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Departamento de Matemáticas y Computación,
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Abstract

In this work, we develop and implement two algorithms for plotting
and computing the measure of the basins of attraction of rational maps
defined on the Riemann sphere. These algorithms are based on the sub-
divisions of a cubical decomposition of a sphere and they have been made
by using different computational environments.

As an application, we study the basins of attraction of the fixed points
of the rational functions obtained when Newton’s method is applied to
a polynomial with two roots of multiplicities m and n. We focus our
attention on the analysis of the influence of the multiplicities m and n
on the measure of the two basins of attraction. As a consequence of the
numerical results given in this work, we conclude that, if m > n, the
probability that a point in the Riemann Sphere belongs to the basin of
the root with multiplicity m is bigger than the other case. In addition,
if n is fixed and m tends to infinity, the probability of reaching the root
with multiplicity n tends to zero.

∗2010 Mathematics Subject Classification: 65H04, 65Y99, 54H20.
†Key words and phrases: Newton’s method, basin of attraction, multiplicity of

a root, subdivisions on the sphere, measure algorithms.
‡The authors acknowledge the financial help given by the projects: MTM2011-28636-C02-

01 of the Spanish Ministry of Science and Technology and API12/10 of the University of La
Rioja.

1



1 Introduction

Let p : C→ C be a d-degree polynomial whose roots are not necessarily distinct
and let Np be the iterating function of the well-known Newton’s method:

zn+1 = Np(zn) = zn −
p(zn)
p′(zn)

. (1)

It is well-known, [2], [9], that if the previous sequence starts at an initial ap-
proximation, z0, close enough to a root of the polynomial p, then it converges
to such root. If the root is simple, the order of convergence of the sequence (1)
is quadratic but if the root is multiple, the order of convergence is only linear.
This fact reveals that the multiplicity of the roots plays an important role in
the convergence of Newton’s method.

There are other effects of the multiplicity of the roots in Newton’s method.
For instance, when Newton’s method is applied to d-degree polynomials with
simple roots, a rational function of degree d is obtained. However, for multiple
roots the degree of the corresponding rational function is strictly less than d.

The classical Cayley’s problem [8] is related to the basins of attraction of the
roots of a quadratic polynomial when Newton’s method is considered. To be
more precise, Newton’s method is applied to the polynomial p(z) = (z−α1)(z−
α2), where α1 and α2 are two distinct complex roots. Let us denote

Basin(αi) = {z0 ∈ C : Nk
p (z0)→ αi, k → +∞}, i = 1, 2

to the i-th basin of attraction (Nk
p = Np ◦ · · · ◦Np, k-times). Cayley was able to

show that, if |z0−α1| < |z0−α2|, then z0 ∈ Basin(α1) and that z0 ∈ Basin(α2)
if |z0−α2| < |z0−α1|. The Julia set related to this problem ([3] for more details)
is the frontier of both basins of attraction, that is, the Julia set for Newton’s
method (1) applied to the quadratic polynomial p(z) = (z − α1)(z − α2) is
the locus of points equidistant from the two roots. This problem has been
profusely studied in the mathematical literature, not only for Newton’s method
but also for other different iterative procedures for solving nonlinear equations
[1]. Furthermore, when Newton’s method is applied to polynomials in the form
p(z) = (z − α1)m(z − α2)m, with m ≥ 1, it is also known, [17], that the Julia
set is again the perpendicular bisector of the segment joining the roots α1 and
α2. That is, when the roots have the same multiplicity, the Julia set is a line.
However, when the roots α1 and α2 have different multiplicity, the structure of
the Julia set is more intricate. This fact was pointed out by Gilbert in [5] for
the cubic polynomial p(z) = (z − α1)2(z − α2). The sensitivity of Julia sets to
the multiplicity of the roots was also analyzed by Wang Xingyuan et al. (see
[12] or [13], for instance). In these papers we can find that there are many other
factors that could have an influence on the structure of the Julia set related
with Newton’s method applied to polynomials, such as the symmetries between
the roots.

In this paper, we go a step beyond and analyze the influence of the multi-
plicities of the roots in the corresponding basins of attraction when Newton’s
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Figure 1: Basins of attraction of Newton’s method applied to the polynomials p(z) =
(z − 1)m(z + 1) for m = 2, 3, 4. We see how the basin of the multiple root (in white)
“invades” the other basin (in grey) when m increases.

method (1) is applied to polynomials in the form:

p(z) = (z − α1)m(z − α2)n, α1, α2 ∈ C, α1 6= α2, m, n ∈ N \ {0}. (2)

For each polynomial p(z) in (2), the application of Newton’s method (1) gives
a rational function, Bm,n(z), whose coefficients depend on the multiplicities
m,n:

Bm,n(z) =
−α1α2 + α1z + α2z − α2mz − α1nz − z2 +mz2 + nz2

−α2m− α1n+mz + nz
. (3)

Notice that the rational function Bm,n(z) has quadratic degree, regardless of
the values of the multiplicities m and n.

In our work, we are interested in the study of the influence of the multi-
plicity on the geometrical properties of the basins (and Julia sets) associated
with the rational function Bm,n(z). This implies that we can only modify the
rational functions of this type using transformations preserving the geometrical
properties of the basins that we are studying.

As a starting point in our study, we consider the roots α1 = 1, α2 = −1. A
first graphical inspection (see Figure 1) shows that there exists a clear influence
of the multiplicities of the roots on the shapes of the basins of attraction.

We can also observe that the basin of the root with higher multiplicity
invades the basin of the root with lower multiplicity. In Figure 1 we have
considered the rectangle [−3, 1] × [−2.5, 2.5] as a framework. Then, in these
rectangles one can see that the area of the corresponding basin (in white) of the
root z = 1 increases when the multiplicity m increases (m = 2, 3, 4). Since it
is known that the areas of the complete basins in the complex plane C is not
finite, this property cannot be easily extended to compare the complete basins.
However, this difficulty can be avoided using the canonical bijection between
the extended complex plane and the unit sphere C∪{∞} ∼= S2. Using the usual
measure of S2, we can calculate a new measure of the area of the basins in S2,
with the important property that now these areas are finite. In this way we can
compare the area of different complete basins.
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Since the structure of the boundary of an attraction basin (the Julia set) is,
in general, very complicated, the standard methods based on a good election of
coordinates and integration theory using a volume (area) form cannot be easily
applied. We have sorted out this problem by developing some combinatorial
methods and using the excess of a spherical triangle to compute, module a
given precision, the area of a basin in the Riemann sphere.

The main objective of this paper is to give a computational study of the
influence of the multiplicity of the roots on the area of the attraction basins.
Our study has been divided in three phases:

(i) We have given two different computational algorithms to calculate the area
of the basin of attraction of a fixed point of a rational function on the
Riemann sphere. In addition, we have implemented one of them using
Sage and the other one using Mathematica.

(ii) We have applied these algorithms and their implementations to compute
the area of the basins of attraction of the rational functions obtained when
Newton’s method is applied to a polynomial.

(iii) In particular, for the case of a polynomial with two roots p(z) = (z −
1)m(z+ 1)n, we have quantified the influence of the multiplicities m, n on
the measure of the corresponding basins.

With this aim, the paper is organized as follows. Section 2 is devoted to
recall some basic notions: discrete semi-flow, basin of attraction and canonical
bijections between the Alexandroff compactification of C, the 2-sphere and the
complex projective line. The geometrical notions given in Section 3 allow us
to introduce the usual measure on the 2-sphere in a computational way, by
using consecutive subdivisions of a cubical structure on the 2-sphere and the
Girard’s theorem that gives the area of a spherical triangle in terms of the
measure of its angles. The unit sphere is inscribed in the boundary of the
3-cube [−1, 1]3 and the central projection gives a homeomorphism from the
boundary of the 3-cube to the unit sphere. In our study, two canonical ways
of subdivision are used: the projection of subdivisions of the boundary of the
3-cube or the subdivisions of the projection of the cube. Both of them induce
the same standard measure on the unit 2-sphere; however, the second procedure
gives a more homogeneous distribution of areas and, as a consequence, a faster
algorithm, since fewer subdivisions are needed to achieve a given precision.

In Section 4, we give a description of the algorithms that we use to compute
the measure of the area of the attraction basins of a rational map on the Rie-
mann sphere. In addition, some implementation of these algorithms using the
computer programs Mathematica and Sage are described in Section 4.3. It is in-
teresting to remark that the order of convergence plays an important role in the
design of our algorithm, as we show in Subsection 4.1.2. To avoid some problems
derived from the slow convergence in case of linear order of convergence, we have
worked with two different precisions: 10−c1 and 10−c2 . In the case of Newton’s
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method, both precisions can be related with the formula c2 = c1− log10(m−1),
where m is the maximum of the multiplicities of the roots.

Finally, in Section 5 we study the effects of the multiplicity of the roots
on the attraction basins of Newton’s method applied to polynomials with two
roots. In particular, we look for an answer to the following question: if we choose
randomly a point in the Riemann sphere and we iterate the rational function
given by Newton’s method, what is the probability of the generated sequence to
converge to a given root? So, we can associate to each root a probability with
the above criterium. In the case of polynomials with two simple roots (Cayley’s
problem), it is clear that both roots have the same probability. However, the
inspection of Figure 1 reveals that the probability related to the root with the
biggest multiplicity is bigger than the other one. Although they could be many
other ways to associate a probability to a root, in this paper we have used the
area (divided by the area of the sphere) of the corresponding basin of attraction
in the Riemann sphere as the probability of the root. Section 5 contains also
some numerical experiments with values of the probabilities of the fixed points
1 and −1 of the rational function Bm,n introduced in (3) as a function of m
and n, or more generally, probabilities of polynomials with two unitary opposite
roots α1 = −α2 (|α1| = |α2| = 1). In section 6, some future applications and
research lines are analyzed.

2 Mathematical framework

In order to create a theoretical basis to hold and justify the correct construction
of our algorithms for the representation of basins of end points of rational maps,
we shall use the mathematical techniques described in this section. This study
will be developed within the theoretical framework of complex dynamics on the
Riemann sphere.

2.1 Discrete semi-flows and basins

A discrete semi-flow on a (topological space) set X is a (continuous) map ϕ : N×
X → X such that ϕ(0, p) = p, ∀p ∈ X and ϕ(n, ϕ(m, p)) = ϕ(n+m, p), ∀p ∈ X,
∀n,m ∈ N. We shall use n · x = ϕ(n, x) for short.

Given a discrete semi-flow ϕ : N × X → X, n0 ∈ N, x0 ∈ X, we have the
induced maps ϕn0 : X → X, ϕn0(x) = ϕ(n0, x), and the orbit of x0 given by
ϕx0 : N→ X, ϕx0(n) = ϕ(n, x0). Note that a discrete semi-flow ϕ : N×X → X
induces a map ϕ1 : X → X and, conversely, a (continuous) map f : X → X
induces a discrete semi-flow ϕ : N × X → X given by ϕ(n, x) = fn(x), where

fn denotes the function composition f ◦
(n)
· · · ◦ f and f0 = IdX . The discrete

semi-flow induced by f will be denoted by (X, f) or X for short.
Let X be a discrete semi-flow. A point x ∈ X is said to be a fixed point if,

for all n ∈ N, n ·x = x and x is said to be a periodic point if there exists n ∈ N,
n 6= 0, such that n · x = x.
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Let (X, d) be a metric space with metric d. Given a discrete semi-flow
induced by a continuous map f : X → X, the triplet (X, d, f) will be called
metric discrete semi-flow. Next, we introduce a notion of end point based on
the existence of the metric d; for other notions of end point of a dynamical
system, we refer the reader to [4].

Given a metric discrete semi-flow X = (X, d, f), the end point space of X is
defined as the quotient set

Π(X) =
{(fn(x))n∈N | x ∈ X}

∼
,

where, given x, y ∈ X, (fn(x)) ∼ (fn(y)) if and only if

(d(fn(x), fn(y)))
n→+∞

// 0.

An element a = [(fn(x))] ∈ Π(X) is called an end point of the metric discrete
semi-flow.

Notice that one can define a natural map

ω : X → Π(X)

given by ω(x) = [(fn(x))] = [(x, f(x), f2(x), . . . )]. The subset denoted by

Basin(a) = ω−1(a), a ∈ Π(X)

is called the basin of the end point a.
The map ω allows us to decompose any metric discrete semi-flow as follows:

X =
⊔

a∈Π(X,d)

Basin(a).

This decomposition will be called the ω-decomposition of the metric discrete
semi-flow X.

Note that a fixed point y can be interpreted as an end point [(y)] = [(y, y, . . . )] ∈
Π(X) and, in this case, one obtains the notion of attraction basin given in the
introduction.

2.2 Basins of rational functions on the Riemann sphere

Let S2 = {(r1, r2, r3) ∈ R3 | r2
1 + r2

2 + r2
3 = 1} be the unit 2-sphere and let

N = (0, 0, 1) be the north pole.
We can consider in a natural way a bijection θ̃ : S2 → C ∪ {∞} given as

follows:

θ̃(r1, r2, r3) =

{
r1

1−r3 + i r2
1−r3 , if r3 < 1,

∞, if r3 = 1.

Besides, we can take the equivalence relation on C2 \{(0, 0)}: (z, t) ∼ (z′, t′)
if there exists λ ∈ C \ {0} such that (z, t) = (λz′, λt′). The equivalence class
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of (z, t) is denoted by [z, t] and the quotient set is denoted by P1(C) and it is
called the complex projective line.

Given a point [z, t] ∈ P1(C), the coordinates (z, t) are called the homo-
geneous coordinates of the point and t/z (or z/t where appropriate) are the
absolute coordinates of that point. In our study, we often use normalized ho-
mogeneous coordinates for any point in P1(C), which are given as follows:

[z, t] =

{
[z/t, 1], if |t| ≥ |z|,
[1, t/z], if |t| < |z|,

where |t| and |z| represent the absolute value (or modulus) of the complex
numbers t and z, respectively.

We also have the induced bijection θ : P1(C)→ C ∪ {∞} given by

θ([z, t]) =

{
z/t, if t 6= 0,
∞, if t = 0.

The pair of bijections above induce a new bijection θ−1θ̃ : S2 → P1(C), which
is defined as follows:

θ−1θ̃(r1, r2, r3) = [r1 + ir2, 1− r3].

The inverse map of this bijection θ̃−1θ : P1(C) → S2 is given by the following
formula:

θ̃−1θ([z, t]) =
(
z̄t+ zt̄

t̄t+ zz̄
,
i(z̄t− zt̄)
t̄t+ zz̄

,
−t̄t+ zz̄

t̄t+ zz̄

)
.

We recall that a surface with a 1-dimensional complex structure is said to
be a Riemann surface and a Riemann surface of genus 0 is said to be a Riemann
sphere. Using the bijections defined above, we have that S2 and C ∪ {∞} are
Riemann spheres.

Let h : C → C be a rational function in the form h(u) = a
F (u)
G(u)

, where

u, a ∈ C, a 6= 0, F (u) = (u − z1) · · · (u − zp) = up + a1u
p−1 + · · · + ap and

G(u) = (u− l1) · · · (u− lq) = uq + b1u
q−1 + · · ·+ bq. Suppose that {z1, . . . , zp}∩

{l1, . . . , lq} = ∅. Then, the function h induces an extension map h+ : C∪{∞} →
C ∪ {∞}, where h+(li) = ∞ and h+(∞) ∈ {∞, 0, a} and its value depends on
the degrees of F and G.

It is important to notice that, in the case that we take u = z/t and d =
max{p, q} in the expression

a(up + a1u
p−1 + · · ·+ ap)

(uq + b1uq−1 + · · ·+ bq)
,

we have
a(zptd−p + a1z

p−1td−p+1 + · · ·+ apt
d)

zqtd−q + b1zq−1td−q+1 + · · ·+ bqtd
.
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Then, we obtain the following homogeneous polynomials of degree d in the
variables z, t:

A(z, t) = a(zptd−p + a1z
p−1td−p+1 + · · ·+ apt

d),

B(z, t) = zqtd−q + b1z
q−1td−q+1 + · · ·+ bqt

d.

The bijection θ : P1(C) → C ∪ {∞} induces the map h1 : P1(C) → P1(C)
defined by h1 = θ−1h+θ, which is expressed in homogeneous coordinates as
follows:

h1([z, t]) = [A(z, t), B(z, t)].
We can see that if f is a rational map represented by a pair of coprime homoge-
neous polynomialsA(z, t), B(z, t) of degree d, then the set {[z1, t1], . . . , [zn+1, tn+1]}
of roots of A(z, t)t−B(z, t)z is the set of fixed points of f and the iterated map
fr is a rational map of degree dr which has dr + 1 fixed points (taking into
account its multiplicity).

Remark 1. The representation of a rational function with a pair of ho-
mogeneous polynomials in two variables with the same degree combined with
normalized homogeneous coordinates permits to work with poles and the point
at infinity, as well as to avoid overflows and underflows in our algorithms.

We also recall that one has two natural metrics on S2: since S2 is a subspace
of R3, the usual Euclidean metric of R3 induces an Euclidean metric dE on
S2, which is called chordal metric; besides, we have as well that S2 inheres a
Riemannian metric dR from the canonical Riemannian structure of S2 ⊂ R3.
The connection between the Riemannian metric dR and the Euclidean metric
dE on S2 is given by the expression:

dE((r1, r2, r3), (r′1, r
′
2, r
′
3)) = 2 sin

(
dR((r1, r2, r3), (r′1, r

′
2, r
′
3))

2

)
.

Using the bijection θ̃−1θ : P1(C) → S2, we can translate the metric struc-
tures from S2 to P1(C) with the following formulas:

dE1 ([z, t], [z′, t′]) = dE(θ̃−1θ([z, t]), θ̃−1θ([z′, t′])),
dR1 ([z, t], [z′, t′]) = dR(θ̃−1θ([z, t]), θ̃−1θ([z′, t′])).

An explicit formula for the chordal metric dE1 is given by:
dE1 ([z, t], [z′, t′]) =((
z̄t+zt̄
t̄t+zz̄ −

z̄′t′+zt̄′

t̄′t′+z′z̄′

)2

+
(
i(z̄t−zt̄)
t̄t+zz̄ −

i(z̄′t′−z′ t̄′)
t̄′t′+z′z̄′

)2

+
(
−t̄t+zz̄
t̄t+zz̄ −

−t̄′t′+z′z̄′

t̄′t′+z′z̄′

)2
) 1

2

.

In this paper, we consider the metric space (X, d, f), where X = S2 ∼=
C∪ {∞} ∼= P 1(C), d = dE is the chordal metric on S2 and f is a rational map.

The canonical map
ω : S2 → Π(S2, dE)

given by ω(x) = [(x, f(x), f2(x), . . . )] decomposes the 2-sphere as a disjoint
union of basins of end points. One of the objectives of this paper is to develop
some algorithms to compute the area of these basins.
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Figure 2: An example of a spherical triangle.

3 Cubic subdivisions of the sphere and measure
functions

In this section, we describe a computational method to give a measure function
on a sphere based on the excess of a spherical quadrilateral and a system of
consecutive subdivisions of the sphere.

A spherical triangle ABC is formed by connecting three points on the surface
of a sphere with great arcs, so that these three points do not lie on a great circle
of the sphere (see Figure 2). The angle at each vertex is measured as the angle
between the tangents to the incident sides in the vertex tangent plane.

Theorem 1. Let ABC be a triangle on a sphere of radius R with each
angle smaller than π. Then, the area of the spherical triangle ABC is

µ(ABC) = (∠A+ ∠B + ∠C − π)R2.

The condition that each angle of the triangle is smaller than π avoids a
possible ambiguity between the triangle or its complement on the sphere. This
result is also known as Girard’s theorem and the value (∠A + ∠B + ∠C − π)
is called the excess of the spherical triangle. We recall that a similar formula is
used in the hyperbolic plane to give the area of a triangle, but in this case one
has to take the defect π − (∠A+ ∠B + ∠C).

A spherical quadrilateral ABCD is defined in a similar way. As a conse-
quence of Girard’s theorem, one obtains:

Corollary 1. The area of a spherical quadrilateral ABCS on a sphere of
radius R is

µ(ABCD) = (∠A+ ∠B + ∠C + ∠D − 2π)R2.

It is interesting to remark that in the case R = 1, one has that the area of
a spherical triangle coincides with its excess and similarly for spherical quadri-
laterals.
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(a) The subdivision η(Sd2(S)). (b) The subdivision Sd2(η(S)).

Figure 3: Processes of consecutive cubical subdivisions of the sphere.

3.1 Two different processes of consecutive subdivisions of
the sphere

We note that the unit 2-sphere is inscribed in the boundary of the cube [−1, 1]3

and the Euclidean norm induces a canonical projection

η : ∂([−1, 1]3)→ S2 , η(x) =
x

‖x‖
.

It is interesting to note that one has a canonical cubic structure S of the
boundary of the 3-cube (8 vertexes, 12 edges and 6 faces). Taking the barycen-
ters of the cubes of S, one can construct the canonical barycentric subdivision
Sd(S) and, for r = 0, 1, 2, . . . , we can apply consecutively the operator Sd to
obtain the subdivisions Sdr(S).

The subdivision structures given above are transformed by η into new sub-
divisions of the 2-sphere:

η(Sdr(S)).

For instance, for r = 2 one has the cubic structure of Figure 3(a).
We can follow a different strategy to obtain other type of consecutive cubical

subdivisions of the sphere. To do this, we can use the following basic properties
of the spherical geometry:

(i) Given two non-antipodal points A,B ∈ S2, (A 6= B), there is a unique
spherical arc AB determined by A and B.

(ii) Given a spherical arc AB, there is a unique middle point

(ÂB) =
A+B

||A+B||
.
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(iii) Given a spherical quadrilateral ABCD, there is a unique middle point

(ÂBCD) =
A+B + C +D

||A+B + C +D||
.

(iv) A given spherical quadrilateral ABCD admits a canonical subdivision
given by the four spherical quadrilaterals:

A(ÂB)(ÂBCD)(D̂A), (ÂB)B(B̂C)(ÂBCD),

(ÂBCD)(B̂C)C(ĈD), (ĈD)D(D̂A)(ÂBCD).

In this way, we can subdivide each quadrilateral of η(S) to obtain the sub-
division Sd(η(S)). Applying consecutively the operator Sd, for r = 0, 1, 2, . . . ,
one has the r-th subdivision:

Sdr(η(S)),

which can be seen for r = 2 in Figure 3(b).

Remark 2. It is interesting to observe that we have described two different
processes to obtain consecutive cubical subdivisions of the 2-sphere: η(Sdr(S))
and Sdr(η(S)). In order to compute the measure of a basin, the authors have de-
veloped algorithms implemented in Sage to construct the subdivisions η(Sdr(S))
and other algorithms implemented in Mathematica to construct Sdr(η(S)). This
will permit us to compare different algorithms and different computational en-
vironments.

3.2 Measures and probabilities induced by consecutive sub-
divisions

A sequence of consecutive subdivisions Γr of the 2-sphere permits us to consider
the 2-sphere as a measure space and, dividing the measure function by the area
of the 2-sphere, one obtains a canonical structure of probability space. In order
to calculate the area of a spherical quadrilateral ABCD of a given subdivision,
it suffices to apply the formula given in Corollary 1:

µ(ABCD) = ∠A+ ∠B + ∠C + ∠D − 2π.

Denote by Sd(ABCD) the family of the new spherical quadrilaterals of a
subdivision of a spherical quadrilateral ABCD and by µ(Sd(ABCD)) the sum
of the areas of the quadrilaterals of the subdivision of ABCD using the formula
above. Taking into account that the sum of the measures of the angles at some
vertexes is π or 2π, it is easy to check that

µ(Sd(ABCD)) = µ(ABCD).

To extend this measure procedure to a more general subset A of the unit
2-sphere, we suppose that the subdivision sequence satisfies the following con-
dition: if σr is a quadrilateral of Γr, then limr→+∞(µ(σr)) = 0.
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Now, the family of measurable subsets can be introduced as follows. Let
A ⊂ S2 and consider the following families of spherical quadrilaterals and areas:

S(A, r) = {σ ∈ Γr | A ∩ σ 6= ∅}, SrA =
∑

σ∈S(A,r)

µ(σ)

and
s(A, r) = {σ ∈ Γr | σ ⊂ A}, srA =

∑
σ∈s(A,r)

µ(σ),

where, in case that s(A, r) is empty, one takes srA = 0.
So, as a consequence of the following result, one has an increasing sequence

of lower sums srA and a decreasing sequence of upper sums SrA.

Lemma 1. Let A ⊂ S2 and suppose that Γr+1 is a subdivision of Γr. Then,

(i) s(A, r) ⊂ S(A, r), srA ≤ SrA;

(ii) Sd(s(A, r)) ⊂ s(A, r + 1) ⊂ S(A, r + 1) ⊂ Sd(S(A, r)),
µ(Sd(s(A, r))) = srA, µ(Sd(S(A, r))) = SrA;

(iii) srA ≤ s
r+1
A ≤ Sr+1

A ≤ srA.

Definition 1. Let A be a subset of the unit sphere S2. The limit sA =
limr→+∞srA is said to be the lower sum of A and SA = limr→+∞SrA is said
to be the upper sum of A. A ⊆ S2 is said to be measurable if sA = SA, and
s = sA = SA is said to be the measure or area of A. The probability measure of
A is given by P (A) = s/4π.

Remark 3. The measure µ can be also considered as a solid angle measure
which generalizes to dimension 2 the usual circle angle measure.

The measure in the 2-sphere can be also introduced using a volume form, and
the measure of many regions whose boundary is given by a smooth curve can
be computed in many cases using suitable coordinates and by usual integration
formulas. However, many problems appear when one wants to compute the area
of an attraction basin whose frontier is a Julia set whose fractal dimension is
between 1 and 2 and its length (if the Julia set can be considered as a measurable
set) could be infinite.

In this paper, we describe some computational algorithms to give the area or
probability of the basin of a fixed point of a rational function on the Riemann
sphere. As an application, we compute, up to a given precision, the area of
attraction basins of the rational function obtained by applying Newton’s method
to a polynomial and we also quantify the influence of the multiplicity for the
case of a polynomial with two roots.
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4 Multiplicity, algorithms and implementations

In the previous sections, we have introduced some mathematical techniques
and developed basic theoretical aspects necessary to build computer programs
with the ability of representing attraction basins of end points associated to a
determined rational function. We shall show in the next lines the algorithms
which have been developed to study the basins induced by a rational function
f on the Riemann 2-sphere.

4.1 Influence of the multiplicity on the design of algo-
rithms

The authors (see Ref. [7]) have developed some algorithms and implementations
to plot the different basins of a rational map. However, when the order of
convergence is linear, the modifications described below are convenient in order
to obtain right plots and measure of basins.

4.1.1 Order of convergence bigger than one

With a view to find an end point associated to a point x ∈ S2, the rational map
f must be iterated to obtain a finite sequence

(x, f(x), f2(x), f3(x), . . . , fk−1(x), fk(x)).

In this context, a maximum number of iterations l must be considered and a
certain precision c must be prefixed to determine when to stop the iterative
process while programming the function which returns such sequence. That is
why we shall always work with sequences in which k ≤ l.

After each iteration, there will be two possible cases:

1) If the chordal distance from fk−1(x) to fk(x) is lower than 10−c, then the
list [fk(x), k] is taked as output; otherwise, case 2) is applied.

2) If k < l, a new iteration is done and case 1) is applied again; otherwise (if
k = l), then the output [f l(x), l] is taken.

Consider the ordered sequence of all fixed points {x1, x2, . . . , xh+1} associ-
ated to the rational map f . If m1,m2, · · · ,mh+1 are the multiplicities of the
fixed points, one has that m1 +m2 + · · ·+mh+1 = d+ 1, where d is the degree
of the rational map.

Now, given a point x ∈ S2, if we consider the iteration sequence (x, f(x),
f2(x), f3(x), . . . , fk−1(x), fk(x)) and the corresponding output [fk(x), k] given
by the sub-algorithm above, we have two cases: if there exists i ∈ {1, . . . , h+ 1}
such that the chordal distance from fk(x) to the fixed point xi is lower than
10−c, then the new sub-algorithm returns [i, k]; otherwise, one has k = l and
the output is taken to be [0, l], where l is the maximum number of iterations
which was prefixed beforehand.

13



Denote by Dc,l
xi

the set of points for which the sub-algorithm returns [i, k]
(k ≤ l) and denote Dc,l = Dc,l

x1
∪ · · · ∪ Dc,l

xh+1
. We observe that Dc,l

xi
is an

approximation of the basin Basin(xi) = ω−1([xi, xi, · · · ]). In general, for a
greater l and a greater c, one obtains better approximations of the attraction
basins.

In this way, we have a decomposition of the Riemann 2-sphere:

S2 = (S2 \Dc,l) ∪Dc,l
x1
∪ · · · ∪Dc,l

xn+1
.

It is interesting to observe that, when one has convergence of order greater
than 1, then for large k the distance from fk(x) to the limit point is lower than
the distance from fk−1(x) to fk(x). This fact cannot be true if a linear order of
convergence is attained and, in that case, it is necessary a modification of the
algorithm which is described in next subsection. This situation appears when
we apply Newton’s method to a polynomial with non-simple roots.

4.1.2 Modification of the algorithms in case of linear convergence

Suppose that we are working with a rational function f of the Riemann sphere
and we are using the chordal distance d = dE . If for a given point x one has
that fk(x) converges to a given fixed point y and

lim
(

d(f (k)(x), y)
d(f (k−1)(x), y)

)
= λ < 1,

then one has linear convergence.
The above algorithms have an important problem when the sequence fk(x)

has linear convergence. In this case, for large k we have that

d(f (k)(x), y) ∼ λd(f (k−1)(x), y).

If we suppose that d(fk(x), y) is a decreasing sequence, then one has that

d(f (k)(x), f (k−1)(x)) ≥ d(f (k−1)(x), y)− d(f (k)(x), y)

∼ 1
λ
d(f (k)(x), y)− d(f (k)(x), y)

=
(

1
λ
− 1
)
d(f (k)(x), y)

or, equivalently, d(f (k)(x), y) . λ
1−λd(f (k)(x), f (k−1)(y)).

For Newton’s method, if we consider the rational map f = Np, where p is a
polynomial, one of the difficulties with the numerical calculation of a multiple
root of multiplicity m is that the convergence is slower than for the case of
a simple root. For a root of multiplicity m, one has linear convergence with
λ = 1− (1/m); hence, λ

1−λ = m− 1, and, therefore,

d(f (k)(x), y) . (m− 1)d(f (k)(x), f (k−1)(y)).

14



Then, for a large k, in the case that d(f (k)(x), y) ∼ (m−1)d(f (k)(x), f (k−1)(y)),
one could have that

d(f (k−1)(x), y) ∼ (m− 1)d(f (k)(x), f (k−1)(y)).

This implies that, when the iterative process stops because

d(f (k)(x), f (k−1)(x)) ∼ 10−c,

then one can have d(f (k)(x), y) ∼ (m−1)10−c > 10−c (m > 2) and the algorithm
will give a wrong result, which is that x is not in the basin of y.

This problem can be avoided working with two precision numbers: 10−c1 is
the precision we use in order to stop the iteration process and a new precision
10−c2 can be introduced to determine if the final point of the iteration is close
to a given root (fixed point) of multiplicity m > 2. In order to compare both
precision numbers, as a consequence of the effect of multiplicity m, one has
10−c2 ∼ (m− 1)10−c1 ; thus, it suffices to take

c2 = c1 − log10(m− 1).

In general, for a polynomial with at least one non-simple root and multi-
plicities m1, . . . ,ms, one can take c2 = c1 − log10(max{m1 − 1, . . . ,ms − 1}) to
compute the basins of the corresponding rational function and their measure.

4.2 Algorithms to compute the area of the basins of end
points

4.2.1 Projection of subdivisions: η(Sdr(S))

For each 2-cube σ of Sdr(S), we compute its barycenter σ̂ and the point η(σ̂).
After that, we use the algorithm given in the previous section to check whether
η(σ̂) is in the basin of one of the fixed points x1, · · · , xh+1 (we remark that
we have a prefixed maximal number of iterations l, as well as precisions 10−c1
and 10−c2). We have two possibilities: if η(σ̂) is in the basin of a fixed point
xi, then the 2-cube η(σ) is included in a list of 2-cubes Li(r) associated with
the fixed point xi; otherwise, the 2-cube σ is not included in any of the lists
L1(r), . . . , Lh+1(r).

For each list Li(r), we can compute the finite sum of the areas of its spherical
2-cubes (quadrilaterals) µ(Li(r)) =

∑
σ∈Li(r)

µ(η(σ)), where the area µ(η(σ)) is
given by computing the excess of the spherical quadrilateral η(σ), see Corollary
1. In order to calculate the probability, it suffices to divide by the area 4π of
the unit 2-sphere.

If you want to obtain the area module a precision 10−c, you have to repeat
the process above for higher values of r until you find one such that |µ(Li(r))−
µ(Li(r + 1))| < 10−c. Now, take µ(Li(r + 1)) as the area of the basin of xi.

Note the following fact: our algorithm states that, if the point η(σ̂) is in the
basin of a fixed point, then every point of η(σ) is contained in the basin. Since
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we can work with very fine subdivisions, this is not a big problem; however,
this step of the algorithm can be improved checking that more points of η(σ)
are in the same basin or using more information, for example, the value of the
derivative of an iterated function at η(σ̂).

4.2.2 Subdivisions of the projection: Sdr(η(S))

In this case, the algorithm is similar to the process above. The difference is that
we consider consecutive subdivisions of the first projection instead of projections
of consecutive subdivisions, see subsection 3.1.

The main difference of this second process, Sdr(η(S)), is that the areas of
the 2-cubes of a given subdivision are more similar than those of the 2-cubes
obtained by η(Sdr(S)).

This implies that the election of “middle points” is more homogeneous in this
second method than in the first method and, as a consequence, we can obtain
a better approximation of the area of a basin for the same subdivision order.
The fact that the distributions of areas is more homogeneous can be seen just
by looking the following matrices M1 and M2, which represent the areas of the
“2-cubes” of the second subdivision of one of the six faces corresponding to the
boundary of the cube [−1, 1]3 by using respectively the first method, η(Sd2(S)),
or the second one, Sd2(η(S)), illustrated in Figures 3(a), 3(b).

M1 =


0.0814556 0.120393 0.120393 0.0814556
0.120393 0.201358 0.201358 0.120393
0.120393 0.201358 0.201358 0.120393
0.0814556 0.120393 0.120393 0.0814556



M2 =


0.109805 0.131197 0.131197 0.109805
0.131197 0.151401 0.151401 0.13119
0.131197 0.151401 0.151401 0.13119
0.109805 0.131197 0.131197 0.109805


Note that the distribution of the areas is more homogeneous in the second

matrix; that is, the discrepancy between the areas is lower in the second case
than in the first one.

4.3 Implementation of graphic and probability algorithms
in Sage and Mathematica

We have implemented in Sage the first algorithm (projection of subdivisions),
cubicProbabilityList, to compute the probabilities of the different basins
and we have constructed the function cubicSpherePlot to plot the attrac-
tion basins of a root (for other plotting programs on the plane, see also [10]).
For more details about the implementation in Sage, we refer the reader to [7].
We have also implemented new versions working with two precisions c1, c2 in
order to avoid the possible problems originated when the order of convergence
is lineal.
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Figure 4: Plot of the attraction basins of the roots of the equation z5 − 1 = 0 in the
Riemann sphere.

Besides, we have also implemented the second algorithm (subdivisions of the
projection) using Mathematica.

In next section, we shall see how these two different algorithms implemented
in two different environments give similar results when one computes the mea-
sure of the basins of some rational function.

For example, the fractal showed in Figure 4 was plotted by applying the
above Sage function cubicSpherePlot to the rational function

Np =
4x5 + 1

5x4
,

which is obtained when Newton’s method is used to compute the roots of the
equation p(z) = z5 − 1 = 0.

5 Quantifying the influence of multiplicity with
numerical experiments

In this section, we use the algorithms seen in the previous section to analyze the
influence of the multiplicities m and n on the basins of attraction of the fixed
points of a rational function in the form Bm,n given in (3). In particular, for
polynomials

p(z) = (z − 1)m(z + 1)n, m, n ∈ N \ {0}, (4)

Bm,n can be written as follows:

Bm,n(z) =
(m+ n− 1)z2 + (m− n)z + 1

(m+ n)z + (m− n)
. (5)

Subsequently, our experiment allow us to show the influence of the multiplicities
on the probabilities related to the roots 1 and −1 of the polynomial (4), as
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explained in Section 1. Taking into account the criterium which was introduced
there, for each m,n ∈ N we denote by P1(m,n) the probability of the root z = 1
and by P−1(m,n) the probability of the root z = −1; that is,

P−1(m,n) =
A−1

4π
, P1(m,n) =

A1

4π
,

where A−1 and A1 are respectively the areas of the basins of attraction in the
Riemann sphere of the roots −1 and 1, considered as fixed points of (5).

5.1 A graphic approach plotted with Sage

In Figure 5, we have plotted the basins of attraction of the roots z = −1 and
z = 1 for different values of m and n (m > n). We can see how the basin
of the root z = −1 is smaller than the other basin. In addition, we have
quantified this graphical fact by calculating the probability related with the
two roots. In fact, we only have included the values of P−1(m,n), because
P1(m,n) = 1 − P−1(m,n). In order to obtain these images, we have used the
projection of a subdivision with order r = 5.

Our numerical experiments reveals the following facts:

(i) It is necessary to increase the number of maximum iterations when mul-
tiplicities m and n go up.

(ii) For a fixed m, the function P−1(m,n) is increasing on the variable n.

(iii) For a fixed n, the function P−1(m,n) is decreasing on the variable m.

(iv) For a fixed (m,n), m ≥ n, the function P−1(m+ s, n+ s) is increasing on
the integer variable s ≥ 0.

5.2 Computing the precision obtained using two consecu-
tive subdivisions

In Table 1, we have gathered the values of probabilities PM5
−1 (m,n) for 1 ≤ m ≤ 8

and 1 ≤ n ≤ 8 when taking the fifth subdivision Sd5(η(S)) and a maximum
number of iterations equal to 100. These probabilities have been calculated
using the process described in paragraph 4.2.2 implemented in Mathematica.

Note that one has

P−1(m,n) + P−1(n,m) = 1.

From the results obtained by this simulation, one also obtains that the Julia
set in S2 has probability measure equal to zero and the same happens for the
basins associated to periodic points, so that

P−1(m,n) + P1(m,n) = 1.
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P−1(2, 1) = 0.23

P−1(3, 1) = 0.14 P−1(3, 2) = 0.34

P−1(4, 1) = 0.11 P−1(4, 2) = 0.26 P−1(4, 3) = 0.39

Figure 5: Basins on the Riemann sphere of the roots z = −1 (light blue) and z = 1
(dark blue) as fixed points of the rational function (5), together with the probability
P−1(m, n) for different multiplicities m and n.

Then, the resulting table for P1(m,n) can be also obtained by transposing rows
and columns in the table above:

P1(m,n) = P−1(n,m).

Taking the sixth subdivision and a maximum number of iterations equal to
100, the values of probabilities PM6

−1 (m,n) have been computed with Mathemat-
ica in Table 2. One can easily check that a precision of two decimal places is
obtained. When we compare with the fifth subdivision, we have:∣∣PM5

−1 (m,n)− PM6
−1 (m,n)

∣∣ < 4.8 · 10−3, 1 ≤ m,n ≤ 8.

Remark 4. The level of accuracy of these algorithms can be improved using
finer subdivisions. For instance, for m = 2 and n = 1, taking a new subdivision
Sd7, we obtain a better precision:

∣∣PM6
−1 (2, 1)− PM7

−1 (2, 1)
∣∣ < 1.2·10−4. However,

in our study we focus on the study of the influence of multiplicity more than on
the analysis of the level of accuracy in the calculation of the probability.
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m = 1 0.5 0.7659 0.8513 0.8883 0.9080 0.9285 0.9342 0.9466

m = 2 0.2341 0.5 0.6539 0.7402 0.7930 0.8283 0.8536 0.8715

m = 3 0.1487 0.3461 0.5 0.6054 0.6810 0.7310 0.7684 0.7966

m = 4 0.1117 0.2598 0.3946 0.5 0.5831 0.6430 0.6926 0.7298

m = 5 0.0920 0.2070 0.3190 0.4169 0.5 0.5641 0.6195 0.6620

m = 6 0.0715 0.1717 0.2690 0.3570 0.4359 0.5 0.5565 0.6014

m = 7 0.0658 0.1464 0.2317 0.3074 0.3805 0.4435 0.5 0.5448

m = 8 0.0534 0.1285 0.2034 0.2702 0.3380 0.3986 0.4552 0.5

Table 1: Probabilities PM5
−1 (m, n) (related to the basin of z = −1) for different multi-

plicities m, n calculated with Mathematica by first projecting and then taking the fifth
subdivision.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m = 1 0.5 0.7665 0.8512 0.8898 0.9127 0.9259 0.9357 0.9447

m = 2 0.2335 0.5 0.6527 0.7402 0.7928 0.8287 0.8532 0.8711

m = 3 0.1488 0.3473 0.5 0.6060 0.6801 0.7325 0.7712 0.7989

m = 4 0.1102 0.2598 0.3940 0.5 0.5818 0.6445 0.6920 0.7284

m = 5 0.0873 0.2072 0.3199 0.4182 0.5 0.5667 0.6196 0.6632

m = 6 0.0741 0.1713 0.2675 0.3555 0.4333 0.5 0.5543 0.6018

m = 7 0.0643 0.1468 0.2288 0.3080 0.3804 0.4457 0.5 0.5480

m = 8 0.0553 0.1289 0.2011 0.2716 0.3368 0.3982 0.4520 0.5

Table 2: Probabilities PM6
−1 (m, n) (related to the basin of z = −1) for different mul-

tiplicities m, n calculated with Mathematica by first projecting and then taking the
sixth subdivision.

5.3 Comparing two different algorithms implemented in
different computational environments

In Table 3, we have written the probability P S6
−1(m,n) obtained by the imple-

mentation in Sage of the algorithm referred in paragraph 4.2.1 (projection of the
subdivisions) taking the sixth subdivision η(Sd6(S)). Observe that, although
different strategies and programs have been used to estimate the probabilities
P S6
−1(m,n) and PM6

−1 (m,n),∣∣P S6
−1(m,n)− PM6

−1 (m,n)
∣∣ < 2.1 · 10−3, 1 ≤ m,n ≤ 8;

that is, both processes provide similar results.

5.4 Quantification of the influence of multiplicity with po-
tential and polynomial functions

Ir order to obtain a more precise quantification of the influence of multiplicities
m and n on the probability related to the roots of the polynomial (4), we
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m = 1 0.5 0.7660 0.8502 0.8893 0.9114 0.9259 0.9360 0.9438

m = 2 0.2340 0.5 0.6538 0.7397 0.7927 0.8284 0.8526 0.8711

m = 3 0.1498 0.3462 0.5 0.6067 0.6805 0.7327 0.7702 0.7989

m = 4 0.1107 0.2603 0.3933 0.5 0.5814 0.6446 0.6921 0.7285

m = 5 0.0886 0.2073 0.3195 0.4186 0.5 0.5659 0.6193 0.6627

m = 6 0.0741 0.1716 0.2673 0.3554 0.4341 0.5 0.5563 0.6028

m = 7 0.0640 0.1474 0.2298 0.3079 0.3807 0.4437 0.5 0.5478

m = 8 0.0562 0.1289 0.2011 0.2715 0.3373 0.3972 0.4522 0.5

Table 3: Probabilities P S6
−1(m, n) (related to the basin of z = −1) for different mul-

tiplicities m, n calculated with Sage by first taking the sixth subdivision and then
projecting.

n PM6
−1 (m,n) R2

1 0.4872m−1.0547 0.9987
2 1.0099m−0.9876 0.9987
3 1.4223m−0.9358 0.9979
4 1.7165m−0.883 0.9986
5 1.9384m−0.8391 0.9989

Table 4: Potential approach to PM6
−1 (m, n) for m ≥ n and a fixed n.

show in Table 4 and Table 5 functions that are rather good approximations
of P−1(m,n), in the first case for a fixed n and in the second case for a fixed
m. These approximations have been calculated by means of the method of least
squares. In both tables, the value R2 represents the coefficient of determination,
which measures the goodness-of-fit.

For each fixed n ∈ [1, 5], a graphic of the original probabilities PM6
−1 (m,n)

and the corresponding potential fitting functions can be seen in Figure 6. In the
same way, another plot of these probabilities for 4 ≤ m ≤ 8 and their relative
polynomic fitting functions is shown in Figure 7.

Remark 5. Note that Newton’s method can also be applied when the multi-

m PM6
−1 (m,n) R2

8 −0.0022n2 + 0.084n− 0.0287 0.9999
7 −0.0028n2 + 0.0961n− 0.0315 0.9998
6 −0.004n2 + 0.1141n− 0.0377 0.9999
5 −0.0065n2 + 0.1425n− 0.0497 0.9999
4 −0, 0109n2 + 0, 1849n− 0, 0644 0.9999

Table 5: Polynomic approach to PM6
−1 (m, n) for m ≥ n and a fixed m.
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Figure 5: Values of the probabilities PM6
−1 (m, n) when the lowest multiplicity n is

fixed.
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Figure 6: Values of the probabilities PM6
−1 (m, n) when the lowest multiplicity n is

fixed.

plicities m,n are not integers. Even more, the algorithms described in this paper
also work in this case and the potential and polynomic functions given in Table 4
and Table 5 give a good approximation to the probability when one of the two
multiplicities is an integer. For instance, let us consider the case n = 2. The
potential function obtained from Table 4 (see also Figure 6) for n = 2 is denoted
by g2(m) = 1.0099m−0.9876. The following pairs give the values of PM6

−1 (m, 2)
and its approximations by g2(m) for different not necessarily integer values of
m:

PM6
−1 (5, 2) = 0.2072, g2(5) = 0.2060; PM6

−1 (5.2, 2) = 0.1988, g2(5.2) = 0.1982;
PM6
−1 (5.4, 2) = 0.1916, g2(5.4) = 0.1909; PM6

−1 (5.6, 2) = 0.1853, g2(5.6) = 0.1842;
PM6
−1 (5.8, 2) = 0.1777, g2(5.8) = 0.1779; PM6

−1 (6, 2) = 0.1713, g2(6) = 0.1720.

Similar observations can be done for the functions of Table 5 plotted in Figure 7.

Remark 6. The graphics shown in Figure 6 suggest that, for a fixed n,
the probability PM6

−1 (m,n) → 0 when m → +∞. Note that, for multiple roots,
the rational functions given by Newton’s method has always quadratic degree.
For this reason, in this case we can avoid the problem of working with rational
functions of high degree that appears when Newton’s method is applied to a
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Figure 6: Values of the probabilities PM6
−1 (m, n) when the highest multiplicity m is

fixed.
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Figure 7: Values of the probabilities PM6
−1 (m, n) when the highest multiplicity m is

fixed.

high order polynomial with simple roots. We have checked the goodness of fit
of the calculations performed for n = 2 and higher values of m, in particular,
m = 10, 20, 30. In these cases, the values of the potential function given in
Table 4 for n = 2, that is g2(m) = 1.0099m−0.9876, are:

g2(10) = 0.103915, g2(20) = 0.052406, g2(30) = 0.0351134,

whereas the values of the probabilities obtained by our algorithms are

PM6
−1 (10, 2) = 0.104219, PM6

−1 (20, 2) = 0.0532655, PM6
−1 (30, 2) = 0.0375119.

As we can see, the corresponding values are quite similar. This fact suggests
that the potential functions also give a good approximation when m tends to
infinity. Consequently, the probability of reaching the root with lower multiplicity
decreases to 0 when the multiplicity of the other root goes to infinity.

On the other hand, note that the functions defined in Table 5, whose graphics
are given in Figure 7, are polynomials of degree 2. From these graphics, one
could infer that in general for a fixed m, and for 1 ≤ n ≤ m, the discrete
function PM6

−1 (m,n) can be approached by quadratic polynomials. In Figure 7,
we also observe that, for m = n, one obtains PM6

−1 (m,n) = 0.5, as we have
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already mentioned. This idea is supported by the result previously obtained in
[17].

We can summarize saying that the discrete function PM6
−1 (m,n), whose values

are numerically given by our algorithms, can be approached, for a fixed n, by
potential functions with (negative) non-integer exponents. In the same way,
for a fixed m, the corresponding discrete function with domain {1, · · · ,m} is
approached by a polynomial of degree 2.

Remark 7. One interesting question is to study the change of the probability
of reaching a root when we consider different numerical methods. For instance,
we have also made some experiments when the relaxed Newton’s method

zn+1 = Rp,λ(zn) = zn − λ
p(zn)
p′(zn)

, (6)

is applied to to the polynomial p(z) = (z − 1)3(z + 1)2. In particular, we have
chosen the values λ = 2 and λ = 3 for the relaxing parameter. Let us consider
the root z = −1 and let us denote PRp,3

−1 (3, 2), and P
Rp,2
−1 (3, 2) the probabilities

of reaching the root z = −1 by the relaxed Newton’s method for λ = 3 and
λ = 2, respectively. P

Np

−1 (3, 2) denotes the probability obtained for Newton’s
method (given in Table 2). Then we have

P
Rp,3
−1 (3, 2) = 0.2842 < P

Rp,2
−1 (3, 2) = 0.3250 < P

Np

−1 (3, 2) = 0.3473.

In our opinion, the behavior of the probability of reaching a given root using
different generalized Newton’s methods should be analyzed in a more detail in
future works using more numerical calculi and new simulations. We are aware
that for generalized Newton’s method there are other factors that must be taken
into account to analyze the structure of the related Julia sets, such as the exis-
tence of extraneous fixed points (see Ref. [12]).

6 Conclusions and further work

In this paper, we have developed two algorithms to measure the basins of at-
traction of the fixed points of a rational function in the Riemann sphere. We
have used two different mathematical programs in order to implement them.
Actually, one of them has been implemented with Sage and the other one with
Mathematica. As an application, we have measured the basins of attraction of
the fixed points of the rational function obtained when Newton’s method is ap-
plied to a polynomial in the form (4). Note that this fixed points are the roots
α1 = −1 and α2 = 1 of such polynomial. Next, we have assigned probabilities
P−1(m,n) and P1(m,n) to the roots depending on their multiplicities (m,n)
with the following criterium: Pαi(m,n) denotes the probability for a point in
the Riemann sphere to belong to the basin of attraction of αi, i = 1, 2.

We have written this paper with the aim of connecting to different theories,
such as the numerical solution of nonlinear equations and the dynamics of some
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topological spaces. We are aware that there are many other questions that
could be taken into account in further works. For instance, we think that it
would be worthy to complete our initial numerical experiments with, at least,
the following aspects:

(i) Analysis of the probabilities Pαi
(m,n) and their properties for other choices

of the roots and not only for two opposite unitary roots −α1 = α2 = 1.

(ii) Generalization to polynomials with three or more roots and their corre-
sponding multiplicities.

(iii) Comparison of the influence of multiplicity on the measure of basins of
attraction when other numerical methods are considered: relaxed New-
ton’s method, Chebyshev’s method, Halley’s method, etc. In this way,
it would be interesting to take into account previous results obtained for
these methods in the references [11] or [14], for instance.

(iv) Application of our algorithms for iteration functions not necessary ratio-
nal, such as complex exponential functions, trigonometric functions, etc.
The references [15] and [16] could be very helpful in this way.

(v) Development of some algorithms to evaluate the length of the Julia set in
the Riemann sphere.

(vi) Search and implementation of new measure algorithms based on a spher-
ical subdivision in quadrilaterals with the same area. In our opinion, this
fact would improve the efficiency of the algorithms.

(vii) Development of new measure algorithms based on subdivision of other
regular polyhedra; for instance, the icosahedron or other spherical subdi-
visions with adequate dispersion and discrepancy (see [6, 18]).

Of course, this list could be extended with many other questions, such as
a local consideration of the probability with the standard measure of C or a
statistical analysis of the problem.

From a topological point of view, it would be interesting to study some
topological and shape invariants either of the Julia set or of the basins of ra-
tional maps. For instance, cubical structures and consecutive subdivisions are
canonical tools that can be used to compute these invariants.

Trying to find a representative sample on the sphere in order to study prob-
ability phenomena is a well-known problem. This question is strongly related
to the study of astronomical data distributed on the entire sky. In some cases
it is only necessary to cover a partial area corresponding to a galactic object.
The use of cubical structures of the sphere and measure procedures is a very
useful technique in Astronomy and Astrophysics. The fractal geometry of these
data gives interesting methods for the study of astrophysics phenomena. The
satellite observation of the cosmos can be organized using cellular and cubical
decomposition of the 2-sphere and modifications of the algorithms developed in
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this work can be useful in the study of astronomical data. Similar conclusions
can be obtained when one tries to analyze geological data given by observation
satellites, specifically designed to observe Earth from orbit for uses such as envi-
ronmental monitoring, meteorology, map making etc. There are other possible
application fields as, for instance, the study of spherical viruses or spherical
fullereno structures, etc.
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