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Abstract. The closed model category of exterior spaces, that
contains the proper category, is a useful tool for the study of non
compact spaces and manifolds. The notion of exterior weak N-S-
equivalences is given by exterior maps which induce isomorphisms
on the k-th N-exterior homotopy groups πN

k for k ∈ S, where S is a
set of non negative integers. The category of exterior spaces with
a base ray localized by exterior weak N-S-equivalences is called
the category of exterior N-S-types. The existence of closed model
structures in the category of exterior spaces permits to establish
equivalences between homotopy categories obtained by dividing by
exterior homotopy relations, and categories of fractions (localized
categories) given by the inversion of classes of week equivalences.
The family of neighbourhoods ‘at infinity’ of an exterior space can
be interpreted as a global prospace and under the condition of first
countable at infinity we can consider a global tower instead of a
prospace. The objective of this paper is to use localized categories
to find the connection between S-types of exterior spaces and S-
types of global towers of spaces.

The main result of this paper establishes an equivalence between
the category of S-types of rayed first countable exterior spaces and
the category of S-types of global towers of pointed spaces. As a
consequence of this result, categories of global towers of algebraic
models localized up to weak equivalences can be used to give some
algebraic models of S-types.
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1. Introduction

In some cases, for the study of a non compact space it is advisable
to consider as neighbourhoods at infinity the complements of closed-
compact subsets. The Proper Homotopy Theory arises when we con-
sider spaces and maps which are continuous at infinity. In order to have
a category with limits and colimits it is interesting to extend the proper
category to obtain a complete and cocomplete category. The category
of exterior spaces satisfies these properties, contains the proper cate-
gory and has limits and colimits. The study of non compact spaces
and more generally exterior spaces has interesting applications, for ex-
ample, Siebenmann [?] or Brown and Tucker [?] used proper invariants
of non compact spaces to obtain some properties and classifications
of open manifolds. More recently, the use of exterior spaces has per-
mitted to develop a Whitehead-Ganea approach for proper Lusternik-
Schnirelmann category, [?]. We can also use exterior spaces to find
applications in the study of compact-metric spaces. A compact metric
space can be embedded in the Hilbert cube, its open neighbourhoods
provide the Hilbert cube with the structure of an exterior space. In
this way, the homotopy invariants of exterior spaces become invariants
of metric-compact spaces, see [?].

To develop the Algebraic Topology at infinity (or in the category of
exterior spaces) it is useful to consider some analogues of the standard
Hurewicz homotopy groups. If instead of n-spheres we use sequences of
n-spheres converging to infinity, then we obtain the Brown-Grossman
proper homotopy groups πN

q , see [?, ?]. On the other hand, if we move
an n-sphere continuously towards infinity, we get infinite semitubes
which represent elements of the Steenrod proper homotopy groups, see
[?, ?, ?]. The analog of the previous groups have been considered for
the category of exterior spaces, see [?, ?]. In this homotopy theory the
role of a base point is played by a base ray; that is, an exterior map
from the exterior space of non negative real numbers R+ to an exterior
space X. The homotopy progroups, given by the homotopy groups
of the neighborhoods at infinity together with the bonding morphisms
induced by the base ray, are also important invariants in this theory,
see [?, ?, ?].

One useful tool for the study of a homotopy category is the notion
of closed model category introduced by Quillen [?, ?]. The existence of
a closed model structure in a category induces a category equivalence
between the homotopy category of cofibrant-fibrant objects and the
category of fractions induced by inverting weak equivalences. In our



S-TYPES OF GLOBAL TOWERS OF SPACES AND EXTERIOR SPACES 3

case, we have that the category of rayed exterior spaces and global
tower of pointed spaces admits closed model structures, see [?, ?, ?].

In this paper, if we take a set S of non negative integers, we have
the class ΣS

N of weak S-N-equivalences in the category of rayed exte-
rior spaces, given by exterior maps which induce isomorphism on the
exterior homotopy groups πN

q , and, in the category of global towers of

pointed spaces, the class ΣS of global morphisms which induce isomor-
phism on the global towers of homotopy groups.

Our main result establishes that the category of rayed exterior spaces
which are first countable at infinity localized by exterior weak S-N-
equivalences is equivalent to the category of global towers of pointed
spaces localized by weak S-equivalences:

Theorem 1. Suppose that S is a set of non negative integer num-
bers. Then ε̃ : E

R+

fc → tow+Top∗ induces an equivalence of categories

E
R+

fc [ΣS
N]−1 ' tow+Top∗[ΣS]−1.

That is, the category of exterior N-S-types is equivalent to the category
of S-types of global towers of pointed spaces.

This result has important particular cases:
(i) S is the set of all non negative integer numbers,
(ii) S = {0, · · · , n} , n ≥ 0,
(iii) S = {n, n+ 1, n+ 2, · · · }, n > 0,
(iv) S = {n, n+ 1, · · · ,m} = [n,m].
In the first case (i), we can compare our result to the Edwards-

Hastings embedding of the proper homotopy category of rayed σ-compact
spaces given in [?]. There are differences of two kinds: First, our result
is formulated in terms of equivalence of categories instead of embed-
dings, and, second, the localized category PR+

σ [ΣS
N]−1 ⊂ E

R+

fc [ΣS
N]−1 is

not canonically isomorphic to the proper homotopy category considered
by Edwards-Hastings and similarly for the corresponding localizations
of global towers of pointed spaces (we have considered larger classes
of weak equivalences). We also remark that in general a weak S-N-

equivalence in E
R+

fc is not a proper homotopy equivalence; however,
there is a version of the Whitehead theorem for exterior spaces which
is satisfied in the subcategory of rayed cofibrant exterior spaces.

In the second case (ii), we are comparing a category of n-types of
exterior spaces to n-types of global towers of pointed spaces. The
notion of n-type introduced by Whitehead [?, ?] has a clear geometric
meaning and can also be established in the context of non compact
spaces and proper maps, see Geoghegan [?]. A program for the study
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of proper n-types was initiated by Hernández and Porter in [?], where
some of the Whitehead’s results about n-types were generalized to the
context of pro-pointed spaces and some applications were given for
proper n-types and shape theory. One advantage of our formulation is
that the new result gives a category equivalence instead of the category
embeddding given in [?].

In case (iii), the given category equivalence permits to study exte-
rior homotopy categories of (n− 1)-connected rayed cofibrant exterior
spaces, and in case (iv), rayed cofibrant exterior spaces with finitely
many non trivial exterior homotopy groups πN

q , n ≤ q ≤ m, using the
corresponding global towers of pointed spaces, see [?] .

Finally, we remark that spaces such as open separable triangulated
manifolds or locally finite, finite dimensional, separable CW -complexes
with the cocompact externology and a suitable base ray are cofibrant
rayed exterior spaces. Therefore the set of proper rayed homotopy
classes between spaces of this type can be analyzed using these localized
categories.

2. The category of proper and exterior spaces

A continuous map f : X → Y is said to be proper if for every closed
compact subsetK of Y , f−1(K) is a compact subset ofX. The category
of topological spaces and the subcategory of spaces and proper maps
will be denoted by Top and P, respectively. This last category and its
corresponding proper homotopy category are very useful for the study
of non compact spaces. Nevertheless, one has the problem that P does
not have enough limits and colimits and then we can not develop the
usual homotopy constructions like loops, homotopy limits and colimits,
et cetera.

An answer to this problem is given by the notion of exterior space.
The new category of exterior spaces and maps is complete and cocom-
plete and contains as a full subcategory the category of spaces and
proper maps, see [?, ?]. For more properties and applications of exte-
rior homotopy categories we refer the reader to [?, ?] and for a survey
of proper homotopy to [?].

Definition 1. Let (X, τ) be a topological space. An externology on
(X, τ) is a non empty collection ε of open subsets which is closed under
finite intersections and such that if E ∈ ε , U ∈ τ and E ⊂ U then
U ∈ ε. If an open subset is a member of ε is said to be an e-open subset.
An exterior space (X, ε ⊂ τ) consists of a space (X, τ) together with
an externology ε. A map f : (X, ε ⊂ τ) → (X ′, ε′ ⊂ τ ′) is said to be
exterior if it is continuous and f−1(E) ∈ ε, for all E ∈ ε′.
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The category of exterior spaces and maps will be denoted by E.
Given a space (X, τ), we can always consider the trivial exterior

space taking ε = {X} and the total exterior space if one takes ε = τ .
The one point topological space is denoted by ∗, the corresponding
trivial exterior space is also denoted by ∗ and the total exterior space
by ?.

An important role is played by the family εXcc of the complements of
closed-compact subsets of a topological space X, that will be called the
cocompact externology. We denote by N and R+ the exterior spaces of
non negative integers and non negative real numbers having the usual
topology and the cocompact externology.

The category of spaces and proper maps can be considered as a full
subcategory of the category of exterior spaces via the full embedding
(·)cc : P ↪→ E.

The functor (·)cc carries a space X to the exterior space Xcc which
is provided with the topology of X and the externology εXcc. A map
f : X → Y is carried to the exterior map fcc : Xcc → Ycc given by
fcc = f . It is easy to check that a continuous map f : X → Y is proper
if and only if f = fcc : Xcc → Ycc is exterior.

Let EN be the category of exterior spaces under N and ER+ the
category of spaces under R+. If (X,λ) is an object in the category ER+ ,
where λ : R+ → X is a base ray, the natural restriction λ|N : N → X
gives a sequence base in X. Then we have a canonical forgetful functor
ER+ → EN.

Definition 2. An exterior space is said to be first countable at infin-
ity, if there is a countable base of the externology; that is, there is a
decreasing sequence

X = X0 ⊃ X1 ⊃ X2 ⊃ · · ·

such that for every j ≥ 0 the interior of Xj is e-open and for every
e-open E there is i ≥ 0 such that Xi ⊂ E.

The full subcategories determined by exterior spaces which are first
countable at infinity will be denoted by Efc, EN

fc, E
R+

fc .
Let X be an exterior space and L ⊂ X, we say that L is e-compact

if L \ E is a compact subset, for all E e-open subset of X.
Let X, Z be exterior spaces, then we define ZX = HomE(X,Z) with

the topology generated by the subsets of the form:

(K,U) = {α ∈ ZX : α(K) ⊂ U}

(L,E) = {α ∈ ZX : α(L) ⊂ E}
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where K ⊂ X is a compact subset, U ⊂ Z is an open subset, L ⊂ X is
an e-compact subset and E ⊂ Z an e-open subset. This construction
gives a functor Eop × E→ Top.

Let X be an exterior space, Y a topological space, we consider on
X × Y the product topology τX×Y and the externology εX×̄Y given
by those E ∈ τX×Y such that for each y ∈ Y there exists Uy ∈ τY ,
y ∈ Uy and Ey ∈ εX such that Ey × Uy ⊂ E. This exterior space will
be denoted by X×̄Y in order to avoid a possible confusion with the
product externology. This construction gives a functor E×Top→ E.
When Y is a compact space we can prove that E is an e-open subset
if and only if it is an open subset and there exists G ∈ εX such that
G × Y ⊂ E. Furthermore, if Y is a compact space and εX = εXcc then
εX×̄Y coincides with the externology of complements of closed-compact
subsets of X × Y.

Let Y be a topological space and Z an exterior space, then we con-
sider on ZY = HomTop(Y, Z) the compact-open topology and the ex-
ternology given by the open subsets E of ZY such that E contains a
subset of the form (K,G), where K is a compact subset of Y and G is an
e-open subset of Z. This construction gives a functor Topop×E→ E.
It is not very difficult to see that, if Y is a compact space, E ∈ τZY is
an e-open subset if and only if it contains a subset of the form (Y,G).

Proposition 1. Let X, Z be exterior spaces and Y a topological space,
then

(i) If X is a Hausdorff, locally compact space and εX = εXcc, there is
a natural bijection

HomE(X×̄Y, Z) ∼= HomTop(Y, ZX).

(ii) If Y is a locally compact space, there is a natural bijection

HomE(X×̄Y, Z) ∼= HomE(X,ZY ).

Let Sq denote the q-dimensional pointed sphere. For an exterior
space X, using the exterior space N×̄Sq and the topological space XN,
one has a canonical isomorphism

HomE(N×̄Sq, X) ∼= HomTop(Sq, XN).

Definition 3. Let (X, ∗) be in Top∗ and for an integer q ≥ 0, denote
its q-th homotopy group by πq(X, ∗). A continuous map f : (X, ∗) →
(X ′, ∗′) is said to be a weak equivalence if πq(f) is an isomorphism for
every q ≥ 0. Similarly, given a set S of non negative integers, f is said
to be a weak S-equivalence if πq(f) is an isomorphism for every q ∈ S.
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Let Σ denote the class of weak equivalences and ΣS the class of weak
S-equivalences. The category of fractions Top∗]ΣS]−1 (Top∗[Σ]−1) will
be called the category of S-types (types) of pointed spaces.

Definition 4. Let (X,λ) be in ER+ and take an integer q ≥ 0. The
q-th N-exterior homotopy group of (X,λ) is given by

πN
q (X,λ) = πq(X

N, λ|N)

where πq is the q-th homotopy group functor.
An exterior map f : (X,λ)→ (X ′, λ′) is said to be an exterior weak

N-equivalence if πN
q (f) is an isomorphism for every q ≥ 0. Similarly,

given a set S of non negative integers, f is said to be an exterior weak
N-S-equivalence if πN

q (f) is an isomorphism for every q ∈ S. Let ΣN
denote the class of exterior weak N-equivalences and ΣS

N the class of
exterior weak N-S-equivalences.

The elements of πN
q (X,λ) are represented by a sequence of spheres,

as the given below for q = 1, converging to an infinity point of X.

Definition 5. The category of fractions

ER+ [ΣS
N]−1

is said to be the category of exterior N-S-types, and the full subcategory
determined by P will be denoted by

PR+ [ΣS
N]−1

and it is said to be the category of proper N-S-types.

Remark 1. Some subsets S determine interesting categories of frac-
tions, for example:

(a) If S is the set of non negative integer, the category of fractions
ER+ [ΣS

N]−1 is equivalent to the exterior homotopy category of
rayed cofibrant exterior spaces (any N-complex is a cofibrant
exterior space). This is a consequence of the existence of a
suitable closed model structure in E, see [?, ?].

(b) If S = {0}, ER+ [ΣS
N]−1 is the category of exterior 0-types which

can be determined by the set of path-components ( π0(X)) and
the space of ‘end points’ ( limE∈εX

π0(E)) of an exterior space
X.
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(c) If S = {1}, ER+ [ΣS
N]−1 is equivalent to the exterior homotopy

category of rayed cofibrant exterior spaces such that πN
q (X,λ) is

trivial for q 6= 1. An exterior space X satisfying these proper-
ties is said to be an exterior N-Eilenberg-Mac Lane space X =
KN(G, 1), where πN

1X
∼= G. For example R2 with the cocompact

externology satisfies this property, and R2 = KN(Π∞0 Z/⊕∞0 Z, 1).
(d) For S = {1, 2}, ER+ [ΣS

N]−1 is said to be the category of exterior
N-{1,2}-types. This category is equivalent to the exterior homo-
topy category of rayed cofibrant exterior spaces (X,λ) such that
X is 0-connected, has one ‘end point’ and πN

q (X,λ) is trivial
for q ≥ 3.

3. Exterior N-S-types and S-types of global towers of
pointed spaces

Given a category C we can consider the following induced categories:

pro C, pro+C, tow C, tow+C.
pro C is the category whose objects are pro-objects X in C; that

is, functors of the form X : J → C, where J is a left-filtering small
category.

pro+C is the category whose objects are global pro-objects Y in C;
that is, functors Y : K → C, where K is a left-filtering small cate-
gory with final object, and pro-morphisms are compatible with the
final object. An alternative description of this category, denoted as
(pro C, C), is given by Edwards-Hastings in [?] as the full subcategory of
Maps(pro C), the category of maps in pro C, determined by maps of the
form Y → Y0, where Y0 is a constant pro-object. For any information
and properties related to these categories pro C and pro+C = (pro C, C),
we refer the reader to [?, ?].

tow C is the category whose objects are towers X in C, which are
functors X : N→ C, where N is the canonical category induced by the
set of ordered non negative integer numbers.

tow+C is the category whose objects are global towers Y in C, which
are functors Y : N+ → C, where N+ is the category N together with
a chosen object, 0, and with the condition that morphisms of global
towers have to be compatible with this chosen object.

Given X = {Xi}i∈N+ , Y = {Yi}i∈N+ in tow+C , a global morphism
f : X → Y in tow+C can be represented by a sequence of morphisms
{fi : Xϕ(i) → Yi}i∈N+ , where ϕ : N+ → N+ satisfies that ϕ(0) = 0,
ϕ(i) ≥ i and if i < j, then ϕ(i) < ϕ(j). Two sequences {fi : Xϕ(i) →
Yi}i∈N+ , {gi : Xψ(i) → Yi}i∈N+ , represent the same global morphism if
there exists θ : N+ → N+ (satisfying the same properties as above) such
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that θ ≥ ϕ, θ ≥ φ and fiX
θ(i)
ϕ(i) = giX

θ(i)
ψ(i), where Xj

i : Xj → Xi, j ≥ i,

denotes the bonding morphism of the global pro-object X = {Xi}.
If the map ϕ is the identity ϕ(i) = i, i ∈ N+, it is said that the f is

a level global morphism. For a more detailed description of this type
of category see again [?].

Let Gr be the category of groups. For Top∗ and Gr, we have the
corresponding global categories:

pro+Top∗, pro+Gr, tow+Top∗, tow+Gr.

The homotopy group πq induces the functors:

pro+Top∗
pro+πq // pro+Gr

tow+Top∗
tow+πq // tow+Gr

Given a family of groups {Gα|α ∈ A}, denote by tα∈AGα the co-
product (free product) in the category of groups. Associated with the
infinite cyclic group Z, we can consider the global tower of groups:

Z = {· · · → t∞2 Z→ t∞1 Z→ t∞0 Z}
Then one can consider the following global version of Brown’s func-

tor, see [?, ?, ?]:

P : tow+Gr→ Gr, P(G) = Homtow+Gr(Z,G)

where G is an object in tow+Gr.
The usual version of Brown’s functor is given by

P∞ : towGr→ Gr, P∞(G) = HomtowGr(Z,G)

where now Z,G are considered as objects in towGr.
Given a global tower of groups {Gi}, the group P({Gi}) can be

described as follows: Consider sequences α : N+ → N+ such that if
i ≤ j, then α(i) ≤ α(j), α(0) = 0 and α(i) → ∞. Take sequences
of elements {gα(i)}∞0 such that gα(i) ∈ Gα(i). Two sequences {gα(i)}∞0 ,
{hβ(i)}∞0 are related if there exists a sequence γ such that γ ≤ α, γ ≤ β

and G
α(i)
γ(i)(gα(i)) = G

β(i)
γ(i)(hβ(i)), for every i ≥ 0 (Gj

i denotes the bonding

morphism). The group P({Gi}) is given by the set of equivalence
classes of the form [{gα(i)}∞0 ].

The group P∞({Gi}) is the quotient of P({Gi}) obtained as follows:
two elements of P({Gi}) are related if they can be represented by
sequences {gα(i)}∞0 , {hα(i)}∞0 such that there is i0 ≥ 0 with gα(i) = hα(i)

for every i ≥ i0. The class represented by {gα(i)}∞0 will be denoted by
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[{gα(i)}∞0 ]∞ ∈ P∞({Gi}). We remark that the description given of the
functors P ,P∞ is also valid for global towers of pointed sets. Denote
by Set∗ the category of pointed sets.

We refer the reader to [?, Section 3, Corollary 1], that contains for
towers of groups (and pointed sets) a proof of the fact that Brown’s
functor preserves and reflects isomorphisms:

Lemma 1. (Grossman) A morphism f : G → H in towGr (towSet∗)
is an isomorphism if and only if P∞(f) : P∞(G) → P∞(H) is an iso-
morphism.

Now we can use Grossman’s result to prove a global version:

Lemma 2. A global morphism f : G → H in tow+Gr (tow+Set∗) is
an isomorphism if and only if P(f) : P(G)→ P(H) is an isomorphism.

Proof. Suppose that f : G → H is a global morphism, where G = {Gi}
and H = {Hi}. Then one has the following commutative diagram:

P(G) //

P(f)
��

P∞(G)

P∞(f)
��

P(H) // P∞(H)

It is easy to check that if P(f) is surjective, then f0 is surjective: If
h ∈ H0 is not in the image of f0 : G0 → H0, then any element of the
form [{hα(i)}∞0 ] with hα(0) = h is not in the image of P(f). We can
also see that if P(f) is injective, then f0 is injective: If we have two
elements g, g′ ∈ G0 such that f0(g) = f0(g′), one can consider the
sequence {gα(i)}∞0 such that gα(0) = g, gα(i) = 1, i > 0 and similarly
{g′α(i)}∞0 . Then, we have that P(f)[{gα(i)}∞0 ] = P(f)[{g′α(i)}∞0 ]. This

implies that g = gα(0) = g′α(0) = g′.

Since P(H) → P∞(H) is surjective and taking into account that
the diagram is commutative, we have that if P(f) is surjective, then
P∞(f) is also surjective. Assume that P(f) is injective and suppose
that we have two elements x, x′ ∈ P∞(G) , x = [{gα(i)}∞0 ]∞, x′ =
[{g′α(i)}∞0 ]∞ such that P∞(f)(x) = P∞(f)(x′). This implies that we can

modify a finite number of elements of the sequences {gα(i)}∞0 , {g′α(i)}∞0
to obtain new sequences {ḡα(i)}∞0 , {ḡ′α(i)}∞0 such that [{ḡα(i)}∞0 ]∞ =

x, [{ḡ′α(i)}∞0 ]∞ = x′, ḡα(i) = 1 = ḡ′α(i), for 0 ≤ i ≤ i0 and ḡα(i) =

gα(i) , ḡ′α(i) = g′α(i) for i ≥ i0 and the elements x̄ = [{ḡα(i)}∞0 ], x̄′ =

[{ḡ′α(i)}∞0 ] ∈ P(G) verify P(f)(x̄) = P(f)(x̄′). Since P(f) is injective,
it follows that x̄ = x̄′. This implies x = x′.
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Therefore if P(f) is an isomorphism, it follows that f0 and P∞(f)
are isomorphisms. By Lemma ??, one has that f : G → H in towGr
(towSet∗) is an isomorphism (and f0 is an isomorphism). This implies
that f : G → H in tow+Gr (tow+Set∗) is also an isomorphism.

Definition 6. Suppose that {fi : Xϕ(i) → Yi}i∈N+ represents a global
morphism f in tow+Top∗ and S is a set of non negative integers. It
is said that f is a weak S-equivalence if tow+πq(f) is an isomorphism
for every q ∈ S. We denote by ΣS the corresponding class of S-weak
equivalences and by tow+Top∗[ΣS]−1 the localization induced by ΣS.
This category will be called the category of S-types of global towers of
pointed spaces.

Next we want to compare exterior N-S-types with S-types of global
towers.

Given a exterior space (X,λ) ∈ ER+ we can factorize the map
λ : R+ → X as λ = q′λ′, where λ′ is an exterior cofibration and q′

is an exterior homotopy equivalence. A map i : A→ X is said to be an
exterior cofibration if i is a closed map (in the category of topological
spaces) and i has the exterior homotopy extension property, see [?].

Take the exterior spaceX ′ = ((R+×̄I)∪X)/(t, 1) ∼ λ(t), t ∈ R+, and
consider the exterior maps λ′ : R+ → X ′, λ′(t) = [(t, 0)] and q′ : X ′ →
X is given by q′[(t, s)] = λ(t), q′[x] = x, t ∈ R+ , s ∈ I , x ∈ X.

X ′

q′

��
R+

λ
//

λ′
==||||||||
X

If ER+
w denotes the full subcategory of ER+ determined by cofibrant

exterior spaces, that is, objects (X, ν) where ν is an exterior cofibration
(well rayed exterior spaces), the above factorization induces a functor
(·)′ : ER+ → ER+

w and together with the inclusion functor ER+
w → ER+

one has an induced equivalence of categories

(1) ER+[ΣS
N]−1 ' ER+

w [ΣS
N]−1.

This follows from the fact that q′ is an exterior homotopy equivalence,
which is also a weak N-S-equivalence.

It is interesting to note that if X ∈ ER+ is first countable at in-
finity, one can find a sequence {X ′n} which is a countable base of the
externology of X ′ and cn ∈ R+ such that lim cn = ∞ and [0, cn] ∼=
λ′(R+) ∩X ′n → X ′n is a cofibration of topological spaces, see [?].
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Denote by ER+
fcw the full subcategory of first countable well rayed ex-

terior spaces; that is, the base ray λ : R+ → X is an exterior cofibration
and there exists a countable externology base {Xn} of X and cn ∈ R+,
lim cn = ∞, such that X0 = X and [0, cn] ∼= λ(R+) ∩ Xn → Xn is a
cofibration of topological spaces. We can see that the equivalence given
in (??) induces a new category equivalence

(2) ER+
fc [ΣS

N]−1 ' ER+
fcw[ΣS

N]−1.

Taking the one-point space ? with the trivial externology, one can
consider the following pushout in E

R+
//

λ

��

?

��
X // X̄

This gives a new functor (̄·) : ER+ → E?. Note that if (X,λ) is a
well rayed exterior space, then (X̄, ?) is a well pointed exterior space;
that is, ? → X is an exterior cofibration. Moreover, if X is an object
in ER+

fcw, then (X̄, ?) is in E?
fcw. Then, we obtain the corresponding

restriction (̄·) : ER+
fcw → E?

fcw, where E?
fcw is the full subcategory de-

termined by first countable well pointed exterior spaces. Taking into
account that if X is in ER+

fcw, the canonical map X → X̄ is a weak

N-S-equivalence, one has that the restriction functor (̄·) : ER+
fcw → E?

fcw

induces an equivalence of categories

(3) ER+
fcw[ΣS

N]−1 ' E?
fcw[ΣS

N]−1.

Observe that a pointed exterior space ? → X can be considered as
a rayed space taking the canonical map R+ → ? → X. Then we also
have exterior homotopy groups πN

q (X) for any object X in E? and the
corresponding notion of weak N-S-equivalence.

Given an exterior space X ∈ E?, the externology εX can be seen
as a left-filtering category with a final object and we can consider the
functor

ε(X) : εX → Top∗, ε(X)(E) = E

where E is a pointed space.
This induces a full embedding

ε : E? → pro+Top∗.

Now for each space X in E?
fc, we can choose a fixed countable base

{Xn} of the externology εX (we are using the Axiom of Choice for the



S-TYPES OF GLOBAL TOWERS OF SPACES AND EXTERIOR SPACES 13

collection {B(X)|X ∈ E?
fc}, where B(X) is the set of countable bases

of the externology εX). This gives a functor

ε : E?
fc → tow+Top∗ , ε(X) = {Xn}.

Lemma 3. The following diagram

E?
fc

ε //

πN
q

��

tow+Top∗

tow+πq

��
Gr tow+GrP

oo

is commutative up to isomorphism (for q = 0, one has to consider Set∗

instead of Gr).

Proof. Given an object X in E?
fc and {Xi} a countable base of its

externology, we can define a canonical map θ : πN
q (X) → P({πqXi})

as follows: An element of πN
q (X) is represented by a sequence of maps

fα(i) : Sq → X such that fα(i)(S
q) ⊂ Xα(i). Notice that two sequences

fα(i) : Sq → X, gβ(i) : Sq → X represent the same element if there is
γ : N+ → N+ such that γ ≤ α, γ ≤ β and fα(i) is pointed homotopic to
gβ(i) in Xγ(i). Then, the canonical isomorphism is given by θ([{fα(i)}] =
[{[fα(i)]}], where [fα(i)] ∈ πq(Xα(i)).

Proposition 2. The functor ε : E?
fc → tow+Top∗ satisfies that if

f : X → Y is a morphism in E?
fc, then πN

q (f) is an isomorphism if
and only if tow+πq (εf) is an isomorphism.

Proof. Given a morphism f : X → Y in Efc, by Lemma ??, we have
that πN

q (f) ∼= Ptow+πq(ε̃(f)). Now the result follows from Lemma ??
that proves that P preserves and reflects isomorphims.

We also consider the following Telescopic construction (a similar con-
struction is given by Edwards-Hastings in [?], but that version gave a
contractible topological space):

Given a global tower of pointed topological spaces

{Xi} = { · · · // X2

X2
1 // X1

X1
0 // X0 },

the telescope of {Xi} is constructed as the following quotient space

Tel{Xi} =

(
X0 × {0} ∪

∞∐
1

Xi × [i− 1, i]

)
/ ∼
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where (X i+1
i (x), i) ∼ (x, i) , x ∈ Xi+1 , i ≥ 0. Tel{Xi} has a unique

externology such that the family

{En =

(
Xn × {n} ∪

∞∐
n+1

Xi × [i− 1, i]

)
/ ∼ |n ≥ 0}

is a countable exterior neighbourhood base. We remark that Tel{Xi}
has a canonical base ray λ : R+ → Tel{Xi} , λ(t) = [(∗, t)] and we can

consider the associated exterior space (Tel{Xi})′.
Given a morphism f of global towers of pointed spaces represented by

{fi : Xϕ(i) → Yi}, we get an induced exterior map Tel{fi} : Tel{Xi} −→
Tel{Yi}.

If {f ′i : Xϕ′(i) → Yi} represents the same morphism f in tow+Top∗,

then one can check that (Tel({fi})′, (Tel({f ′i})′ are exterior homotopic
in E?

fc.
Denote by ε̃ = ε(̄·)(·)′ the composite

E
R+

fc

(·)′
// E

R+

fc

(̄·)
// E?

fcw
ε // tow+Top∗

Using the construction Tel and the functor ε̃, we can obtain our main
result:

Theorem 1. Suppose that S is a set of non negative integer numbers.
Then ε̃ : E

R+

fc → tow+Top∗ induces an equivalence of categories

E
R+

fc [ΣS
N]−1 ' tow+Top∗[ΣS]−1.

That is, the category of exterior N-S-types is equivalent to the category
of S-types of global towers of pointed spaces.

Proof. We note that by Proposition ??, the functor ε : E?
fcw → tow+Top∗

preserves weak N-S-equivalences. Then, there is an induced functor

ε : E?
fcw[ΣS

N]−1 → tow+Top∗[ΣS]−1.

Given a global tower of pointed topological spaces X = {Xi} ∈
tow+Top∗, one has the telescope Tel({Xi}) with its corresponding
countable neigbourhood base at infinity {En} and canonical base ray
λ. Then, we have maps

Tel({Xi})
q′ // (Tel{Xi})′

q′ // (Tel({Xi})′.

For each n ≥ 0, E1
n = (R+×[0, 1

n+1
] ∪ [n,∞) × I ∪ En)/(t, 1) ∼

λ(t), t ∈ [n,∞) gives a countable neighbourhood base at infinity for
(Tel{Xi})′ and E2

n = E1
n/R+ gives a countable neighbourhood base at

infinity for (Tel({Xi})′. It is easy to check that the natural inclusion
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En ⊂ E1
n and the quotient map E1

n → E2
n are homotopy equivalences.

We also have the following global level maps {En} → {E1
n} → {E2

n}.
Note that the map of towers, {pn : En → Xn} given by pn[(x, t)] =

X i
nx, x ∈ Xi, i ≥ n, where X i

n denotes the corresponding boundary
composition, is a homotopy equivalence.

Therefore one has the following global level maps

X = {Xn} ← {En} → {E1
n} → {E2

n} = ε ((Tel(X))′)

which induce isomorphisms in the localized category tow+Top∗[ΣS]−1.
Given a global morphism g in tow+Top∗, we have that

ε((Tel(g))′) ∼= g

in tow+Top∗[ΣS]−1. Then, tow+πq(g) is an isomorphism if and only if

tow+πq(ε((Tel(g))′) is an isomorphism and this is equivalent, by Propo-

sition ??, to the fact that πN
q ((Tel(g))′) is an isomorphism.

This implies that the telescopic construction induces a well defined
functor

(Tel)′ : tow+Top∗[ΣS]−1 → E?
fcw[ΣS

N]−1

where {Xi} is carried to (Tel({Xi}))′.
Now take an object X in E?

fcw with ε(X) = {Xi}. Since each

map E2
n → Xn is a homotopy equivalence, we have that the canon-

ical map (Tel(ε(X))′ → X is an exterior weak N-equivalence. Then,

(Tel)′(ε(X))→ X induces an isomorphism in the category E?
fcw[ΣS

N]−1.

Therefore we have seen that the composites (Tel)′ ε , ε (Tel)′ are
isomorphic to identity functors on the localized categories. Then we
obtain the category equivalence E?

fcw[ΣS
N]−1 ' tow+Top∗[ΣS]−1. Tak-

ing into account the equivalences given in (??) and (??), we have the
desired category equivalence.

Remark 2. A direct description of the functor from first countable
rayed exterior spaces to global towers of pointed spaces (without pass-
ing through the auxiliary notions of well-rayed and well-pointed exte-
rior spaces) can be given as follows: Given a rayed exterior space,
λ : R+ → X, if X is first countable at infinity we can choose a se-
quence of ‘neighbourhoods at infinity’ {Xn} such that X0 = X and
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λ−1(Xn) = [0, cn], lim cn =∞, cn+1 ≥ cn. Consider the pushout

[0, cn] //

λ|[0,cn]

��

R+

��
Xn

// X̂n

where 0 ∈ R+ determines a base point in X̂n. It is easy to check

that the functor ε̃ : E
R+

fc [ΣS
N]−1 → tow+Top∗[ΣS]−1 is isomorphic to

the functor ε̂ : E
R+

fc [ΣS
N]−1 → tow+Top∗[ΣS]−1 , ε̂(X) = {X̂n}. In the

proof of theorem above, we have preferred to use well-rayed exterior
spaces because this is a canonical procedure that changes an object by a
cofibrant substitute for exterior spaces.

Remark 3. As a consequence of the theorem above, one has

(a) If S is the set of non negative integers, the exterior homotopy
category of rayed cofibrant first countable exterior spaces, see
[?, ?], is equivalent to the category of fractions tow+Top∗[ΣS]−1.

(b) If S = {0}, ER+ [Σ
{0}
N ]−1 is the category of exterior 0-types. On

the other hand, it is well known that π0 : Top∗ → Set∗ induces
an equivalence between 0-types of pointed spaces and pointed
sets. Therefore tow+Top∗[Σ{0}]−1 is equivalent to tow+Set∗.

(c) If S = {1}, the functor π1 : Top∗ → Gr induces an equivalence
between 1-types of pointed spaces and groups. Then, in this
case, one has that the exterior homotopy category of exterior N-
Eilenberg-Mac Lane spaces which are first countable at infinity
is equivalent to the category of global towers of groups.

(d) For S = {1, 2}, it is well known that the fundamental categor-
ical group functor ρ2 : Top∗ → CG and the classifying functor
B : CG → Top∗ induce an equivalence between the category
of 2-types of pointed 0-connected spaces and categorical groups
up to weak equivalence, see [?, ?]. Therefore, in this case, the
functor (tow+ρ2) ε̃ and the construction Tel (tow+B) induce
an equivalence of categories

E
R+

fc [Σ
{1,2}
N ]−1 ' tow+CG[Σ]−1,

where Σ is the class of maps in tow+CG given by the saturation
of the class of the level weak equivalences of categorical groups.

Remark 4. For exterior spaces with a base ray (X,λ) we can also
consider the q-th R+-exterior homotopy group given by

πR+
q (X,λ) = πq(X

R+ , λ).
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This permits to introduce new categories of fractions taking ΣS
R+

the
class of exterior weak R+-S-equivalences. There are interesting rela-

tions between the categories E
R+

fc [ΣS
N]−1 and E

R+

fc [ΣS
R+

]−1 that will be
analyzed in a further paper. For example, for S = {0, · · · , n + 1} and

S ′ = {0, · · · , n} one has a canonical functor E
R+

fc [ΣS
N]−1 → E

R+

fc [ΣS′

R+
]−1.

The formulation of our main result in terms of rayed exterior spaces
and tower of pointed spaces permits to compare in a natural way N-
S-types, R+-S-types, S-types of global towers of pointed spaces, global
towers of S-types of pointed spaces and standard S-types of pointed
spaces.
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