X — OxY — C(f) is a cofibration sequence in Ho(Cjp), by the dual
of Proposition 2.3 it follows the exact sequence given at (i). To prove (ii), taking
into account that @ is fibrant we can apply Theorem 3.1 .

O

Dually, for a map f: X — Y in a closed model category C we can use the the
model structure of C* to construct more exact sequences associated with f .
Given a map i: A — B in C | the “cofibre” of i in C* is the object C': x — C
given by the following pushout
A *
|
B C

Note that the “cofibre” C of i in C* is isomorphic to the cofibre of *LJi in the
pointed category C* . On the other hand, if f is a morphism in C* , the cofibre of
f is the “cofibre” of U f.

For a given map f: X — Y in C , we can consider a commutative diagram

_—

l‘”

X Y
where ¢ is a cofibration, A, B are cofibrant and the vertical maps are trivial fi-

brations. Then the approaching cofibration 7 is isomorphic to f in the localized
category.

Definition 3.3. Let C be a closed model category such that * is cofibrant. If
i: A — B is an approaching cofibration of a morphism f: X — Y in C , the
“cofibre” of i in C* is said to be the “homotopy cofibre” of f in C* and it will be
denoted by C(f) .

As above, all possible “homotopy cofibres” of f in C* are weak equivalent.

Theorem 3.5. Let C be a closed model category such that % is cofibrant. Let
f+ X =Y amorphism in C and let C(f): x — C(f) be the “homotopy cofibre” of
fin C* and Z: x — Z an object in C* . Then

(i) there is a long exact sequence
. [RHLGOX), Z)* — [SCU), 2P — [S10Y), 2] — -
— [XG0Y), Z)* — [X(UX), Z]* — [C(f), Z]* — [*0Y, Z]* — [*0X, Z]*
(ii) the sequence given at (i) is isomorphic to the exact sequence
— X, U (Z)] — [C(), 2] — [V, UQ(Z)] —
Y, UQ(2)] — [X,U9(Z) — (O, 2 — [V,U(Z)] — [X,U(Z)
(iii) If Z satisfies that [x,U(QFZ)] = % , for k > 0 , then the sequences given at
(i) and (ii) are isomorphic to the exact sequence
— [X,UQTH(Z)] — [C(f),UQ1Z] — [Y,UQY(Z)] —
- [Y,UQZ)] — [X,UQ(2)] — [C(/),U(2)] — [Y,U(2)] — [X,U(Z)] .
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Given a morphism f: X — Y in C , we are going to consider a commutative
diagram in C*

_ «Of
*UX — 1Y

L

E——8B

where the vertical maps are trivial cofibrations and p is a fibration between fibrant
spaces, that is, p is an approaching fibration of *LIf .

Definition 3.4. Given a map f: X — Y in C , if b is an approaching fibration
of *Uf , the fibre F(f) of p given by the pullback

&=

-
S|

F(f)—
-

il

is said the “homotopy fibre” of f in C*
and we have

Theorem 3.6. Let f: X — Y be a morphism in a closed model category C.
Then for any Z object in C
(i) there is a long exact sequence
- — \0Z, Qi ((OY)]* — [¥0Z,QI(F(f))]* — [*0Z, QGOX)]* — ---
- — [¥OZ, Q0Y)]* — [*UZ, F(f)]* — [*0Z,«0X]* — [x0Z,«0Y]* .
(ii) If x is a cofibrant object in C , then the sequence given at (i) is isomorphic
to the exact sequence
= [Z,UQINOY)] — [Z,UQ(F(f))] — [Z,UQI(0X)] — ---
<= [Z,UQ0Y)] = [Z,UF(f)] — [Z,U(+x0X)] — [Z,U(x0Y)] .

4. APPLICATIONS TO COHOMOLOGY WITH COEFFICIENTS AND GROUP
COHOMOLOGY

Firstly, we include a proof sketch of the following result which gives a homotopy
representation of cohomology with local coefficients. We refer the reader to J.M.
Mpller [27] for a version in terms of mapping spaces.

Theorem 4.1. Let X be a 0-connected CW-complex such that 71(X) = G and
consider the canonical map X: X — K(G,1). Then for every n > 0 , the n-th
cohomology group of X with local coefficients in the G-module H can be given as
the following hom-set in the localized category Ho(TopK(GJ)) :

HTL(X; H) = HomHo(TopK(G 1))(X7K(Ga H7 17 n)) = [K7K(G7 H7 17 n)}

which is also isomorphic to the corresponding set of fibre (vertical) homotopy classes
over K(G,1) .
Proof. For n > 2 , we have the fibration

K(H,n)—"—K(G, H;1,n)—2K(G,1)
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and the section o,,: K(G,1) — K(G,H;1,n) . We note that all the spaces are
0-connected and that for ¢ > 0 one has the induced bundle of groups

Hy = {mq(py ' (b),00(b)b € K(G.1)} .
For q # n we have a trivial bundle and for ¢ = n , one has that 7, (p;; 1 (b), 0, (b)) =
H . We can suppose that 7, (p;, ! (bo),0n(bo)) = H , where by is the base point of
K(G,1) . We also note that ¢,X: X — K(G,H;1,n) is a lifting for the map
pn: K(G,H;1,n) — K(G,1) . Now we can apply the Theorem 6.13 of chapter VI
of [36] to obtain that

H(X; H) 2 X, K(G, H;1,n)] = Homggo(op,. ., ) (X, K(G, H: 1,n))
For n =1, one has that K(G, H;1,1) = K(H xG, 1) , and we have the fibration
K(H,1)—* K(H x G,1)—2—K(G,1)
then we have that HomHO(TopK(le))(X, K(G,H;1,1)) is isomorphic to
HomHo((Top*)K(Gyl))((X, xo), (K(H x G,1),x))/action of w1 (K(H,1),x*)

It is easy to check that this is isomorphic to
Der(G,H)/P(G, H)

where Der(G, H) is the abelian group of derivations (crossed homomorphism) of G
in H and P(G, H) is the group of principal derivations, see section 3 of of chapter
VT of [36] or section 2 of chapter IV of [4] . Now we apply Theorem 3.3 of of chapter
VI of [36] to obtain that

Der(G, H)/P(G,H) = H'(X; H)

For n = 0 , one has the covering map

H—" SK(G, H;1,0)0—2—K(G,1)
then we have that HOHlHO(TopK<le))(X, K(G, H;1,0)) is isomorphic to

HomTopK(Gyl) (Ka K(Gv H7 11 0))

Taking into account that 71 (K (G, H;1,0)),h) = G}, and let HE = {h € H|G), =
G} . By the usual lifting properties of coverings maps one has that the map
X: X — K(G,1) has a lifting X": X — K(G, H;1,0) such that X"(x0) = h if
and only if G, = G . Therefore Homrop,, ,, (X, K(G, H;1,0)) is isomorphic to
HY and it is well known that H® = HO(X; H) .

([l

The final object id: K(G,1) — K(G,1) in the category Topg(¢,1) is denoted
by K(G,1) . Now, if we take the final object K(G,1) in Topy (g 1) , we can con-

sider the category Topggg’i; = Topggg’ig , the forgetful functor U : Topggg’g —

Top k(1) and its left adjoint K(G,1)U(.): Topg(g1) — ToPiEg’B . see subsec-

tion 2.1 . The left adjoint carries the object X to the object K(G,1)UX .
We also have that
K(G,1)——K(G,H;1,n)——K(G,1)

an object in Topggg’}; , which is denoted by K (G, H;1,n) and the forgetful functor

U: Topygy) — Top gy verifies that U(K (G, H;1,n)) = K(G, H;1,n) .
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With this notation we have the following result:

Theorem 4.2. Let X be a 0-connected CW-complex such that 71(X) = G and
consider the canonical map X: X — K(G,1). Then for every n > 0 , the n-th
cohomology group of X with local coefficients in the G-module H can be given up

to isomorphism as a hom-set in the localized category Ho(TopI[gEg"R)

H"(X;H) = Hom K(g,l))(K(G,l)DX,K(G,H;1,n))

Ho(TopK(G‘l)
which is also isomorphic to the corresponding set of relative fibre homotopy classes

under and over K(G,1) .

Proof. We can apply Theorem 3.2 taking as C = Topy (1) and A = K(G,1)
which is a cofibrant object in Top ¢ 1) to obtain an adjunction on the localized
categories. The result follows from the theorem above and from the existence of
this adjunction. O

As a particular case of Theorem 4.1 the cohomology of G with coefficients in a
G-module H can also be interpreted as a set of fibre homotopy classes.

Theorem 4.3. For everyn > 0 the n-th cohomology group of G with coefficients
i a G-module H can be given up to isomorphism as a hom-set in the localized
category Ho(Topg (1))

H"(G;H) = [K(G,1),K(G, H;1,n)] = Homg (K(G,1),K(G,H;1,n))

TOPK(G,1))

which is also isomorphic to the corresponding set of fibre (vertical and non pointed)
homotopy classes of sections of the map p,: K(G,H;1,n) — K(G,1) .

Proof. 1t suffices to take X = K(G,1) in Theorem 4.1 and to apply that the
cohomology of K (G, 1) with local coefficients in the G-module H is isomorphic to
the cohomology of G with coefficients in the G-module H . O

Notice that K(G,1)UK (G, 1) is isomorphic to K(G, 1) x S° where S° = {—1,1}
and o: K(G,1) — K(G,1)x 8" | is given by o(b) = (b, —1) and p: K(G,1) x S° —
K(G.1) , plbt) = b

Theorem 4.4. For everyn > 0 the n-th cohomology group of G with coefficients
i a G-module H can be given up to isomorphism as a hom-set in the localized

category HO(TOPQEg’B) ]

H7’(G7H) = Hom K(G=1)>(K(G71) X SO)K(G7H715TL))

H°<T°p1<(c,1)

which is also isomorphic to the corresponding set of relative fibre homotopy classes
under and over K(G,1) .
Proof. Take X = K(G,1) in Theorem 4.2 . O

Let 3 the suspension functor of the closed model category Ho(Topggg’B) , recall

that we are thinking on X as a left derived functor. Since K(G,1) x S° is cofibrant,
it easy to check that
SUE(G, 1) x §°) = K(G, 1) x §°

where the retraction map of K(G, 1) x S7 is given by the first projection and the
section map is induced by the base point of the g-sphere.
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Definition 4.1. Let X be an object in Topggg’}g . For any integer ¢ > 0 , the

q-th (relative and fibre) homotopy group of X is given by
ﬂ-gf(X) = HomHo(Topggg’R) (%(K(G7 1) X EOLX)
= HomHO(T K(G’,l)) (K(G, ].) X Sq,&)

Pk (c,1)

Recall that on the localized category Ho(C) of a model category C with zero
object * we have a loop functor €2 that is given as a right derived functor. In
the case of a fibrant object Y , if Y/ denotes a cocylinder of Y , the object QY
can given as the fibre of Y/ xy* — Y . In the proof of the following proposition
the same symbol €2 is used to denote the loop functors on the localized categories

Ho(TopIIEEg’B) and Ho(Top™) .

Proposition 4.1. For any G-module A , and n >0 , Q(K (G, A;1,n + 1)) is

isomorphic in Ho(TopEEg’}g) to K(G,A;1,n) .

Proof. The loop functor construction on the model category Topgggfig for the
fibrant object K (G, A;1,n + 1)) is given by the fibration sequence

§7d ) b7d . I x b7 T )
QK(G, A;1,n+1)) - K(G, A;1,n+1) K(G, A1+ 1) K(G,1) — K(G,A;1,n)
Denote

- ) = ) I o X R
PE(G, 410+ 1) =K@ ALn+ 1) o, ) K@)

in this case we can take
VUPK(G,A;1,n+1) = {u: I — K(G, A;1,n+1)|p,u = constant, u(1) = o,p,(u(1))}

and p¥’: VUPK (G, A;1,n +1) — K(G,1) , o¥: K(G,1) - VUPK(G, A;1,n +

1) are given by p”(u) = p,(u(1)) and o¥(b)(t) = o.(b) , b € K(G,1),t € I .
Therefore one has the fibration sequence

QK(G, A;1,n+1)) —» PK(G, A;1,n+1) — K(G, A;1,n + 1)

where VUQ(K (G, A;1,n + 1)) can be given as
{u: I — K(G, A;1,n+ 1)|ppu = constant, u(1) = oppn(u(l)) = u(0)}

and p*: VUQK (G, A;1,n+ 1) — K(G,1) , 0%: K(G,1) — VUQK (G, A;1,n+ 1)
are given by domain and codomain restrictions of p*’ and o% .
Therefore we also have in Top™ the fibration

QK(An+1) - UVQK(G, A;1,n+1)) — K(G, 1)
where the base points are constant paths induced by b, the base point of K (G, 1) and

forn > 1, m,(VUQK(G, A;1,n+1))) is isomorphic to A as G-modules. Forn =1,
1 (VUQ(K(G, A;1,1 + 1))) is isomorphic to the semidirect product H x G of the
G-module H and the group G and for n = 0 , there is a canonical weak equivalence

QE(G, 4;1,1) — E(G, A;1,0) in Topjo1) .

O

Theorem 4.5. Let H be a G-module and n >0 . Then
(i) H™(G; H) = ! (K(G, H;1,n)) ,
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(ii) for any integer ¢ >0 , H"(G; H) = ﬂgf(K(G,H; IL,n+q)) .

Proof. The first part follows directly from Theorem 4.4 and Definition 4.1 . The
second part follows from Proposition 4.1 and the adjunction of the loop and sus-

pension functors.
O

Remark 4.1. It is interesting to note that in the category under and over
K(G,1) a map induce isomorphism on the Hurewicz homotopy groups if and only if
it induces isomorphisms on the cohomology groups with coefficients in any G-module
H . Notice that if we consider the category of Q-spectra of the form {K(G, H,1,n)},
where H is a G-module, the fact that an Q-spectrum map become an isomorphism
can be expressed in terms of group cohomology.

B

Proposition 4.2. Suppose that 0 — H —>—H H"” — 0 is a short
ezxact sequence of G-modules. Then for each n > 0 the epimorphism 3: H — H"
induces a fibration map p?: K(G,H;1,n) — K(G,H";1,n) such that p!'p? = p,,

pla, = ol such that if p|p,;t(bo) denotes the restriction to the fibre, one has that
forn >0, m(phlpy " (bo)) = B, forn > 1, mu(py) = ma(phlpn " (bo)) = B, for
n=1, ﬂl(pf) ~ B xidg, and forn =10, wo(pg) >~ G\ (the map induced by B on
the orbit spaces).

If the morphism associated with the map p is denoted by ﬁgz K(G,H;1,n) —

K(G,H";1,n) in TopK(G’l) we also have that the fibre of the fibration ?g 18

K(G1)
isomorphic to K(G,H';1,n) in HO(TOPEESB) .

Proof. For n = 0 we can apply that the category of pointed covering maps whose
fibres are abelian groups over the CW-complex K(G,1) is equivalent to the cat-
egory of G-modules. Therefore the epimorphism 3: H — H'" induces a cover-
ing transformation p'g: K(G,H;1,0) — K(G,H";1,0) . It is easy to check that
pg o9 = o . Since pgpg = po it follows that p’g is also a covering map, so pg is a
fibration. Using the equivalence functor between the categories, we also have that
mo(pg oy (bo)) = pg g (bo) = 6 .

For n = 1 , we have that the epimorphism 8: H — H'" induces the group
homomorphisms 8 % idg: H x G — H” x G . Therefore there is an induced
map fP: K'(H x G,1) — K(H” x G,1) , where K'(H x G,1) also denotes an
Eilenberg-Mac Lane space associated with the semidirect product H x G . Using
that oy is a cofibration and p{ is a fibration in Top we can find a homotopy from
flﬁ to gl’e and the new map satisfies that gfol = o, p’l’glﬁ = p1 . In the case
n > 1, since 8: H — H"” is a G-module homomorphism, it is easy to find a map
2. K'(G,H;1,n) — K(G,H;1,n) , where K'(G,H;1,n) (also) denotes a CW-
complex with two non trivial homotopy groups m; = G and the G-module 7,, = H .

Using that o, is a cofibration and p!! is a fibration in Top we can find a homotopy

from f2 to g2 and as before the new map satisfies that g?c,, = o/’ | p;:glﬁ = pn -

Denote by gﬁ: K'(G,H;1,n) — K(G,H";1,n) the corresponding morphism in
T K(le)
Pgay) -
Next, for n > 1, we use the factorization properties of the closed model category

Topgggﬁ; to factor the map gﬁ as
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K'(G,H;1,n) K(G,H;1,n)

K(G,H";1,n)

where j is a trivial cofibration and ?i is a fibration.

Therefore for n > 0 , we have the induced fibrations p, , p in Top , Topﬁggﬁ; ,
respectively.

We also note that the space K(G,1) has a base point by and then K(G,1)
can also be considered as a pointed space. Therefore one has an induced functor
W Top][gggjg — Top* , W(Y) = p;l(bo) , based at oy(bo)iwhere py is the
canonical retraction map and oy is the section map of the object Y . The functor W
preserves fibrations and weak equivalences between fibrant objects. To see that W
preserve weak equivalences between fibrant objects you can take a weak equivalence
between fibrant objects h: X — Y and using the homotopy group sequence of the
fibrations W(X) — X — K(G,1) and W(Y) — Y — K(G,1) and the five lemma
you obtain that W (h) is a weak equivalence.

The functor W has also a left adjoint functor K (G, 1)V(.): Top* — Topgggjg ,
which carries the pointed space X to the object K(G,1)VX , where the underlying
space is the pointed union K(G,1) V X with the obvious retraction and section
maps. This functor preserves cofibrations and weak equivalences.

Therefore this pair of adjoint functors induces an adjunction in the localized
categories: (K (G,1)V(.))%: Ho(Top*) — Ho(Topggg’B) and its right adjoint

K(G,1 *
WE: Ho(TopKEGJ;) —;Ho(Top ).
Now take the fibre Fiff of ?ﬁ in Topggg’g and consider the long sequence

. — QK(G, H";1,n)) — F¢ — K(G, H;1,n) — K(G, H";1,n)

Note that
W(E(G, H";1,n)) = K(H",n)

W(K(G,H, 17n)) = K<H7 n)

W(ES) = b (bo)

W(QK(G,H";1,n))) 2 QK(H",n)

and observe that Hom,, .1 (K(G,1)VS°% X) = W(X) . Then applying the func-

TOPK(G,l)
x@n, ((K(G,1)VY(S%))E, —) to the sequence above (since K (G, 1)V.S°
Ho(TopK(le))
is cofibrant, (K (G, 1)V.S°)* = K(G,1)VS°) and taking into account the adjunction

K(G,1)
K(G,1)

tor Hom

between the suspension and loop functors on Ho(Top
above one has the long exact sequence

) and the adjunction

= T (K (H"m)) = (i (b)) — g (B (H, ) — g (K (H" ) — -
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and this implies that for n > 0, p;},(bo) is an Eilenberg Mac Lane space of type

K(H',n) and 7, (py)] o, (bo)) = 3 -
Next we consider in Top® the long exact sequence of homotopy groups of the
fibration sequence p;}, (bo) — F? — K(G,1) to obtain the long exact sequence

+ = T (K(GL 1)) = my(ps (b)) — g () — g (K(G, 1)) — -

For n > 1 we have that 7, (F?) = H' and m (F?) = G as groups and the other
homotopy groups are trivial.
Since the diagram

7771,(/7;23 (bO)) —— Wn(K(Hv 7?,))

|

Wn(Ff) —m(K(G, H;1,n))

is commutative and 7, (F?) — 7,(K(G, H;1,n)) is a G-module homomorphism it
follows that m,(F?) = H' as G-modules.
For n = 1 we obtain the short exact sequence

0— Wl(ﬂ}%(bo)) — m(F)) = m(K(G,1)) =1

Since this sequence splits we can apply Proposition 2.1 of Chapter IV in [4] to
obtain that m (F/) = H' x G .

For n = 0 from the construction of the covering maps K(G, H;1,0) — K(G, 1) ,
K(G,H";1,0) - K(G,1) it follows that Ff — K(G,1) is the covering map asso-
ciated with the G-module H' . o

Therefore for n > 0, F? is an space of type K(G, H';1,n) and F75 is isomorphic
to K(G, H';1,n) in Ho(Topy 1)) -

O

Proposition 4.3. Suppose that 0 — H' —>—H P H" 0 is a short
exact sequence of G-modules. Then there erists a sequence

-— K(G,H";1,n—1) - K(G,H';1,n) —» K(G,H;1,n) - K(G,H";1,n) — - --

wheren € Z ( forn <0, K(G,H;1,n) is the zero object K(G,1) ) and such

that for every object X in Topggg’i; we have the following exact sequence

e [Xa K(G7H”; la n— 1)] - [XaK(Ga H/7 1an)] - [X7K(Ga Ha 1,7’7;)] i

— [X,K(G,H";1,n)] = [X,K(G,H;1,n+1)] —
Proof. Given n > 0 and the epimorphism 3: H — H" we can apply Proposition
4.2 to obtain the long sequence

-— QK(G,H;1,n)) — Q(K(G,H";1,n)) —
K(G,H';1,n) — K(G,H;1,n) — K(G,H";1,n) — -

Now by Proposition 4.1 , we change Q(K (G, A;1,n)) by K(G, A;1,n—1) to obtain
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-— K(G,H;1,n—-1) - K(G,H";1,n—1) —
K(GvH/;]-vn) HK(G,H,].,TL) HK(GvH”;]—?n) —
We repeat the argument with n + 1 and we have the long sequence

s K(G,H, ].,71) HK(G,H”;]_,TL) -
K(G,H;1,n+1) — K(G,H;1,n+1) - K(G,H"; 1,n+1) — - --
Since the last written map of the first sequence is the same that the first written
map of the second we are able to construct a new sequence changing from one to
the next sequence through the common map. In this way, we obtain the sequence

given in the thesis of this proposition having the corresponding exactness property.
|

Theorem 4.6. Let X be a 0-connected CW-complex such that m1(X) = G and
consider the canonical map X: X — K(G,1). If 00— H — H—H"—>0isa
short exact sequence of G-modules, then the long exact sequence associated with the
object K(G,1)UX of Topgggﬁg :

B [K(G, 1)DX3 K(G’ H//; 1; n— 1)] - [K(Gv 1)DXaK(Ga Hl; 1a TL)]

is isomorphic to the long exact sequence
T [XaK(G,HNalanf ]-)] - [X,K<Ga H,713n)]

- [K7K(GaHa17n)] - [K,K(G,H”,lﬂ’l)] —
which is isomorphic to the long exact sequence of cohomology groups of X with local
coefficients in the short exact sequence

-— H"Y(X;H") - H"(X;H') - H"(X;H) -» H"(X;H") — - --

Proof. Firstly take K(G,1)UX in Proposition 4.3 , secondly apply Theorem 3.2 to
obtain the second long exact sequence and finally apply Theorem 4.1 to get the last
exact sequence.

(]

Remark 4.2. If we take X = K(G,1) x S9 and change n by n + q in Propo-
sition 4.8 , and afterwards apply Theorem 4.5 to obtain the long exact sequence of
cohomology groups of a group with coefficients in a short exact sequence 0 — H' —
H — H” — 0 of G-modules. Then for any q > 0 we obtain that the long exact
sequence

= (K(G,H";1,n—1+4q)) — 7/ (K(G,H';1,n+q))

— m(K(G,H;1,n+q)) — w3/ (K(G,H";1,n+q)) — -

is isomorphic to the long exact sequence of cohomology groups of the group G

-— H"YG;H") - H"(G;H') — H"(G; H) — H"(G; H") — - --
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5. APPLICATIONS TO BROWN-GROSSMANN AND STEENROD HOMOTOPY GROUPS

By the results of section 2, the categories Ef+ and Eﬁi inherits from E the
induced closed model structures. The corresponding localized categories will be
denoted by Ho(E®+) and Ho(Eﬁi) . An object X in E%i will usually be denoted
by a triple (X, 0,1) where o: Ry — X and [: X — R, are exterior maps such that
lo =idgr, , and a morphism in Eﬁi given by a commutative diagram in E

Ry
7\
\K 7

Ry

will be denoted by f: (X,ox,lx) — (Y,ov,ly) .

Recall that the initial object of E is the exterior space () and the final object is
* with the trivial externology e, = {*} . In the category E®+ the initial object is
Ry = (Ry,idg, ) and the final object is ¥ = (*,0,) . The category Eﬁi is pointed
and the zero object is Ry = (R4, idg,,idg,) . We remark that in E and in E*+
all the objects are fibrant.

Let in: N — R, the inclusion. For ¢ > 0 let S% be the exterior space obtained
by the following pushout in E

N$R+

idNX*J/ l]q

Let pg: NxS? — R be the map py(k,z) = k for (k,z) € NxS? and pr,: SE —
R, the induced exterior map pr, = p, +idg, . Then we denote by S} = (S%, jq)
and g = (5%,7q, prq) the corresponding objects in Ef+ and E%i , respectively.

Note that S% LI .SE = (S Ug, S%,inij,) is given by the following pushout in E

jq q
Ry ——— 53

qu J/inl
S]qg —_— S% Ur, S]qg
mo
and the cylinder S% x I of S in E®+ is ((S%);,01j,) where (S%); is the relative

cylinder of S% in E given by the factorization of id s +idgs in E as the composite
of an exterior cofibration and an exterior weak equivalence

Do+0
St Ur, S§— (S§)r —— 5%
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Then the suspension $(S%) = (L, in}, pr,7 +idg, ) is the object determined by the
pushout in E

qPra +pr
SE Ur, SR,

do+01 l il’ll1

(S%)IT)L

Thus one can see that E(ST) is isomorphic to W in ER+ .

Analogously, if we denote by S the exterior space Ry ><Sq and by S ?g the
objects in E]R and ER+ | respectively, given by S% = (8%, iq,pry) Sg = (S%,1q) ,
where i, = 1dR+><>f< and prg(r,x) = r , for every / (r,z) € Ry xS , we obtain that

the suspension E(Ss) is isomorphic to Sq+1 in ERi

Let X be an exterior space with a base ray o: Ry — X and denote oy the
composite gin: N — X .

Then, using the closed model category structure of E , the Brown-Grossman and
Steenrod exterior homotopy groups can be reinterpreted as the following hom-sets:

"Tf(Xv J|N) = HomHo(ERJr)((S]%”jq)’ (Xv 0))»

3 (X, 0) = Homy, gz (S8, 44), (X, 0)).

Suppose that we have an exterior map f: X — Y | then we obtain an induced base
ray fo in Y . Taking in E the pullback

F—X

|

Ry 7~

then, the exterior space F' is said to be the ray fibre of f with respect to the exterior
base ray o . Thus we have the object (F,w,l) in E%: , where w = (idg, ,0) .

Applying the results of section 3, we are going to obtain, as in standard homo-
topy, long exact sequences associated to an exterior fibration.

Theorem 5.1. Let X be an exterior space and o: Ry — X a base ray. If
f: X =Y is an exterior fibration with ray fibre F , then there are the following
eract sequences:

(i)
s 7wl (Y foln) = wl (Fwly) — 7l (X, oln) = 7l (Y, foly) —

= 7Y, foly) — 18 (Fwly) — 78 (X, 0ln) — 72 (Y, fon)

- — Wf+1(KfJ) — wg(F,w) — W?(X,J) — ﬂ_qS(vaO_) —

= 1 (Y, fo) = w5 (Fw) — 75 (X, 0) = w5 (Y, fo)
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Proof. Consider the closed model category C = EF+ whose initial object 0 is
(R4,idg, ) . Recall that all objects in E®+ are fibrant. Notice that f: (X,0) —

(Y, fo) is a morphism 3 C whose “homotopy fibre” in ﬂ) = E%i is exactly (F,w,1) .
Taking the object S% in E%i , one has that VX9(S%) = (S%,7,) and

HomHo(E“+)((S%ajq)a (R+, idR+)) = Wf(R+v idR+ |N) =
for all ¢ > 0. Then we can apply (iii) of Theorem 3.3 to obtain the exact sequence
T HomHo(ER+)((S%+17jq+1)7 (}/7 fo')) - HomHo(ER#—)((S?Bajq)a (F7w)) -
HOIHHO(EM)((S%,jq), (X,0)) = HomHo(ER+)((S%7jq)7 Y, fo)) — -

which is isomorphic to the one given in (i) above.
In an analogous way, taking now the object Sg in E%i , one has that VEq(Sg) =
(S%,iq) and

HomHo(ER+)((Sg’7 iQ)’ (RJr? 1dR+)) = W(f(R+7 idR+) = ox

for all ¢ > 0. Then we can apply again (iii) of Theorem 3.3 to obtain the exact
sequence given in (ii) above.
O

Next as a consequence of the results of section 3 we are going to prove that the
Brown-Grossman and the Steenrod exterior homotopy groups are related by a long
exact sequence which is an analogue for exterior spaces of the exact sequence given
by Quigley [34] in shape theory or by Porter [29] in proper homotopy theory.

Theorem 5.2. Let X be an exterior space and let 0: Ry — X be a base ray,
then there is an exact sequence

- Tr(ﬁ_l(X,cr\N) — ﬂf(X, o) — wf(X,a|N) — ﬂf(X,a|N) —
- = 1 (X, 0|n) = 75 (X, 0) — 75 (X, an) — 75 (X, 0]n) -

Proof. We consider the exterior map sh: S% — S% given by sh(jo(t)) = jo(t) for
every t € Ry and sh(jj(n,1)) = jo(n + 1,1) , sh(jy(n, —1)) = jy(n, —1) for every
neN.
Let
sh: % = (S, jo) — S = (S5 Jo)
be the corresponding morphism in the ER+ . Next we study its “homotopy cofibre”
C(sh) in E%i defined in Definition 3.2 . Note that the functor Ry x(.): E®+ —

E%i , where Ry = (Ry,idg, ) , carries sh into Ry xsh: R xS% — Ry xS% given

by the commutative diagram
Ry
/ \
id]R+ X sh

Ry xS, —F ~R.xS%

Ry
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where o = (idg, , jo) and P is the projection P (t,z) = t for every (t,z) € Ry x.S% .

We remark that R xsh is a cofibration between cofibrant objects in Egi , s0 C(sh)
is the object given by the triple (C,in;, Pi +idg, ) , where C'is given by the pushout
diagram in E

P
Ry x S%——=R,
R4 xsh iny
0
R+ X SBWC
— . . . . R =0 .
Therefore C(sh) is isomorphic in ERi to Si = (52,0, pr}) -

On the other hand, the morphism in E%i

d: g = (S%vjo; prO) - Eﬁsi% = (R"rﬂ My Pl)
given by d(jo(t)) = p(t) for every t € Ry , d(jy(n,x)) = (n,ji(n,z)) for every
(n,x) € NxS° | is a trivial cofibration between cofibrant objects in E%i . There-
fore for ¢ > 0 the suspension E%Eé@) is isomorphic to S% in Ho(Egi) , SO
V(E%Eé@)) is isomorphic to S% in Ho(ER+) .
Now suppose that X is an exterior space and o: R,y — X a base ray in X .
We can apply (ii) of Theorem 3.4 to the category C = EF+ and to the morphism

sh: S% — SY% and taking into account the remarks above we obtain the long exact
sequence

S HomHO(ER+)((S%+17jq+1>)a(X70)> > HomHo(ER+)((Sg'>iq))7(X7U)) >
. sh. .
HomHO(ERJr)((S%a]q))a (Xa 0)) - HomHO(ER+)((S%,jq)), (X, O')) E——

" HomHo(ERJr)((S%?,jl))v (X,O’))

HomHo(ER+)((Sg’ i0)), (X,0)) ——

Homyg, gy ) ((8%,50)), (X, 7)) — 2> Homy, e (S, o)), (X, 0)) ——

which is isomorphic to the long exact sequence given in the thesis of the theorem.
O
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