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Abstract. The notion of exterior space consists of a topological space to-
gether with a certain nonempty family of open subsets that is thought of as a

‘system of open neighborhoods at infinity’ while an exterior map is a continu-
ous map which is ‘continuous at infinity’. The category of spaces and proper
maps is a subcategory of the category of exterior spaces.

In this paper we show that the category of exterior spaces has a family of
closed simplicial model structures, in the sense of Quillen, depending on a pair

{T, T ′} of suitable exterior spaces. For this goal, for a given exterior space

T , we construct the exterior T -homotopy groups of an exterior space under T.
Using different spaces T we have as particular cases the main proper homotopy
groups: the Brown-Grossman, Čerin-Steenrod, p-cylindrical, Baues-Quintero

and Farrell-Taylor-Wagoner groups, as well as the standard (Hurewicz) homo-
topy groups.

The existence of this model structure in the category of exterior spaces

has interesting applications. For instance, using different pairs {T, T ′} , it is
possible to study the standard homotopy type, the homotopy type at infinity

and the global proper homotopy type.

Introduction

As it is well known, one of the main applications of proper homotopy theory
is the study of non-compact spaces. One of the first proper homotopy invariants
was the notion of ideal point of a surface, introduced in 1923 by B. Kérékjárto, in
order to give the classification of non-compact surfaces. In 1931, H. Freudenthal
[12] generalized this notion by defining the end point of a space. Later, in 1965,
L. Siebenmann [27] analyzed the obstruction to finding a boundary for an open
manifold in dimension greater than five. In 1970 he proposed that, for the study of
non-compact spaces, the homotopy hypothesis should be given in the category of
spaces and proper maps [28].

E.M. Brown [7] gave a notion of n-th proper homotopy group associated with a
non-compact space and a Freudenthal end, represented by a base-ray α : [0,+∞) →
X. He constructed this group by taking the set of all proper homotopy classes
relative to [0,+∞) of germs of proper maps from Sn to X, where Sn is obtained by
attaching an n-dimensional sphere to every integer in [0,+∞). W. Grossman [18]
also constructed homotopy groups of pro-spaces using the corresponding analogues
in the new context.
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In order to prove a proper Whitehead theorem, in 1973, F.T. Farrell, L.R. Taylor
and J.B. Wagoner [13] introduced the ∆-homotopy groups of a locally compact
CW-complex X with a set of base points. Their result can be applied in the finite
dimensional case without the σ-compactness condition.

Z. Čerin [8], in 1980, gave a different notion of proper homotopy group (Čerin-
Steenrod group) as the set of proper homotopy classes of base-ray preserving proper
maps from Sn× [0,+∞) to X. He also studied some relationships with the Brown’s
proper homotopy groups and the Quigley’s shape groups [23]. Later, in 1988, L.J.
Hernández and T. Porter [19] gave a modified notion of these groups and a global
version of the Brown-Grossman groups.

We can also cite the cylindrical p-homotopy groups, given by R. Ayala, E.
Domı́nguez and A. Quintero [2], [3]. These groups are proper homotopy invari-
ants associated to a given finite set of proper ends, represented by a suitable tree.
Later, H. J. Baues and A. Quintero [5], using trees which need not have a finite
number of ends, constructed a more general version of proper homotopy groups.

As we have mentioned, the category of spaces and proper maps, P, is a nice
framework for proper homotopy theory. However, we cannot develop some homo-
topic constructions in this category, such as loop spaces or homotopy fibers, since
there are few limits and colimits. A useful technique which avoids this problem is
to embed the proper category into a complete and co-complete category and to use
homotopy theories that assume the existence of limits and colimits. For example,
we have the Edwards-Hastings embedding [10] of the proper homotopy category of
locally compact, σ-compact Hausdorff spaces into the homotopy category of pro-
spaces. One of the disadvantages of this embedding is that one has to restrict to
locally compact σ-compact spaces. On the other hand, the homotopy constructions
produce pro-spaces that many times cannot be geometrically interpreted as a space.

An alternative embedding can be found in [16]. The notion of exterior space
is introduced in such a way that the category of exterior spaces, E, is complete
and co-complete and the proper category can be considered as a full subcategory.
Roughly speaking, an exterior space is a topological space with a ‘neighborhood
system at infinity’ which we call externology, while an exterior map is a continuous
map which is ‘continuous at infinity’. An important role is played by the family
εX

cc of the complements of closed-compact subsets of X, also called the co-compact
externology of X. This gives rise to the mentioned full embedding e : P → E.

In this paper, we firstly introduce the notion of exterior homotopy T -group, where
T is a suitable space provided with its co-compact externology. If X is an exterior
space and ρ : T → X is an exterior map, we construct the q-th exterior homotopy
T -group, πT

q (X, ρ), by taking the set of exterior homotopy classes relative to T of
exterior maps from T ×̄Sq to X, where T ×̄Sq is the product space T ×Sq provided
with its co-compact externology.

One important advantage of this approach is that we have a unified theory for
many different homotopy groups, depending on the choice of the exterior space T
we obtain the following:

• If T = N is the discrete space of natural numbers with the co-finite exter-
nology then we have a global version of Brown-Grossman groups.

• When T = R+ is the half line with the co-compact externology, we obtain
the Čerin-Steenrod groups.
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• In the case T = P, the one-point space with its co-compact externology,
the standard Hurewicz groups are obtained.

• Using contractible one dimensional CW-complexes one has the p-cylindrical
and the Baues-Quintero homotopy groups.

• Taking T as a set of base points we find the ∆-groups constructed by F.T.
Farrel, L.R. Taylor and J.B. Wagoner.

In 1967, D. Quillen (see [24], [25]) introduced the notion of closed model cat-
egory, which consists of a category C together with three distinguished classes of
morphisms called fibrations, cofibrations and weak equivalences satisfying certain
axioms that provide sufficient conditions to develop a homotopy theory. It is one
of the best known approaches of axiomatic homotopy theory and reduces the study
of various invariants to checking Quillen’s axioms. The closed model axioms have
interesting basic consequences; for example, an expanded notion of homotopy and
a Whitehead theorem. The associated homotopy category is defined as being the
result of formally inverting the weak equivalences of the closed model category.

We proved in [16] that E has a closed simplicial model category taking, as weak
equivalences, the morphisms which induce isomorphisms with respect to the Brown-
Grossman homotopy groups. However, when we consider the full embedding e :
P → E, this structure cannot distinguish between two different compact spaces.
To avoid this problem, we construct in this paper, a new closed simplicial model
structure associated to every pair {T, T ′} of adequate exterior spaces. For instance,
taking T = N and T ′ = P, we have a new strong notion of weak equivalence which
is able to distinguish the homotopy type of compact spaces.

One of the more important result of this paper is the existence of the following
closed model structure associted with a pair of Hausdorff, locallly compact, σ-
compact spaces T, T ′ with the co-compact externology:

Theorem. The category E, together with the classes of exterior {T, T ′}-fibra-
tions, exterior {T, T ′}-cofibrations and weak exterior {T, T ′}-equivalences and its
simplicial structure, is a closed simplicial model category.

We have also compared the different localization categories for some pairs of
spaces. For instance we have analysed the relations with the standard homotopy
category and the localization category given in [16] .

As an application of the existence of this model structure associated to a pair
{T, T ′} we obtain a version of the Whitehead theorem in the category of exterior
spaces which involves the exterior T -homotopy groups and the exterior T ′-homotopy
groups. In order to give this theorem, we introduce the notion of {T, T ′}-complex.
This is an exterior space with a filtration ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ ... ⊂ X
such that X is the colimit of the filtration and for n ≥ 0, Xn is obtained from Xn−1

by attaching T -cells and T ′-cells, which can be non-compact cells. Depending on
the choice of T and T ′ we obtain as particular cases the notion of CW-complex
(provided with its topology as externology), N-complex [16] and bi-complex [15].

We have obtained as corollaries some versions of the Whitehead theorem. When
T = P and T ′ = ∅ we have the standard Whitehead theorem. If T = N and T ′ = ∅
then we have a proper Whitehead theorem for finite dimensional CW-complexes
having on each dimension k either no k-cells or an infinite countable number of
k-cells. Finally, if T = N and T ′ = P we obtain a proper Whitehead theorem for
finite dimensional strongly locally finite CW-complexes.
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1. Preliminaries

1.1. Closed simplicial model category structure. Axiomatic homotopy theory
is the development of the basic constructions of homotopy theory in an abstract
setting, so that they may be applied to other categories. The best known approach
is that of Quillen who introduces the notion of a (closed) model category.

Given a commutative solid arrow diagram in a category C:

A

i

��

u // X

p

��
B v

//

??

Y,

it is said that i has the left lifting property (LLP) with respect to p and p is said
to have the right lifting property (RLP) with respect to i if there exists a map
h : B → X such that hi = u and ph = v.

A closed model category is a category C endowed with three distinguished classes
of morphisms called cofibrations, fibrations and weak equivalences, satisfying CM1-
CM5 axioms (see [25]). An equivalent but different formulation was given in [24].

Given a closed model category C, the homotopy category Ho(C), is obtained
from C by formally inverting all the weak equivalences (see [14] and [24]).

The initial object of C is denoted by ∅, and the final object by ∗. An object
X is said to be cofibrant, if the unique morphism ∅ → X is a cofibration; dually
X is called fibrant if X → ∗ is a fibration. We denote by Ccof and Cfib the full
subcategories of C determined by cofibrant objects and fibrant objects, respectively.

Example 1. We consider the category SS of simplicial sets. It is well known
that it is a closed model category with the following structure: a simplicial map
f : X → Y is a fibration (resp. trivial fibration) if it has the RLP with respect to
V (n, k) ↪→ ∆[n], for 0 ≤ k ≤ n and n > 0 (resp. to ∆̇[n] ↪→ ∆[n], for n ≥ 0), where
V (n, k) is the simplicial subset generated by the i-faces, i 6= k, of the standard n-
simplex ∆[n]; ∆̇[n] is generated by all the faces of ∆[n]. A simplicial map i : A → B
is a cofibration (resp. trivial cofibration) if it has the LLP with respect to trivial
fibrations (resp. fibrations). Finally, a weak equivalence is a simplicial map that
can factored as a trivial cofibration followed by a trivial fibration.

In order to introduce the notion of simplicial category, if X and K are simplicial
sets we shall denote by XK the simplicial set given by (XK)q = HomSS(K ×
∆[q], X).

A simplicial category is a category C endowed with a functor HomC : Cop×C →
SS, satisfying the conditions given in [24], pages 1.1 and 1.2; in particular we have
that HomC(X, Y )0 ∼= Hom(X, Y ). Associated with a simplicial category C, we have
the category π0(C), which has the same objects as C and the hom-set defined by
Homπ0(C)(X, Y ) = π0HomC(X, Y ), where π0HomC(X, Y ) is the set of connected
components of the simplicial set HomC(X, Y ).

A closed simplicial model category is a closed model category C which is also a
simplicial category and satisfies SM0 and SM7 axioms ([24], page 2.2).

Example 2. Let Top denote the category of topological spaces and continuous
maps. A map f : X → Y in Top will be called a fibration if it is a fiber map
in the sense of Serre, and a weak equivalence if it is a weak homotopy equivalence
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(i.e. πq(X, x)
∼=−→ πq(Y, f(x)), for all x ∈ X and q ≥ 0). A map will be called

cofibration it it has the LLP with respect to all trivial fibrations. On the other
hand, if X and Y are spaces, consider the function complex HomTop(X, Y ) given by
HomTop(X, Y )n = HomTop(X×|∆[n]|, Y ) with natural simplicial operations, where
|.| denotes geometric realization. If f ∈ HomTop(X, Y )n and g ∈ HomTop(Y, Z)n,
let g ◦ f be the composite

X × |∆[n]| idX×∆ // X × |∆[n]| × |∆[n]|
f×id|∆[n]| // Y × |∆[n]|

g // Z.

Considering X⊗K = X×|K| and XK = X |K|, Quillen proved that Top, with this
structure, is a closed simplicial model category.

Since the notion of closed model category was introduced by Quillen, these mod-
els have been used and studied by many authors. For a survey, a monumental
pre-print and a book on these structures we refer the reader to [9] , [20] , and [17],
respectively.

1.2. The category of exterior spaces. A continuous map f : X → Y is said
to be proper if f−1(K) is a compact subset of X, for every closed compact subset
K of Y. The category of spaces and proper maps is very useful for the study of
non-compact spaces (as well as the corresponding proper homotopy category) but
it has not enough limits and colimits. In order to obtain a solution of this problem
it was defined in [16] the notion of exterior space. An exterior space (X, ε ⊂ τ)
consists of a space (X, τ) together with a nonempty collection ε of open subsets,
called externology, satisfying:

E1: If E1, E2∈ ε then E1 ∩ E2 ∈ ε,
E2: if E ∈ ε , U ∈ τ and E ⊂ U then U ∈ ε.

An open E which is in ε is said to be an exterior-open subset, or in short, an
e-open subset. A map f : (X, ε ⊂ τ) → (X ′, ε′ ⊂ τ ′) is said to be exterior if it is
continuous and f−1(E) ∈ ε, for all E ∈ ε′.

The category of exterior spaces and maps, E, is complete and co-complete. One
interesting property of this category is the existence of a full embedding e : P → E,
which carries a space X to the exterior space Xe provided with the topology of
X and the externology εX

cc, the complements of closed-compact subsets of X (also
called the co-compact externology of X. A proper map f : X → Y is carried to the
exterior map fe : Xe → Ye given by fe = f. In this way, we can think that the
category of exterior spaces ‘contains as a full subcategory’ the category of spaces
and proper maps, P .

We consider the following three functorial constructions.

• If X, Z are exterior spaces, we set ZX = HomE(X, Z) with the topology
generated by the subsets of the form:

(K, U) = {α ∈ ZX : α(K) ⊂ U},

(L,E) = {α ∈ ZX : α(L) ⊂ E},
where K ⊂ X is a compact subset, U ⊂ Z is an open subset, L ⊂ X is
an e-compact subset (i.e. L − E is compact, for all E e-open subset) and
E ⊂ Z an e-open subset.
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• If X is an exterior space and Y a topological space let X×Y be the product
space. We consider on X × Y the externology given by those open subsets
E ∈ εX×Y such that for each y ∈ Y there exists an open neighbourhood of
y, Uy, and Ey ∈ εX such that Ey ×Uy ⊂ E. This exterior space is denoted
by X×̄Y.

When Y is a compact space then E is an e-open subset if and only if it
is an open subset and there exists G ∈ εX such that G× Y ⊂ E. If Y is a
compact space and εX = εX

cc then εX×̄Y is the co-compact externology of
X × Y.

• Let Y be a topological space and Z be an exterior space. We consider on
ZY = HomTop(Y, Z) the compact-open topology and the externology given
by the open subsets E of ZY such that E contains a subset of the form
(K, G), where K is a compact subset of Y and G is an e-open subset of Z.

Theorem 1. Let X, Z be exterior spaces and Y a topological space, then
(i) If X is a Hausdorff, locally compact space and εX = εX

cc there is a natural
bijection

HomE(X×̄Y, Z) ∼= HomTop(Y, ZX).

(ii) If Y is a locally compact space there is a natural bijection

HomE(X×̄Y,Z) ∼= HomE(X, ZY ).

Remark 1. Let U : E → Top be the forgetful functor and V : Top → E be the
functor which carries a space X to the exterior space provided with its own topology
as externology, εX = τX . One can easily prove that V ∼= P ×̄ and U ∼= ( )P , where
P denotes the one point space provided with the co-compact externology (note that
P 6∼= ∗). Hence, by (i), U and V are adjoint functors.

For a proof of theorem above and other properties of exterior spaces, we refer
the reader to [16] .

2. T-homotopy groups

Along this section T will be a fixed Hausdorff, locally compact space provided
with the co-compact externology. Let ET be the category of exterior spaces under
T. The objects in this category, ρ : T → X, will be denoted by (X, ρ), and the
morphisms by f : (X, ρX) → (Y, ρY ).

Definition 1. Let f, g : (X, ρX) → (Y, ρY )) be morphisms in ET . f is said to be
e-homotopic to g relative to T , if there is an exterior map F : X×̄I → Y such that
F (x, 0) = f(x), F (x, 1) = g(x) and F (ρX(λ), t) = ρY (λ), for all x ∈ X, λ ∈ T and
t ∈ I.

The set of exterior homotopy classes relative to T will be denoted by

[(X, ρX), (Y, ρY )]T .

When T = ∅ we obtain the notion of non-relative e-homotopy. From theorem 1,
part (i), we obtain the natural bijections:

HomE(T ×̄Sq, X) ∼= HomTop(Sq, XT ),

HomE(T ×̄(Sq × I), X) ∼= HomTop(Sq × I,XT ),
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where Sq denotes the q-dimensional pointed sphere (for q = −1 take S−1 = ∅).
They induce, for any (X, ρ) in ET, another natural bijection

[(T ×̄Sq, idT ×̄∗), (X, ρ)]T ∼= [(Sq, ∗), (XT , ρ)],

where the second member is the standard set of pointed homotopy classes and
idT ×̄∗ : T → T ×̄Sq is given by i(dT ×̄∗)(λ) = (λ, ∗). Therefore, [(T ×̄Sq, idT ×̄∗), (X, ρ)]T

has the structure of a group for q ≥ 1 which is abelian for q ≥ 2. In the case q = 0
one has a pointed set.

Definition 2. Let (X, ρ) be an exterior space under T. For q ≥ 0 the q-th exterior
homotopy T-group functor of (X, ρ) is given by

πT
q (X, ρ) = [(T ×̄Sq, idT ×̄∗), (X, ρ)]T .

Depending on the choice of the exterior space T we obtain different homotopy
groups:

(1) T = N. In this case πN
q (X, ρ) is called the q-th Brown-Grossman exterior

homotopy group of (X, ρ), and it is also denoted by πB
q (X, ρ). If X is an object in

PN ⊂ EN, then the homotopy groups, πB
q (X, ρ), are the global version of Brown’s

proper homotopy groups [19]. The differences from Brown’s groups are that we are
using proper maps instead of germs of proper maps and we consider a base sequence
instead of a base-ray.

(2) T = R+ = [0,+∞). π
R+
q (X, ρ) is called the q-th Čerin-Steenrod exterior

homotopy group of (X, ρ). It is also denoted by πS
q (X, ρ). As in (1), it represents an

extension to the category of exterior spaces of the Čerin-Steenrod homotopy groups
given for the proper category.

(3) T = P. Taking into account that XP ∼= U(X), where U : E → Top is the
forgetful functor, we obtain that q-th exterior homotopy groups of a based exterior
space (X, x0) , πP

q (X, x0) , is the q-th Hurewicz homotopy groups πq(U(X), x),
q ≥ 0.

(4) Given a natural number r, T [r] is the space obtained by identifying the origins
of r copies of the half line [0,+∞). We consider T = T [r, k] = T [r]× Rk. Then we
have the exterior homotopy T [r, k]-groups, π

T [r,k]
q (X, u), where u : T [r, k] → X is

an exterior map. If X is in PT[r,k] ⊂ ET[r,k], then these groups are exactly the
cylindrical p-homotopy groups, see [2] and [3].

(5) Let T be a contractible locally finite 1-dimensional simplicial complex, T 0 be
its 0-skeleton and let E be a countable set. H.J. Baues and A. Quintero [5], using
a finite-to-one function ε : E → T 0, construct the spherical object Sn

ε by attaching
n-dimensional spheres Sn to the vertexes of T. For a space (X, α) under T, they
consider the set of relative homotopy classes [Sn

ε , X]T . It is not difficult to see that,
taking the composite

ρε : E
ε // T 0 ⊂ T

α // X

there is a canonical isomorphism [Sn
ε , X]T ∼= πE

n (X, ρε), where in E we consider the
discrete topology and the co-finite externology and in X the co-compact externol-
ogy.

(6) Let X be a locally finite CW-complex and let in : D ⊂ X be the inclusion of
a subset D of X which satisfies that for any compact subspace K of X each non-
compact component of X − K contains some point of D and any subset D′ ⊂ D
satisfying this condition has the cardinality of D. In this case the ∆-homotopy
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group ∆(X, D;πk) introduced by F.T. Farrell, L.R. Taylor and J.B. Wagoner [13] is
canonically isomorphic to πD

k (X, in), where D is provided with the discrete topology
and the co-finite externology and X has the co-compact externology.

3. The {T,T’}-closed simplicial model category structure for E

In our earlier paper [16], we proved that E have a closed simplicial model cate-
gory structure involving the Brown-Grossman exterior homotopy groups. However,
this structure can not distinguish compact spaces when we consider the full embed-
ding e : P → E since there is not any exterior map N → Xe when X is compact.
A modification of the existing structure avoids this problem. However, this mod-
ification is a particular case of a more general setting: a closed simplicial model
structure associated with two exterior spaces T, T ′ that, for some particular pairs,
gives interesting closed model categories.

Along this section, T, T ′ will denote two Hausdorff, locally compact, σ-compact
spaces provided with their co-compact externology.

Definition 3. Let f : X → Y be an exterior map. We say that f is a weak exterior
{T, T ′}-equivalence (respectively, exterior {T, T ′}-fibration) if fT : XT → Y T and
fT ′

: XT ′ → Y T ′
are weak equivalences (respectively, fibrations) in Top.

It is easy to check that f is a weak exterior {T, T ′}-equivalence if and only if
(1) For T, f satisfies one of the following cases:

(a) If XT = ∅ then Y T = ∅,
(b) if XT 6= ∅ then πT

q (f) : πT
q ((X, ρ)) → πT

q ((Y, fρ)) is an isomorphism
for all ρ ∈ XT , q ≥ 0,

(2) The same holds for T ′.

On the other hand, f is an exterior {T, T ′}-fibration if and only if f has the RLP
with respect to

{δT
0 : T ×̄Dq → T ×̄(Dq × I), δT ′

0 : T ′×̄Dq → T ′×̄(Dq × I)}q≥0,

where δT
0 (λ, x) = (λ, x, 0).

An exterior map which is both an exterior {T, T ′}-fibration and a weak exterior
{T, T ′}-equivalence is said to be an exterior trivial {T, T ′}-fibration.

Definition 4. Let f : X → Y be an exterior map. We say that f is an exterior
{T, T ′}-cofibration if it has the LLP with respect to all exterior trivial {T, T ′}-
fibrations.

Similarly, an exterior map which is an exterior {T, T ′}-cofibration and a weak
exterior {T, T ′}-equivalence is said to be an exterior trivial {T, T ′}-cofibration. An
exterior space X such that X → ∗ is an exterior {T, T ′}-fibration (resp. ∅ → X is
an exterior {T, T ′}-cofibration ) is called {T, T ′}-fibrant (resp. {T, T ′}-cofibrant).

Remarks 1. From the above definitions it is straightforward to see that, for these
classes of exterior maps, CM2 is satisfied. On the other hand, taking into account
that the notions of exterior {T, T ′}-(co)fibrations are given by lifting properties, they
are closed by retracts. Furthermore, a retract of an isomorphism is an isomorphism,
and πT

q is a functor, for all q ≥ 0, so CM3 is also satisfied.

Combining the closed model category structure of Top and the adjunctions
T ×̄ a ( )T , T ′×̄ a ( )T ′

, one has the following:



CSM STRUCTURES FOR EXTERIOR AND PROPER HOMOTOPY THEORY 9

Corollary 1. Let f : X → Y be an exterior space. Then f is an exterior trivial
{T, T ′}-fibration if and only if f has the LLP with respect to

{T ×̄Sq−1 ↪→ T ×̄Dq, T ′×̄Sq−1 ↪→ T ′×̄Dq}q≥0,

where S−1 = ∅.

Hence, from this corollary, T ×̄Sq−1 ↪→ T ×̄Dq and T ′×̄Sq−1 ↪→ T ′×̄Dq are
exterior {T, T ′}-cofibrations.

One can easily check that E with the following structure is a simplicial cate-
gory. The functor HomE is defined by HomE(X, Y )n = HomE(X×̄|∆[n]|, Y ); the
composite g ◦n f is given by

X×̄|∆[n]| idX×̄∆ // X×̄(|∆[n]| × |∆[n]|)
f×̄id|∆[n]| // Y ×̄|∆[n]|

g // Z,

and the homeomorphism |∆[0]| ∼= ∗ induces HomE(X, Y ) ∼= HomE(X, Y )0, a nat-
ural isomorphism. For any exterior space and finite simplicial set K we consider
X ⊗K = X×̄|K| and XK = X |K|. Then SM0 axiom is satisfied.

Now, suppose a sequence in E:

X0
i1 // X1

i2 // X2
// ... // Xn

// ...,

such that Xn is obtained from Xn−1 by a push-out in E of the form∐
λ∈Λ Zλ∐

λ∈Λ ϕλ

��

// Xn−1

in

��∐
λ∈Λ Z ′

λ
// Xn,

where each ϕλ is injective, closed and e-closed and the points of Zλ, Z ′
λ are closed

and e-closed. Under these conditions each ik : Xk ↪→ Xk+1 is injective, closed,
e-closed and the points of Xk −X0 are closed and e-closed.

We take X̃ = colim Xn. Then,

Proposition 1. Let Z be a Hausdorff, σ-compact, locally compact space provided
with its co-compact externology. If f : Z → X̃ is an exterior map, then f factors
through Xn, for n sufficiently large.

We are now ready to prove the main result of this section.

Theorem 2. The category E, together with the classes of exterior {T, T ′}-fibra-
tions, exterior {T, T ′}-cofibrations and weak exterior {T, T ′}-equivalences and its
simplicial structure, is a closed simplicial model category.

Proof. We only have to check CM4, CM5 and SM7 axioms.
CM5: Let f : X → Y be an exterior map. We start showing the factorization of

f as an exterior {T, T ′}- cofibration followed by an exterior trivial {T, T ′}-fibration.
Using inductive arguments we construct a commutative diagram

X
i1 //

f   A
AA

AA
AA

A X1
i2 //

p1

��

X2
//

p2
}}||

||
||

||
· · · // Xn

//

pn

ttiiiiiiiiiiiiiiiiiiiiiiii · · ·

Y,
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as follows: take X0 = X, p0 = f and suppose that Xn−1 and pn−1 are obtained.
Then consider the set Λ of all commutative diagrams:

Sqλ−1
T

��

uλ // Xn−1

pn−1 (qλ≥0)

��
Dqλ

T vλ

// Y,

where Sq
T ,Dq

T denote T ×̄Sq, T ×̄Dq respectively; consider also the set Γ of all com-
mutative diagrams:

S
qγ−1
T ′

��

uγ // Xn−1

pn−1 (qγ≥0)

��
D

qγ

T ′ vγ

// Y.

Then in : Xn−1 → Xn is obtained by the following push-out in E:

(
∐

λ∈Λ Sqλ−1
T )

∐
(
∐

γ∈Γ S
qγ−1
T ′ )

��

(
∐

λ∈Λ uλ)
∐

(
∐

γ∈Γ uγ)
// Xn−1

in

��
(
∐

λ∈Λ Dqλ−1
T )

∐
(
∐

γ∈Γ D
qγ−1
T ′ )

(
∐

λ∈Λ wλ)
∐

(
∐

γ∈Γ wγ)
// Xn.

pn : Xn → Y is the sum of pn−1 and all maps vλ, λ ∈ Λ, vγ , γ ∈ Γ so pn extends
pn−1. We consider X̃ = colim Xn and p = colim pn.

Let kn : Xn → X̃ denote the natural inclusion of Xn into X̃. Then f = pi, where
i = k0.

It is easy to check that the class of exterior {T, T ′}-cofibrations is closed un-
der co-products and co-base extensions. Therefore, each in : Xn−1 → Xn is an
exterior {T, T ′}-cofibration. Hence, the fact that i : X → X̃ is an exterior {T, T ′}-
cofibration can be easily deduced from inductive arguments and the universal prop-
erty of the colimit.

Now, take any commutative diagram:

Sqλ−1
T

��

αλ // X̃

p (qλ≥0)

��
Dqλ−1

T vλ

// Y.

By proposition 1, αλ : Sqλ−1
T → X̃ factors through Xm for m sufficiently large,

αλ = kmuλ. Taking into account the construction of Xm+1, there is an exterior
map wλ : DT

qλ → Xm+1 such that pm+1wλ = vλ and wλ|ST
qλ−1 = im+1uλ. Then

h = km+1wλ is the desired lifting for the diagram. Analogously, p has the RLP
with respect to any S

qγ−1
T ′ ↪→ D

qγ

T ′ , so p is an exterior trivial {T, T ′}-fibration.
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The factorization f = qj, where j is an exterior trivial {T, T ′}-cofibration and q
is an exterior {T, T ′}-fibration is similarly obtained by constructing a diagram:

X
j1 //

f   B
BB

BB
BB

B X1
j2 //

q1

��

X2
//

q2}}{{
{{

{{
{{

· · · // Xn
//

qn

tthhhhhhhhhhhhhhhhhhhhhhh · · ·

Y.

Take X0 = X, q0 = f and suppose constructed Xn−1 and qn−1. Then consider the
set Λ of all commutative diagrams:

Dqλ

T

∂λ
0

��

uλ // Xn−1

qn−1 (qλ≥0)

��
Dqλ

T ×̄I
vλ

// Y,

and also consider the set Γ of all commutative diagrams:

D
qγ

T ′

∂γ
0

��

uγ // Xn−1

qn−1 (qγ≥0)

��
D

qγ

T ′×̄I vγ

// Y.

The push-out of (
∐

λ∈Λ uλ)
∐

(
∐

γ∈Γ uγ) and (
∐

λ∈Λ δλ
0 )

∐
(
∐

γ∈Γ δγ
0 ) gives rise to

the exterior map jn : Xn−1 → Xn. Furthermore, qn : Xn → Y is obtained by the
push-out property by the sum of qn−1 and all maps vλ, vγ . Then X̃ = colim Xn,
q = colim qn and j = X → X̃ is the natural inclusion. Obviously, we have that
f = qj. As, in factorization (i), it is not difficult to see that j is an exterior {T, T ′}-
cofibration and q is an exterior {T, T ′}-fibration.

Since ∂λ
0 , ∂γ

0 are strong deformation retracts, jn : Xn−1 → Xn is a strong defor-
mation retract too. Therefore, one has bijections πT

q (j) : πT
q ((X, ρ)) → πT

q ((X̃, jρ)),
πT ′

q (j) : πT ′

q ((X, ρ)) → πT
q ((X̃, jρ)) when XT 6= ∅ 6= XT ′

, since the exterior maps
Sq

T → X̃, Sq
T ×̄I → X̃ and Sq

T ′ → X̃, Sq
T ′×̄I → X̃ verify the hypothesis of propo-

sition 1. Then j is a weak exterior {T, T ′}-equivalence. Furthermore, it is easy to
check that j has the LLP with respect to all exterior {T, T ′}-fibrations.

CM4: The only nontrivial part of this axiom consists of showing the existence
of lifting in any commutative diagram of the form:

A
u //

i

��

X

p

��
B v

// Y,

where i is an exterior trivial {T, T ′}-cofibration and p is an exterior {T, T ′}-fibration.
We consider a factorization of i, i = qj, where j : A → Z is an exterior trivial
{T, T ′}-cofibration which has the LLP with respect to all exterior {T, T ′}-fibrations
and q is an exterior {T, T ′}-fibration. Since, by CM2 axiom, q is also a weak exterior
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{T, T ′}-fibration, there is a lifting:

A

i

��

j // Z

q

��
B

r

>>

idB

// B,

so i is a retract of j. Therefore i has the LLP with respect to all exterior {T, T ′}-
fibrations.

SM7: We will show that E verifies SM7(a). Let p : X → Y be an exterior {T, T ′}-
fibration (resp. exterior trivial {T, T ′}-fibration): Since (.)T , (.)T ′

are right adjoint
functors, it follows that they preserve pull-backs. On the other hand, (XY )Z ∼=
(XZ)Y in Top, for every exterior space X, every locally compact space Y and
every Hausdorff, locally compact space provided with its co-compact externology.
Then one has that p verifies SM7(a) if and only if the fibrations pT , pT ′

in Top
verify SM7(a). However, the last statement follows from the fact that Top has a
closed simplicial model category structure.

�

Remarks 2. (i) We observe that in the particular case of T = N and T ′ = ∅
we obtain the closed simplicial model structure for E given in [16].

(ii) In the proof of the theorem the spaces T and T ′ are supposed to satisfy the σ-
compactness condition. This condition can be removed by taking transfinite
sequences in the factorizations given in the proof above. Taking T ′ = P
and T a discrete space with the co-finite externology we can develop closed
model categories using T ’s with higher and higher cardinality.

(iii) In some cases the structured associated with the pair {T, T ′} is equal to
the structure induced by {T ∪ T ′, ∅} , for example if we have the additional
condition that XT = ∅ if and only if XT ′

= ∅ .

4. Comparison between the T -structure and the {T, T ′}-structure.

If T ′ = ∅ we will denote the pair {T, ∅} by T. As it has been proved, the category
E has a family of closed simplicial model category structures, depending on a pair
{T, T ′}. In the particular case of T = N and T ′ = P we have that

(i) f is an exterior {N, P}-fibration (resp. weak exterior {N, P}-equivalence) if
and only if f is an exterior N-fibration (resp. weak exterior N-equivalence) and
U(f) is a Serre fibration (resp. weak equivalence) in Top.

(ii) f is an exterior {N, P}-cofibration if and only if it has the LLP with respect
to all exterior trivial {N, P}-fibrations.

On the other hand, we have other several families of maps, for example, if T = ∅
and T ′ = P or if T = N and T ′ = ∅. The aim of this section is to give a comparison
between the T -structure and the {T, T ′}-structure in E (i.e. the localized categories
induced by the correspondent closed model category structures).

First of all, note that all objects in E are {T, T ′}-fibrant. We will denote the
homotopy category obtained from E by formally inverting all the weak exterior
{T, T ′}-equivalences by Ho{T,T′}(E).
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Observe the trivial situation of adjointness:

E
id //

E.
id
oo

It is clear that id : E → E carries exterior {T, T ′}-fibrations to exterior T -fibrations
and it carries weak exterior {T, T ′}-equivalences to weak exterior T -equivalences.
Therefore, id : E → E also carries exterior T -cofibrations to exterior {T, T ′}-
cofibrations.

Proposition 2. Let f : X → Y be a weak exterior T -equivalence between T -
cofibrant exterior spaces. Then, f is a weak exterior {T, T ′}-equivalence.

Proof. We note that all the exterior spaces are T -fibrant, therefore for T -cofibrant
exterior spaces, right homotopies, left homotopies and exterior homotopies induce
the same relation in mapping sets between T -cofibrant spaces. Now if f : X → Y is
a weak T -equivalence between T -cofibrant exterior spaces, by the Whitehead The-
orem for T -cofibrant and T -fibrant objects, one has that f is an exterior homotopy
equivalence; this implies that f is a weak exterior {T, T ′}-equivalence.

�

Using well-known results given in [24] we have as a consequence the following.

Corollary 2. There is an adjunction

L(id) : HoT(E) // Ho{T,T′}(E) : R(id),oo

where L(id) and R(id) denote the total left-derived functor and the total right-
derived functor of id : E → E, respectively.

Theorem 3. L(id) : HoT(E) → Ho{T,T′}(E) is a full and faithful functor.

Proof. If X is an object in HoT(E), then L(id)(X) = QT (X), where QT (X) is
the T -cofibrant approximation of X; let pX : QT (X) → X denote the associated
exterior trivial T -fibration, which is an isomorphism in HoT(E) . On the other
hand, if Y is an object in the category Ho{T,T′}(E) , since Y is {T, T ′}-fibrant, we
have that R(id)(Y ) = Y.

Then for any object X in HoT(E) one has tha canonical isomorphism

R(id)L(id)(X) = R(id)QT (X) = QT (X) ∼= X

This implies that the category HoT(E) is isomorphic to a reflexive subcategory
of Ho{T,T′}(E) .

�

We remark that if γT : E → HoT(E) is the localization functor, then the com-
posite L(id) ◦ γT : E → Ho{T,T′}(E) in general is not isomorphic to the canonical
localization functor γT,T ′ : E → Ho{T,T′}(E) .

Corollary 3. L(id) : HoN(E) → Ho{N,P}(E) is a full and faithful functor.

Remark 2. Suppose T = N and T ′ = P . If f : K → L be a map between compact
CW complexes of different homotopy type. If we apply the functor L(id) ◦ γT to
fe : Xe → Ye we obtain an isomorphism because γT (fe) is an isomorphism but if
we apply the functor γT,T ′fe we will obtain a map which is not an isomorphism.
Hence if X and Y are compact CW-complexes of different type, the exterior spaces
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Xe and Ye have different type in Ho{T,T′}(E) . Nevertheless, the composite of
localization functors E → Ho{N,P}(E) → HoN(E) is, up to isomorphism, the same
as the localization E → HoN(E).

Another interesting comparison is that between Ho(Top) and Ho{T,P}(E). Re-
call the functor V : Top → E given is subsection 1.2 .

Proposition 3. The functor V : Top → E carries weak equivalences in Topcof to
weak exterior {T, P}-equivalences.

Proof. By the Whitehead theorem and taking into account that every object in
Top is fibrant, we have that, given f : X → Y a weak equivalence in Topcof , f is
a homotopy equivalence. Since V (Z× I) = V (Z)×̄I, for all Z in Top, then V (f) is
an exterior homotopy equivalence so f is a weak exterior T -equivalence and a weak
exterior P -equivalence, then it follows that f is a weak exterior {T, P}-equivalence.

�

Corollary 4. There is an adjunction

L(V ) : Ho(Top) // Ho{T,P}E : R(U).oo

Theorem 4. L(V ) : Ho(Top) → Ho{T,P}E is a full and faithful functor.

Proof. It is left as an exercise.
�

5. Applications

A classical theorem of J.H.C. Whitehead [29] establishes that a continuous map
between CW-complexes f : X → Y is a homotopy equivalence if and only if f is
a weak homotopy equivalence. The aim of this section is to give a version of the
Whitehead theorem in the category of exterior spaces, involving special complexes
and different homotopy groups, and give, as corollaries, the correspondent one in
P.

We begin by stating the notion of {T, T ′}-complex, where T and T ′ are again
two Hausdorff, locally compact, σ-compact spaces provided with their co-compact
externology.

Definition 5. A {T, T ′}-complex consists of an exterior space X with a filtration
∅ = X−1 ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ ... ⊂ X such that X is the colimit of the
filtration and for n ≥ 0, Xn is obtained from Xn−1 by a push-out in E of the form

(
∐

α∈A(Sn−1
T )α)

∐
(
∐

β∈B(Sn−1
T ′ )β)

��

// Xn−1

in

��
(
∐

α∈A(Dn
T )α

∐
(
∐

β∈B(Dn
T ′)β) // Xn.

Examples 1. (1) If T = P , T ′ = ∅, then we have the notion of P -complex which
coincides with the notion of CW-complex X provided with its topology as externol-
ogy.

(2) T = N and T ′ = ∅. In this case we obtain the notion of N-complex studied in
[16].

(3) If T = N and T ′ = P then we have the notion of bi-complex, introduced in
[15].
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We can do further combinations, involving ∅, P , N and R+.

Note that every {T, T ′}-complex is a {T, T ′}-cofibrant exterior space. It is
clear that, for {T, T ′}-cofibrant exterior spaces, right homotopies, left homotopies
and exterior homotopies induce the same relation between exterior maps. From
Quillen [24] one has that the homotopy category π0(E{T,T′}−cof ) is equivalent to
Ho{T,T′}(E). Then, one has

Theorem 5. Let X, Y be {T, T ′}-complexes and let f : X → Y be an exterior
map. Then f is a homotopy exterior equivalence if and only if f is a weak exterior
{T, T ′}- equivalence.

If X is a CW-complex then X ≡ V (X) has the structure of a P -complex struc-
ture, so it is a P -cofibrant exterior space. Taking into account that f is a weak
equivalence in Top if and only if f = V (f) is a weak exterior P -equivalence and
the fact that V (f) = f is an exterior homotopy equivalence in E if and only if f
is a homotopy equivalence in Top we obtain as a corollary the standard version of
the Whitehead theorem.

Corollary 5. Let f : X → Y be a continuous map between CW-complexes. Then
f is a homotopy equivalence if and only if f is a weak equivalence.

Now, suppose that X is a locally finite CW-complex with finite dimension d, and
for each 0 ≤ k ≤ d either X has no k-cells or X has an infinite countable number
of k-cells. Under these conditions Xe admits the structure of a finite N-complex.
Therefore

Corollary 6. Let f : X → Y be a proper map between CW-complexes satisfying
the good conditions described above. Then f is a proper homotopy equivalence if
and only if f = fe is a weak exterior N-equivalence.

Finally, if X is a finite dimensional strongly locally finite CW-complex then Xe

admits the structure of a finite {N, P}-complex.

Corollary 7. Let f : X → Y be a proper map between finite dimensional strongly
locally finite CW-complexes. Then f is a proper homotopy equivalence if and only
if f = fe is a weak exterior {N, P}-equivalence.

Remark 3. Using the closed model structure suggested at the end of 3 section we
can obtain as corollary the proper Whitehead theorem given by F.T. Farrel, L.R.
Taylor and J.B. Wagoner for finite dimensional locally finite CW-complexes.
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16 J. M. GARCÍA-CALCINES, M. GARCÍA-PINILLOS AND L.J. HERNÁNDEZ-PARICIO
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[10] D. Edwards and H. Hastings. Č ech and Steenrod homotopy theories with applications to

Geometric Topology. Lect. Notes Math. 542 (Springer, 1976).

[11] J.I. Extremiana, L.J. Hernández and M.T. Rivas. Proper CW complexes: A category for
the study of proper homotopy. Collectanea Math. 39 (1988), 149-179.
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