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Abstract: In this paper we have tried to reduce the classical classification problems
for spaces and maps of the proper category and of the strong shape category to similar
problems in the homotopy category of simplicial sets or in the homotopy category of
simplicial M-sets, where M is the monoid of proper selfmaps of the discrete space N of non
negative integers.

Given a prospace (pro-simplicial set) Y, we have constructed a simplicial set P̄RY
such that the Hurewicz homotopy groups of P̄RY are the Grossman homotopy groups of
Y. For the case of the end prospace Y = εX of a space X, we obtain Brown’s proper
homotopy groups and for the Vietoris prospace Y = V X (introduced by Porter) of a
compact metrisable space X, we have Quigley’s inward groups. The simplicial subset P̄RY
of a tower Y contains, as a simplicial subset, the homotopy limit limRY . The inclusion
limRY → P̄RY induces many relations between the homotopy and (co)homology invariants
of the prospace Y.

Using the functor P̄R we prove Whitehead Theorems for proper homotopy, prohomo-
topy and strong shape theories as a particular case of the standard Whitehead Theorem.
The algebraic condition is given in terms of Brown’s proper groups, Grossman’s homo-
topy groups and Quigley’s inward groups, respectively. In all these cases an equivalent
cohomological condition can be given by taking twisted coefficients.

The “singular” homology groups of P̄RY provide homology theories for the Brown,
Grossman and Quigley homotopy groups that satisfy Hurewicz Theorems in the corre-
sponding settings. However, there are other homology theories for the homotopy groups
above satisfying other Hurewicz Theorems.

We also analyse the notion of P̄-movable prospace. For a P̄-movable tower we prove
easily (without lim1 functors) that the strong homotopy groups agree with the Čech homo-
topy groups and the Grossman homotopy groups are determined by the Čech (or strong)
groups by the formula Gπq = P̄π̌q. This implies that the algebraic condition of the
Whitehead Theorem can be given in terms of strong (Čech) groups when the condition of
P̄-movability is included.

We also study homology theories for the strong (Steenrod) homotopy groups which
satisfy Hurewicz Theorems but in general do not agree with the corresponding Steenrod-
Sitnikov homology theories.
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0. Introduction.

The main purpose of this paper is to reduce as far as possible the study of proper
homotopy theory and strong shape theory to notions and problems of standard homotopy
theory. To reach this aim we will use the following tools:

1) The notion of closed simplicial model category, introduced by Quillen [Q.1], will
be used to work with categories obtained when one divides by homotopy relations or when
one inverts weak equivalences.

2) We consider the category SS of simplicial sets and the category S(SM ) of simplicial
M–sets. An M–set is a set together with the action of a monoid M . Both categories SS,
S(SM ) are provided with structures of closed simplicial model categories.

3) One of the most useful categories to study proper and strong shape theory is the
closed simplicial model category of prospaces.

For the proper category at infinity, the Edwards–Hastings functor ε gives a full
embedding of the proper homotopy category at infinity of T2 locally compact, σ–compact
spaces into the localized category of prospaces obtained by inverting the weak equivalences
considered by Edwards–Hastings in [E–H]. There is a similar version for global proper maps
and homotopies by taking global (or augmented) prospaces. For strong shape theory, one
can use the Vietoris functor V , introduced by Porter [P.1, P.5], that gives a full embedding
of the strong shape category into the “homotopy category” of prospaces.

4) We define “singular” functors from proper categories and procategories to simplicial
M–sets and realization functors from simplicial M–sets to the category of prospaces and
from adequate full subcategories of simplicial M–sets to the category of spaces and proper
maps.

One of the main results of this paper is the construction of a simplicial set P̄RX,
associated with a pro-simplicial set X, that retains many homotopy properties of X. The
simplicial set P̄RX contains as a simplicial subset the homotopy limit, limRX, of X.

The Hurewicz homotopy groups of limRY are the strong homotopy groups of the
prosimplicial set Y . For the case Y = εX, one gets the strong groups in the proper setting
and for the case Y = V X one has the approaching groups of Quigley [Quig, P.6].

In this paper, we prove that the Hurewicz homotopy groups of P̄RY are the Grossman
homotopy groups of the prospace Y . For Y = εX one has Brown’s proper homotopy groups
and for Y = V X we have the “inward” groups of Quigley [Quig, P.6].

In the proper setting, the simplicial set P̄RεX can be interpreted as the simplicial
set of sequences of singular q–simplexes converging to infinity. We can also look at P̄RεX
as the mapping space of sequences of points of X converging to infinity provided with an
adequate topology. If X is a compact metrisable space, it can be considered up to homeo-
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morphism as a subspace of the pseudointerior of the Hilbert cube Q. We can then interpret
P̄RV X as the simplicial set of sequences of singular q–simplexes of Q converging to X.
Nevertheless, it is also possible to interpret P̄RV X as the simplicial set of singular q–
simplexes of Q − X converging to X, which is the same as the simplicial set of singular
q–simplexes of Q−X converging to infinity. That is, P̄RV X is isomorphic to P̄Rε(Q−X)
in the homotopy category.

This paper has been divided into 10 sections. The first part, sections 1 through 6, is
devoted to developing the technical tools. Section 7 establishes the relationships between
simplicial M–sets and simplicial complexes, where M is the monoid of proper selfmaps
of the discrete space of natural numbers. The last part, sections 8, 9 and 10, contains
applications to proper homotopy theory, prohomotopy theory and strong shape theory.

Section 2 is devoted to analysing the closed simplicial model structure of simplicial
M–sets that will be used in this paper. In section 3, we analyse realization and singular
functors for simplicial M–sets. Let ∆ denote the standard category whose objects are finite
ordered sets of the form [q] = {0 < 1 < · · · < q} and the morphisms are monotone maps.
Let MC be the category of left M–objects in C. Associated with a functor χ: ∆ −→ MC, we
consider a realization functor Rχ:S(SM ) −→ C and a singular functor Sχ: C −→ S(SM ).
The construction of the realization functor depends of the existence of colimits in C. One
of the categories C that we consider is the category Pro of spaces and proper maps. The
category Pro has only some colimits and for this reason, in section 3 we include some
lemmas about the existence of colimits.

If we consider the monoid M = Pro(N,N), we take as a “proper” q–simplex a space
of the form N × |∆[q]|. Given a proper map ϕ: N −→ N, we can attach N × |∂i∆[q]| to
N × |∆[q − 1]| in such a way that {n} × |∂i∆[q]| is identified with {ϕ(n)} × |∆[q − 1]|.
Therefore if we have a simplicial M–set N , whose monoid structure is freely generated by
a finite number of simplexes, we can construct a space RpN taking a “proper” simplex
associated with each generator of N and gluing the different “proper” simplexes in the
way indicated above. The full subcategory of this kind of simplicial M–sets is denoted
by S(SM/ff)/fd (ff = freely generated by a finite set, fd = finite dimension). In
general the realization of a simplicial map of S(SM ) is not proper, but the realization of a
simplicial map of S(SM )/ff)/fd is proper.

The main result of section 4 establishes that if N is an object of S(SM/ff))/fd
which is cofibrant and Y is a topological space, then the set of proper homotopy classes
π0(Pro)(RpN,Y ) is isomorphic to the hom–set Ho

(
S(SM )

)
(N,SpY ). It is interesting to

remark that in section 7 we have proved that a locally finite simplicial complex X which
has finite dimension and a countably infinite number of simplexes is always of the form
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X ∼= RpN .

For the category proSS, we think of as a q–simplex, the pro–simplicial set c∆[q]
which is defined by c∆[q](i) = Σ

j≥i
∆[q], i ∈ N. Similar notions of q–simplex are considered

for global pro–simplicial sets and for the corresponding pointed cases. Associated with
these q–simplexes, there are a realization functor Rχ∞ :S(SM∞) −→ proSS and a singular
functor Sχ∞ : proSS −→ S(SM∞).

In 1975, E.M. Brown [Br.1] defined the proper homotopy groups Bπ∞q (X) of a
σ–compact space X with a base ray. He also considered a functor P̄: towGps −→ Gps

which carries the tower of homotopy groups, πqεX, of a tower of neighbourhoods of X
at infinity to the homotopy group Bπ∞q (X). For the case q = 0, P̄ is a functor from
towSet∗ to Set∗. Here we consider new versions of the P̄ functor which are of the form,
proSet −→ SetPc∗, proSet∗ −→ SetPcS0 , proGps −→ GpsPcN, etc. The new versions
are provided with the additional structure of the action of a monoid (Pc∗, PcS0) or a
near–ring PcN.

Using the shorter notation, S = Set, S∗ = Set∗, the functor P: proS −→ SPc∗

induces a functor SP:SproS −→ S(SPc∗) and we have the composite proSS F−→SproS
SP−→

S(SPc∗), where F is naturally defined. The main result of section 5 establishes that SP F

is isomorphic to the “singular” functor Sχ∞ . That is, Sχ∞ is an extension of the P functor
and, for this reason, the functor Sχ∞ is also denoted by P.

The inverse limit functor lim: towSS −→ SS is related with the functor P: towSS −→
S(SPc∗) in the following way: There is an element sh in the monoid Pc∗ such that the
simplicial subset FshX = {x ∈ PX | x sh = x} of elements fixed by sh is isomorphic to
limX, where X is an object in towSS.

Section 6 contains the main technical results of the paper. It is well known that
the homotopy inverse limit, holim, can be defined as a right–derived functor of the lim
functor. We prove that the functor P: proSS −→ S(SPc∗) has a right–derived functor
PR:Ho(proSS) −→ Ho

(
S(SPc∗)

)
. The relation above between lim and P induces the

formula limRX = FshPRX = {x ∈ PRX | x sh = x} where X is an object in towSS.

We summarize the results of section 6 saying that there is a pair of adjoint functors

Ho(proSS)
LL

←−−−−−−−−−−→
PR

Ho
(
S(SPc∗)

)
.
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that can be composed with the pair of adjoint functors (given in section 2)

Ho
(
S(SPc∗)

) −⊗Pc∗←−−−−−−−−−−→
U

Ho(SS)

to obtain the new the pair

Ho(proSS)
L̄L

←−−−−−−−−−−→
P̄R

Ho(SS).

A first consequence of the existence of these pairs of adjoint functors is that the Hurewicz
homotopy groups of P̄RX (X is an object in proSS) are isomorphic to the Grossman
homotopy groups of X. We also prove that πq and P̄ “commute”; that is, πq P̄R X ∼=
P̄ πq X. This proves Brown’s result that P̄ carries the towers of homotopy groups, πqεX,
to the proper homotopy groups, Bπ∞q X. As a second consequence, we will translate some
classical theorems of standard homotopy theory to prohomotopy theory.

Section 8 is devoted to obtaining some applications to proper homotopy theory. We
use the functors Rp and Sp to transform classical theorems of standard homotopy theory
into similar theorems in the proper setting. We analyse two examples, in the first the proper
Whitehead Theorem is proved as a particular case of the standard Whitehead Theorem.
We also remark that the cohomological version of the Whitehead Theorem with twisted
coefficients implies a cohomological version in the proper setting. In the second example,
we see how the standard Hurewicz Theorem implies a Hurewicz Theorem in the proper
category. This method also provides a proper homology theory for the Brown proper
homotopy groups. However, there are other proper homology theories that also satisfy
Hurewicz Theorems for the Brown proper groups, see Remark 3 after Theorem 7.3. In this
section we also analyse the relation between the proper singular functor, the right–derived
functor of the P functor and the Edwards–Hastings functor, ε. As a consequence of this
relation, we obtain a partial version of the Edwards–Hastings embedding Theorem for the
proper category.

In section 9, we have developed some applications to prohomotopy theory. We
introduce the notion of L–cofibrant prospace (or pro–simplicial set). The class of L–
cofibrant prospaces contains the end prospace εX of a finite dimensional simplicial com-
plex and Porter’s Vietoris prospace V X of a compact metrisable space X which has finite
covering dimension. Therefore any result about L–cofibrant prospaces has interpretations
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in the proper and in the strong shape settings. In this section, we establish a Whitehead
Theorem for the class of L–cofibrant prospaces. Using the functors LL and PR we obtain
this result as a particular case of the standard Whitehead Theorem. The algebraic condi-
tion of the theorem is given in terms of the Grossman homotopy groups. There is also an
equivalent cohomological condition.

We also introduce a notion of P̄–movability that in general is weaker than the notion
of movable given in [E–H]. We give an easy proof (without using lim1 functors) that for
P̄–movable towers, the strong (Steenrod) homotopy groups are isomorphic to the Čech
homotopy groups and the Grossman groups are also determined by the formula Gπq =
= P̄(Sπq). Therefore for L–cofibrant P̄–movable towers the algebraic condition of the
Whitehead Theorem can be expressed in terms of strong (Steenrod) homotopy groups or
Čech homotopy groups.

Section 10 is devoted to obtaining some applications to strong shape theory. Recall
that the Grossman homotopy groups of the prospace V X are the Quigley [Quigl] inward
groups, see also [P.6]. Using the functor P̄R the Quigley inward groups are interpreted
as the Hurewicz homotopy groups of the simplicial set P̄RV X. Therefore defining the
homology groups of X as the “singular” homology of P̄RV X, we obtain a homology theory
that satisfies the Hurewicz Theorem for the Quigley inward groups. Nevertheless, in the
Remark 4) after Definition 10.1, we suggest other homology theories for the Quigley inward
groups. In general Hq P̄RV X is not isomorphic to P̄ Hq V X, but there are other homology
theories such that H “commutes” with the P̄ functor.

It is also known that the strong (Steenrod) homotopy groups of the prospace V X
are the Quigley approaching groups. Using the functor PR, we have that the Quigley
approaching groups of a compact metrisable space X are the Hurewicz homotopy groups
of FshPRV X. Therefore we obtain a Hurewicz Theorem if we define the homology of
X as the “singular” homology of FshPRV X. This gives a nice homology for Quigley’s
approaching groups that is not isomorphic to the strong (Steenrod) homology groups used
by Kodama–Koyama [K–K] to obtain a Hurewicz Theorem for these groups.

We finish the paper by giving a Whitehead Theorem for the strong shape category in
terms of Quigley inward groups. For the case of P̄–movable spaces the algebraic condition
can also be given in terms of Quigley approaching groups or Čech–groups.

1. Closed simplicial model categories.

The tool used in this paper is the notion of closed simplicial model category. We refer
the reader to [Q.1] and [Q.2] which contain the necessary definitions, examples and the
main properties of this structure.
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Given a solid arrow diagram in a category C

A
f−−−−−→ X

i

y
y p

B −−−−−→
g

Y

it is said that i has the left lifting property (LLP ) with respect to p and p is said to have
the right lifting property (RLP ) with respect to i if there exists a map h:B −→ X such
that hi = f and ph = g.

A closed model category is a category C endowed with three distinguished families of
maps called cofibrations, fibrations and weak equivalences satisfying certain axioms.

These axioms were considered in [Q.1] and an equivalent but different formulation
was given in [Q.2].

Given a closed model category C, the homotopy category Ho(C) is obtained from C

by formally inverting all the weak equivalences, see [Q.1] and [G-Z].
A simplicial category is a category C endowed with a functor HomC :Cop × C −→

SS satisfying the axioms given in [Q.1], in particular we have that HomC(X,Y )0
∼=

C(X,Y ). Associated with a simplicial category C, we have the category π0C which has the
same objects that C and the hom–set is defined by π0C(X,Y ) = π0HomC(X,Y ), where
π0HomC(X,Y ) is the set of connected components of the simplicial set HomC(X,Y ).

A closed simplicial model category is a simplicial category which is also a closed
model category and satisfies certain axioms, see [Q.1]. For a finite simplicial set K a
closed simplicial category C is provided with objects X ⊗K, XK for any object X in C.
Associated with these objects, there are the following isomorphisms:

HomC(X ⊗K,Y ) ∼= HomSS(K,HomC(X,Y ))
HomC(X,Y K) ∼= HomSS(K,HomC(X,Y ))
Suppose that C is a closed simplicial model category and ∅ denotes the initial object

and ∗ denotes the final object. An object X is said to be cofibrant if the unique map
∅ −→ X is a cofibration and an object Y is said to be fibrant if the unique map Y −→ ∗
is a fibration.

The main relation between the categories π0C and HoC is given through cofibrant
and fibrant objects: If X is cofibrant and Y is fibrant, then π0C(X,Y ) ∼= HoC(X,Y ).
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It is said that C is a pointed category if both the initial and final objects exist and
are isomorphic. In this case, for two objects X,Y in C, we always have the zero map
∗:X −→ Y that defines a 0–simplex of HomC(X,Y ). Therefore we also have a natural
functor HomC :Cop × C −→ SS∗.

Examples.
1) The category SS of simplicial sets. Let ∆[n] denote the standard n–simplex, ∆̇[n] the
simplicial set generated by the faces of ∆[n] and V (n, k) for 0 ≤ k ≤ n > 0 the simplicial
subset of ∆[n] generated by the (n − 1)–faces ∂i: ∆[n − 1] −→ ∆[n] with 0 ≤ i ≤ n and
i 6= k. A map f :X −→ Y is said to be a fibration if for all n > 0, it has the RLP with
respect to V (n, k) −→ ∆[n], 0 ≤ k ≤ n. A map f :X −→ Y is said to be a trivial fibration
if f has the RLP with respect to ∆̇[n] −→ ∆[n], n ≥ 0. A map i:A −→ B is said to be a
cofibration (resp. trivial cofibration) if i has the RLP with respect to any trivial fibration
(resp. fibration). A map f is said to be a weak equivalence if f can be factored as f = pi

where i is a trivial cofibration and p is a trivial fibration.
Given a simplicial set K, the object X ⊗K is defined to be X ⊗K = X ×K.
The functor HomSS :SSop × SS −→ SS is defined by HomSS(X,Y )n ∼=

∼= SS(X ⊗∆[n], Y ). The object XK is defined by XK = HomSS(K,X).
The category of pointed simplicial sets SS∗ is also a closed simplicial model category.

If we consider the functor ()+:SS −→ SS∗ which carries X to X t ∗, we have that ()+ is
the left adjoint of the forgetful functor U :SS∗ −→ SS. A map f is said to be a fibration
(resp. weak equivalence) if Uf is a fibration in SS (resp. weak equivalence). A map is a
cofibration if it has the LLP with respect to trivial fibrations.

For an object X in SS∗ and K in SS, define X⊗K ∼= X×K+/((X×∗)∪ (∗×K+)).
HomSS∗ :SS

op
∗ × SS∗ −→ SS∗ is defined by HomSS∗(X,Y )n = SS∗(X ⊗ ∆[n], Y ), and

XK = HomSS∗(K
+, X).

2) The category Top of topological spaces. Let R:SS −→ Top and S:Top −→ SS be
the realization and singular functors, respectively. A map f :X −→ Y in Top is said to
be a fibration (weak equivalence) if Sf is a fibration (weak equivalence) in SS. A map
i:A −→ B is a cofibration if i has the LLP with respect to trivial fibrations. Given a finite
simplicial set K and a topological space X, the objects X ⊗K and XK are defined by

X ⊗K = X ×RK,

XK = Top(RK,X)
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where RK is the realization of K and Top(RK,X) is the mapping space of continuous maps
from RK to X endowed with the compact–open topology. The functor
HomTop:Topop × Top −→ SS is defined by

HomTop(X,Y )n = Top(X ×R∆[n], Y ).

The category Top∗ of pointed spaces also admits a closed simplicial model structure.
In this case for a given simplicial set K and a pointed space X, the objects X ⊗K and
XK are defined by

X ⊗K = X × (RK)+/((X × ∗) ∪ (∗ × (RK)+)

XK = Top∗((RK)+, X)

where (RK)+ is the disjoint union of RK and the one–point space ∗.

3) The category proC of pro–objects in C. Associated with a category C, we can consider
the category proC introduced by A. Grothendieck [Gro]. A study of some properties of
this category can be seen in the appendix of [A–M], the monograph of [E–H] or in the
books of [M–S] and [C–P].

The objects of proC are functors X: I −→ C, where I is a small left filtering category
and the set of morphisms from X: I −→ C to Y : J −→ C is given by the formula

proC(X,Y ) = lim
j

colim
i

C(Xi, Yj).

Edwards and Hastings [E–H] have proved that if C has the structure of a closed simpli-
cial model category and C satisfies the condition N , see [E–H, page 45], then proC inherits
a natural structure of a closed simplicial model category. For a given finite simplicial set
K and an object X = {Xi} of proC, the objects X ⊗K and XK are defined by

{Xi} ⊗K = {Xi ⊗K},

{Xi}K = {XK
i }.

The functor HomproC : (proC)op × proC −→ SS is defined by

HomproC(X,Y )n = proC(X ⊗∆[n], Y ).

2. The category of simplicial M–sets.
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A monoid consists of a set M and an associative multiplication: M × M −→ M ,
(m,m′)→ mm′, with unit element 1 (1m = m = m1, for every m ∈M). A 0-monoid M is
a monoid with a zero element 0 ∈M (m0 = 0 = 0m, for every m ∈M). If C is a category
and X is an object of C, then the hom-set C(X,X) with the composition of morphisms,
(g, f) → gf , has a natural monoid structure. If C is a category with zero object, then
C(X,X) is a 0–monoid.

Examples. 1) Let Pro be the category of spaces and proper maps (a continuous map
is proper if the inverse image of a closed compact subset is compact) and consider the
set of natural numbers N provided with the discrete topology. The set of proper maps
M = Pro(N,N) has a natural monoid structure. Let A,B be closed subsets of a space
X and assume that cl(X − A), cl(X − B) are compact. Given two proper maps f :A →
Y, g:B → Y , it is said that f and g have the same germ if there exists a closed subset
C of X such that cl(X − C) is compact, C ⊂ A, C ⊂ B and f/C = g/C. Let Pro∞
denote the category of spaces and germs of proper maps, the monoid of germs of proper
maps M∞ = Pro∞(N,N) will also be considered in this paper.
2) Let N̂ = N ∪ {∞} be the Alexandroff compactification of N. Taking ∞ as a base
point, N̂ becomes a pointed set. The endomorphism pointed set Top∗(N̂, N̂) has a natural
0-monoid structure. Two pointed continuous maps f, g : N̂ → N̂ have the same germ at
∞ if there is n0 ∈ N such that f(n) = g(n) for every n ≥ n0. The set Top∞∗ (N̂, N̂) of
germs at ∞ of continuous maps from N̂ to N̂ also becomes a 0-monoid.

Let M be a monoid and C a category. A left M–object X in C consists of an object X
of C and a monoid homomorphism M → C(X,X) : m→ m̃ : X → X. If M is a 0–monoid
and C is a category with zero object, we suppose that an M–object X in C satisfies the
additional condition 0̃ = 0. The category whose objects are the (left) M–objects in C, will
be denoted by MC. By considering monoid “antimorphisms” M → C(X,X) we have the
notion of right M–object in C and the category CM .

Let C be a category, for each object X of C we have the monoid (or 0–monoid)
M = C(X,X). If Y is an object of C the monoid “antimorphism”

C(X,X) −→ Set(C(X,Y ), C(X,Y )) : ϕ→ ϕ̃, ϕ̃(f) = fϕ, f ∈ C(X,Y ),

induces the structure of a right M -set on C(X,Y ). Therefore we have a functor C(X,−) :
C −→ SetM . If C is pointed (C has a zero object) we get a functor C(X,−) : C −→ Set∗M .
Similarly, there are functors C(−, Y ) : C −→ MSet or C(−, Y ) : C −→ MSet∗.
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Examples. 1) For the category Pro and M = Pro(N,N), we have the right M–set
Pro(N,X) of sequences in X converging to infinity. Similarly for M∞ = Pro∞(N,N)
we have the right M∞-set Pro∞(N,X). If |∆[q]| denotes the realization of the standard
q-simplex we also get the right M–set Pro(N× |∆[q]|,X).

2) Let s =
+∞
Π
n=1

(
−1
n
,

1
n

) be the pseudo-interior of the Hilbert cube Q =
+∞
Π
n=1

[
−1
n
,

1
n

]. Let

X be a compact subset of s. A sequence x: N → Q converges to X if for every U , a
neighbourhood of X in Q, there is n0 such that xn ∈ U for every n ≥ n0. The sets
{x: N → X | x converges to X} and {x: N → Q − X | x converges to X} become
M -sets for M = Pro(N,N). Consider also sequences of simplexes x: N × |∆[q]| → Q
converging to X; that is, for every U , a neighbourhood of X in Q, there is n0 such that
x({n}×|∆[q]|) ⊂ U for every n ≥ n0. The sets ssq(X) = {x: N×|∆[q]| → Q | x converges
to X} and sscq(X) = {x: N × |∆[q]| → Q −X | x converges to X} become M -sets for
M = Pro(N,N) and ss(X), ssc(X) are simplicial M -sets associated with X.

Given a 0–monoid M , the category of right M–pointed sets, Set∗M , is an algebraic
category, see [Pa], by considering one 0–ary operation to fix a base point ∗ and a 1–ary
operation m for each m ∈M . The relations are given by x1 = x, x0 = ∗, (xm)n = x(mn).
In the case of a monoid, we do not need the 0–ary operation and the relation x0 = ∗. By
general properties of algebraic categories we have that Set∗M (resp., SetM ) is a complete
and cocomplete category, see [Pa; page 140]. That is, the category Set∗M (SetM ) has
limits and colimits. The categories of the form Set∗M , SetM enjoy very nice properties
such as the existence of exponentials and a subobject classifier. That is, these categories
are elementary topoi, see [M-M].

For these categories there is a natural forgetful functor U :Set∗M −→ Set∗ (resp.,
U :MSet∗ −→ Set∗) and a left adjoint functor −�M :Set∗ −→ Set∗M defined by X�M =
X×M/(X×0∪∗×M). An element (x,m) ∈ X×M determines a unique class in X�M that
will be denoted by x�m. The forgetful functor Set∗M −→ Set∗ is faithful and preserves
limits and the left adjoint functor −�M preserves colimits. For the non-pointed case, the
forgetful functor SetM −→ Set has also a left adjoint functor −�M :Set −→ SetM which
is defined by X �M = X ×M . In this case we also denote an element (x,m) by x �m.
We note that X�M the free M -set generated by X is isomorphic to t

x∈X
M provided with

the canonical right action of M .

Let C be a category closed under finite limits. A map f :X → Y is said to be an
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effective epimorphism if for any object T of C, the diagram of sets

C(Y, T )
f∗−→C(X,T )

pr1
∗

−−−−−→−−−−−→
pr2
∗

C(X ×
Y
X,T )

is a difference kernel. An object P of C is said to be projective if C(P,X)
f∗−→C(P, Y ) is

surjective whenever f :X → Y is an effective epimorphism. A category C has sufficiently
many projectives, if for any object X, there is an effective epimorphism P −→ X where
P is a projective object. Assume that C is closed under colimits, an object X is said to
be small if C(X,−) commutes with filtered colimits. A class U of objects of C is a class of
generators if, for every object X, there is an effective epimorphism Q → X where Q is a
sum of copies of members of U .

For the case C = Set∗M (resp., SetM ) the class of effective epimorphisms is the class of
set-theoretically surjective maps. Note that the category Set∗M (resp., SetM ) has a class
of generators, U , with a single object, S0 �M ∼= M (∗ �M ∼= M). For later applications
we also note that M is projective and small.

If C is a category, let SC denote the category of simplicial objects in C. We also have a
natural functor in: C −→ SC which carries an object A to the simplicial object inA defined
by (inA)q = A and where degeneracy and face operators are equal to the identity of A.

Quillen [Q.1] proved that if C is closed under finite sums, X is an object in SC and
K is a finite simplicial set, then an object X ⊗K exists, defined by

(X ⊗K)n = Σ
σ∈Kn

Xn

in which the degeneracy and face operators are defined in terms of the corresponding
operators of X and K. If C is closed under finite limits, then dually an object XK exists
for every finite simplicial set. These have nice universal properties see Quillen [Q.1].

Therefore given a category C closed under finite limits and colimits, SC becomes a
simplicial category where the natural functor

HomSC :SCop × SC −→ SS

is defined by HomSC(A,B)n = SC(A ⊗∆[n], B). If C is a pointed category, we can also
consider the functor HomSC :SCop × SC −→ SS∗.

In order to have a shorter notation we also use S = Set, S∗ = Set∗, SM =
SetM , S∗M = Set∗M . The corresponding simplicial categories will be denoted by SS, SS∗,
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S(SM ), S(S∗M ). We note that, for the functors in:S∗ −→ SS∗, in:S∗M −→ S(S∗M ),
and −�M :SS∗ −→ S(S∗M ), there are natural isomorphisms

((inX)⊗K)�M ∼= (in(X �M))⊗K,

where X is an object in S∗ and K is a finite simplicial set.
The following result is a particular case of Theorem 4 of section 4 ch II of [Q.1].

Proposition 1. Let C be a category closed under finite limits and under colimits and
having a set U of small projective generators. Let SC be the simplicial category of simplicial
objects in C. Define a map f in SC to be a fibration (weak equivalence) if Hom(inP, f) is
a fibration (weak equivalence) in SS for each P of U . A map f is a cofibration if f has
the left lifting property with respect to the class of trivial fibrations. Then SC is a closed
simplicial model category.

For the case C = S∗M (or C = SM ), we have that U has only a single object S0⊗M ∼=
M. Notice that for a map f of S(S∗M ) we have that

HomS(S∗M )(in(S0 ⊗M), f) ∼= HomS(S∗M )(inS0 ⊗M,f)
∼= HomS(S∗M )(∆[0]+ �M,f) ∼= HomSS∗(∆[0]+, f) = Uf

Therefore we have the following closed simplicial model structure:

Definition 1. In the category of simplicial M -sets, S(S∗M ), a map f is said to be a
fibration (weak equivalence) if Uf is a fibration (weak equivalence) in SS∗. A map is said
to be a cofibration if f has the LLP with respect to any trivial fibration.

Theorem 1. The category S(S∗M ) together with the classes of cofibrations, fibrations and
weak equivalences defined above has a natural closed simplicial model category structure.

Remark. For the non-pointed case a similar result is obtained for the category S(SM ).
The corresponding fibrations and weak equivalences are defined by using the forgetful
functor S(SM ) −→ SS.

In the category SS∗, the “tensor” object X ⊗K and the “function” object XK can
be defined for any simplicial set K. We apply this property to prove the following:

Lemma 1. Given f of SS∗, we have:
1) If f is a weak equivalence, then f �M is a weak equivalence,
2) if f is a cofibration, then f �M is a cofibration.
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Proof. 1) Let f be a weak equivalence in SS∗, then we are going to prove that f � inM
is a weak equivalence in SS∗. By Proposition 3.5, ch2 of [Q.1], it suffices to prove that for
any fibrant object Y of SS∗ [f ⊗ inM, Y ] is an isomorphism. This is obtained from the
following isomorphisms

[f ⊗ inM, Y ] = π0Hom(f ⊗ inM, Y ) ∼=
∼= π0Hom(f,Hom(inM, Y )) ∼= [f,Hom(inM, Y )]

and the fact that f is a weak equivalence.
The forgetful functor U :S(S∗M ) −→ SS∗ satisfies that U(f�M) = f⊗inM . Because

U(f � M) is a weak equivalence, by Definition 1 we also have that f � M is a weak
equivalence.

2) Since − � M : SS∗ −→ S(S∗M ) is left adjoint to U :S(S∗M ) −→ SS∗, and U

preserves weak equivalences and fibrations, we also have that −�M preserves cofibrations.

As a consequence of this Lemma, we obtain an induced pair of adjoint functors on
the localized categories.
Theorem 2. The functors − �M and U factorize through the homotopy categories in
such a way that − �M :Ho(SS∗) −→ Ho(S(S∗M )) is left adjoint to U :Ho(S(S∗M )) −→
Ho(SS∗). Moreover, − ⊗ M preserves cofibration sequences and U preserves fibration
sequences.

Remark. If M is a monoid (without zero element) the analogues of the theorems above
are similarly obtained. If M is a group the closed simplicial model category S(SM ) induces
a nice homotopy category Ho(S(SM )) to study equivariant homotopy theory.
3. Realization and singular functors.

In this section, we analyse the construction of singular and realization functors for
the category of simplicial M -sets.

Recall that a monoid M can be considered as a category with one object, with mor-
phisms the elements of M and with composition the product in the monoid M . Therefore
the category of right M -sets can be considered as the functor category SetM

op

. Thus
the category S(SM ) of simplicial M -sets is the functor category (SetM

op

)∆op

, which is
equivalent to the category Set(M×∆)op

.
Given a small category I, the functor category SetI

op

is also called the category of
presheaves on I. Associated with a functor X: Iop −→ Set, we recall the construction of
the category of elements of X, denoted by

∫
I
X. For more details and properties of this

construction, which is often called the Grothendieck construction, we refer the reader to
[M-M].
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The objects of
∫
I
X are pairs (i, x) where i is an object of I and x is an element

of X(i). Its morphisms (i′, x′) → (i, x) are those morphisms u: i′ → i of I for which
X(u):X(i)→ X(i′) satisfies X(u)x = x′. This category has a canonical projection functor
πX :

∫
I
X −→ I defined by πX(i, x) = i.

The following result is proved in [M-M; Th2, ChI].
Theorem 1. If χ: I −→ C is a functor from a small category I to a cocomplete category
C, the functor Sχ from C to SetI

op

given by

SχC: i −→ C(χ(i), C)

has a left adjoint functor Rχ:SetI
op −→ C defined for each functor X in SetI

op

as the
colimit

RχX = colim(
∫
I

X
πX−−−−−→I χ−−−−−→C).

For the small category I = M×∆, the equivalence of categories S(SM ) ' Set(M×∆)op

carries a functor X: ∆op −→ SetM to a functor X ′: (M × ∆)op −→ Set. Similarly,
for a given category C and a functor χ: ∆ −→ MC one has the corresponding functor
χ′:M ×∆ −→ C. Since M only has one object ∗, the objects of M ×∆ are of the form
(∗, [p]). However, in the sequel, we just write [p] for the object (∗, [p]). Recall that a
morphism of M ×∆ is of the form (m,ϕ): [p] −→ [q], where m is an element of M and ϕ

is a map of ∆. Observe that (m,ϕ) = (m, id[q])(1M , ϕ) = (1M , ϕ)(m, id[p]). Sometimes,
we just write m for (m, id[q]) and ϕ for (1M , ϕ) if no confusion is possible. For a functor
Y : (M×∆)op −→ Set, we write Y ([p]) = Yp, Y (m,ϕ) = (m,ϕ)∗, Y (m, id[p]) = Y (m) = m∗

and Y (1M , ϕ) = Y (ϕ) = ϕ∗. Similarly for a functor χ′:M ×∆ −→ C, we write χ′p instead
of χ′([p]).

Using this notation, we can reformulate the Theorem above as follows:
Theorem 2. If χ: ∆ −→ MC is a functor, where C is a cocomplete category, then the
“singular” functor Sχ from C to S(SM ) defined by

(SχC)p = C(χ′p, C)

has a left adjoint (the “realization” functor) Rχ:S(SM ) −→ C defined for each X an object
in S(SM ) as the colimit

RχX = colim(
∫
M×∆

X ′
πX′−−−−−→M ×∆

χ′−−−−−→C).
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In this paper, we will consider functors χ: ∆ −→ MC, where C does not have all
colimits. For these categories we will analyse those X in S(SM ) for which the colimit
RχX exists. The following properties of colimits will be useful.

Given a functor L: J ′ −→ J and an object j in J , the comma category j ↓ L has as
objects morphisms of the form u: j → Lj′. A morphism from u0: j → Lj′0 to u1: j → Lj′1
is a morphism v′: j′0 → j′1 which satisfies L(v′)u0 = u1. A category J is called connected
if given any two objects j0, j1 in J , there is a finite sequence of arrows (both directions
possible) joining j0 to j1.

A functor L: J ′ −→ J is final if for each j in J , the comma category j ↓ L is non-empty
and connected. For more details concerning final functors, we refer the reader to [M] and
[C-P]. In particular we will use the following:

Proposition 1. If L : J ′ −→ J is final and F : J −→ C is a functor such that colimFL
exists then colimF exists and the canonical map colimFL→ colimF is an isomorphism.

Definition 1. Given an object X in S(SM ), it is said that dimX ≤ n if for q ≥ n and
y ∈ Xq, there are p ≤ n, x ∈ Xp and a surjective map ϕ: [q]→ [p] such that y = ϕ∗x.

Denote by ∆/n the full subcategory of ∆ determined by the objects [0], · · · , [n]. Given
a functor X ′: (M ×∆)op −→ Set, one defines the functor SknX ′ as the composite

(M ×∆/n)op −→ (M ×∆)op X′−−−−−→Set.

It is easy to check the existence of a canonical induced functor I:
∫
SknX

′ −→
∫
X ′.

Proposition 2. If X is an object in S(SM ) with dimX ≤ n, then the functor
I:
∫
SknX

′ −→
∫
X ′ is final.

Proof. Let ([q], y) be an object of
∫
X ′. The condition dimX ≤ n implies that the comma

category ([q], y) ↓ I is non-empty. In order to prove that ([q], y) ↓ I is connected it suffices
to apply the Eilenberg-Zilber Lemma [G-Z, p. 26].

In this section, we work with the following notions of diagram scheme and diagram.
A diagram scheme consists of a set D0 of objects and a set D1 of arrows together with a
source map s : D1 → D0 and a target map t : D1 → D0. For instance a small category has
the structure of a scheme diagram. A morphism F :D −→ D′ of scheme diagrams consists
of a pair of maps F0:D0 −→ D′0 and F1:D1 −→ D′1 such that sF1 = F0s, tF1 = F0t. Let
C be a category. A diagram F :D −→ C is an operation which assigns to each object of
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D an object of C and to each arrow of D a morphism of C. This assignment commutes
with the source and target operators. The analogues of comma category and connected
category are also defined for scheme diagrams and diagrams. Using these notions one has:

Lemma 2. Let J be a small category and let I:D −→ J be a diagram such that I is an
inclusion map. Assume that for every j in J , there is an associated morphism uj : j → dj ,
where dj is an object in D. Suppose that these morphisms satisfy:
i) If j is an object in D, then uj : j → dj is a morphism in D.
ii) Given a morphism u: j0 → j1 of J , the objects uj0 : j0 → dj0 and uj1u: j0 → dj1 are in
the same connected component of j0 ↓ I.
If F : J −→ C is a functor and colimFI exists then colimF exists and the canonical map
colimFI −→ colimF is an isomorphism.

Proof. The proof is routine and is left as an exercise.

As an application of the Lemma above, for some X in S(SM ) with dimX≤n, we
will describe a finite diagram I:D(SknX ′) −→

∫
SknX

′ which satisfies the conditions of
Lemma 2. In this case, in order to prove the existence of colim(

∫
X ′ −→M×∆

χ′−−−−−→C),
it suffices to prove the existence of colim(D(SknX ′) −→ M × ∆

χ′−−−−−→C). First we
introduce some necessary notation.

Let SM/ff be the full subcategory of SM determined by M–sets freely generated by
finite sets. An object of SM/ff is of the form {1, · · · , n}⊗M ∼= M t · · · tM . An element
x of {1, · · · , n} ⊗M will be denoted by x = (i, α) where 1≤i≤n and α ∈M . A morphism
u: {1, · · · , n}⊗M −→ {1, · · · ,m}⊗M is determined by a map τu: {1, · · · , n} → {1, · · · ,m}
and the values u(1, 1M ) = (τu(1), u1), . . ., and u(n, 1M ) = (τu(n), un), where u1, . . . , un ∈
M . If X is an object in S(S∗M/ff), we have that Xq = {1, · · · , kq} ⊗M is generated by
the elements (1, 1M ), . . . (kq, 1M ).

Recall that in the category ∆ we have the canonical maps εi: [p−1]→ [p], σi: [p+1]→
[p], 0≤i≤p The ith face εi is defined by εi(j) = j, if j < i, εi(j) = j + 1 otherwise. The
ith degeneracy σi collapses i + 1 to i. For a functor X: ∆op −→ C, one usually writes
X(εi) = ε∗i = si and X(σi) = σ∗i = di.

Given an object X in S(SM/ff) with dimX ≤ n. The diagram I:D(SknX ′) −→∫
SknX

′, is defined as follows:
If n = 0, D(Sk0X

′) is given by the objects ([0], (1, 1M )), . . . , ([0], (k0, 1M )).
If n > 0, for q = 0 and 1 ≤ i ≤ k0, we consider the following objects and arrows in∫

SknX
′:
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([1], (τs0(i), s01M ))
(s01M ,id[1])−−−−−−→ ([1], (τs0(i), 1M ))

(1M ,σ0)

y
([0], (i, 1M )).

For 0 < q < n, 1 ≤ i ≤ kq, 0 ≤ j ≤ q, 0 ≤ l ≤ q, we take the following objects
and arrows in

∫
SknX

′:

([q + 1], (τsj
(i), sj1M ))

(sj1M ,id[q+1])−−−−−−−−→ ([q + 1], (τsj
(i), 1M ))

(1M ,σj)

y
([q], (i, 1M ))

(1M ,εl)

x
([q − 1], (τdl

(i), dl1M ))
(dl1M ,id[q−1])−−−−−−−−→ ([q − 1], (τdl

(i), 1M ))

and for q = n, 1 ≤ i ≤ kn, 0 ≤ l ≤ n, we consider the following objects and arrows:

([n], (i, 1M ))

(1M ,εl)

x
([n− 1], (τdl

(i), dl1M ))
(dl1M ,id[n−1])−−−−−−−−→ ([n− 1], (τdl

(i), 1M ))

All the objects and arrows given above define a diagram I:D(SknX ′) −→
∫
SknX

′. If
([q], (i,m)) is an object in D(SknX ′), then we have the map u = (m, id[q]): ([q], (i,m)) −→
([q], (i, 1M )) where ([q], (i, 1M )) is an object in D(SknX ′). It is easy to check that the
family of maps u satisfies the conditions of Lemma 2, so we obtain the following result.

Proposition 2. Let X be an object in S(SM/ff) with dimX≤n. If
colim(D(SknX ′) −→M×∆

χ′−−−−−→C) exists, then colim(
∫
X ′ −→M×∆

χ′−−−−−→C) exists
and both colimits are isomorphic.

As a consequence of Proposition 2, for the case that C has finite colimits, there is a
realization functor Rχ:S(SM/ff)/fd −→ C where S(SM/ff)/fd is the full subcategory
determined by objects X in S(SM/ff) with finite dimension. Next section we will consider
the case C = Pro, where Pro is the category of spaces and proper maps. In this case
we have a natural inclusion functor Pro −→ Top into the category Top of spaces and
continuous maps. Using the fact that Top has all colimits, we will apply Proposition 2 in
order to construct a “proper” realization functor Rχ:S(SM/ff)/fd −→ Pro.
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In this paper, we have to deal with “realization” functors which only are defined on
a full subcategory of S(SM ), then it will be useful to introduce the following notion of
partial left adjoint functor.
Definition 1. Let A′ be a full subcategory of a category A. We say that F :A′ −→ B
is a partial left adjoint to G:B −→ A if for any A in A′ and B in B, there is a natural
isomorphism

B(FA,B) ∼= A(A,GB).

For simplicial categories we consider the following notion of simplicial adjuntion.
Definition 2. Let A, B be simplicial categories and assume that F :A −→ B, G:B −→ A
are functors. We say that F is simplicial left adjoint to G, if for any A in A and B in B,
there is a natural simplicial isomorphism

HomB(FA,B) ∼= HomA(A,GB).

If A′ is a full subcategory of A, we say that a functor F :A′ −→ B is partial simplicial
left adjoint to G:B −→ A, if for any A in A′ and B in B, there is a natural simplicial
isomorphism

HomB(FA,B) ∼= HomA(A,GB).

4. Realization and singular functors for proper categories and procategories.

In this section, we consider the realization and singular functors associated with some
covariant functors χ: ∆ −→ MC and introduce the various notations that will be used
later.

1) The standard realization and singular functor.

Let M = {1} be the monoid having just the unit element. For this monoid it is clear
that for any category C, MC = C = CM . If we consider the standard covariant functor
χ = st: ∆ −→ Top defined by st[q] = |∆[q]|, we will obtain the standard realization and
singular functors Rst:SS −→ Top, Sst:Top −→ SS. The functor Rst is simplicial left
adjoint to Sst; that is, HomTop(RstX,Y ) ∼= HomSS(X,SstY ). In this paper the standard
realization functor Rst is denoted by R and by | | and the standard singular functor Sst
by S.

2) Equivariant realization and singular functors.
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Given a monoid M , it can be provided with the discrete topology and a functor
Top −→ MTop can be defined by X −→ M × X. This functor is left adjoint to the
forgetful functor MTop −→ Top. If we consider the covariant functor e = (M × (−)) · st

∆ st−→Top
M×(−)−→ MTop

defined by e[q] = M × |∆[q]|, we can apply Theorem 3.2 to obtain a realization functor
Re:S(SM ) −→ TopM and a singular functor Se:TopM −→ S(SM ).

Given a finite simplicial set K and a object X of TopM there are objects X ⊗K and
XK defined by

X ⊗K = X × |K|

XK = X |K|

The action of M on X⊗K is defined by (x, y)m = (xm, y) for x ∈ X, y ∈ |K| and m ∈M ,
and the action of M on XK is given by (ϕm)(y) = (ϕ(y))m for ϕ ∈ XK , y ∈ |K| and
m ∈M . As above, Re, Se are a pair of simplicial adjoint functors

HomTopM
(ReX,Y ) ∼= HomS(SM )(X,SeY ).

The equivariant homotopy category is defined to be π0(TopM ). Taking into account the
isomorphism above, it follows that

π0(TopM )(ReX,Y ) ∼= π0(S(SM ))(X,SeY ).

3) Proper realization and singular functors.

If we consider the monoid M = Pro(N,N), since the identity id:M −→ Pro(N,N) is
a monoid homomorphism, it follows that N has the natural structure of a left M -set. The
functor −× |∆[q]|:Pro −→ Pro induces a left M -set structure on N× |∆[q]| ∼= t

N
|∆[q]|

by considering the composite:

M −→ Pro(N,N) −→ Pro(N× |∆[q]|,N× |∆[q]|).

Therefore there is an induced functor

χ = p: ∆ −→ MPro, p[q] = N× |∆[q]|.

The inclusion functor I:Pro −→ Top induces a natural functor MI:MPro −→ MTop

and we also have the composite:

χ = c = MI · p: ∆ −→ MPro −→ MTop.
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Since Top has colimits, applying Theorem 3.2, we obtain the continuous realization
functor Rc:S(SM ) −→ Top and the continuous singular functor Sc:Top −→ S(SM ).

By the exponential law, there is a set isomorphism

Top(N× |∆[q]|,X) ∼= Top(|∆[q]|,XN
c )

where the mapping space XN
c has the compact open topology. It is also clear that XN

c

has the structure of a right M–space, therefore we have the following diagram which is
commutative up to isomorphism

Top
()Nc−−−−−→ TopM

Sc ↘ ↙ Se

S(SM )

that is, ScX ∼= Se(XN
c ).

Recall that for X an object in S(SM ), the functor Rc:S(SM ) −→ Top is defined by

RcX = colim(
∫
X ′ −→M ×∆ c′−−−−−→Top).

If X is an object in S(SM/ff)/fd, by Proposition 3.2 RcX is isomorphic to

colim(D(Skn)X ′ −→M ×∆ c′−−−−−→Top).

Since M × ∆ c′−−−−−→Top factorizes as M × ∆
p′−−−−−→Pro I−−−−−→Top and using the

fact that for any object ([q], (i,m)) in D(SknX ′) the continuous map c′[q] = N×|∆[q]| −→
RcX is proper, it follows that colim(D(SknX ′) −→M ×∆

p′−−−−−→Pro) exists. Applying
again Proposition 3.2, one has that colim(

∫
X ′ −→M ×∆

p′−−−−−→Pro) exists. Therefore,
for any X an object in S(SM/ff)/fd we can define Rp:S(SM/ff)/fd −→ Pro by

RpX = colim(
∫
X ′ −→M ×∆

p′−−−−−→Pro).

On the other hand, observe that the set XN
p = Pro(N,X) is bijective to the subset

{f ∈ X̂N̂
c |f−1∞ = ∞}. We will consider on XN

p the relative topology induced by the

compact open topology of the space X̂N̂
c . It is easy to check that we have a natural

set–isomorphism
Pro(N× |∆[q]|,X) ∼= Top(|∆[q]|,XN

p ).

xxi



These sets have also a natural structure as right M–sets, (M = Pro(N,N)) and the
isomorphism above becomes an M–set isomorphism. Therefore we have the following
diagram of functors which is commutative up to natural isomorphism

Pro
(−)Np−−−−−→ TopM

Sp ↘ ↙ Se

S(SM )

The pair of adjoint functors Rc:S(SM ) −→ Top, Sc:Top −→ S(SM ) satisfies:
a) Sc preserves “function” functors: for a finite simplicial set K and an object X of

TopM , we have

Sc(XK) ∼= Se((X |K|)Nc ) ∼= Se((XN
c )|K|) ∼= (SeXN

c )K ∼= (ScX)K

b) Rc preserves “tensor” functors. Let X be an object of S(SM ) and let Y be a
topological space

Top(RcX ⊗K,Y ) ∼= Top(RcX,Y K) ∼= S(SM )(X,Sc(Y K)) ∼=
∼= S(SM )(X, (ScY )K) ∼= S(SM )(X ⊗K,ScY ) ∼= Top(Rc(X ⊗K), Y )

By the Yoneda Lemma, it follows that RcX ⊗K ∼= Rc(X ⊗K). This implies that Rc is
simplicial left adjoint to Sc; that is, HomTop(RcX,Y ) ∼= HomS(SM )(X,ScY ).

c) Rp:S(SM/ff)/fd −→ Pro preserves “tensor” functors. This follows because
Rp = Rc on the full subcategory S(SM/ff)/fd. Observe that the “tensor” functor of Top,
see example 2 of section 1, induces a “tensor” functor on the subcategory Pro of spaces and
proper maps. Notice that we only consider “tensor” functors associated with finite simpli-
cial sets. Using this tensor product one can define a functor HomPro:Proop×Pro −→ SS

by
HomPro(X,Y )q = Pro(X ⊗∆[q], Y ).

In this way Pro becomes a simplicial category and the standard proper homotopy category
is defined to be π0(Pro).

Because Rp:S(SM/ff)/fd) −→ Pro preserves “tensor” functors, we have the follow-
ing isomorphisms:

HomPro(RpX,Y )q ∼= Pro(RpX ⊗∆[q], Y ) ∼= Pro(Rp(X ⊗∆[q]), Y ) ∼=
∼= S(SM )(X ⊗∆[q], SpY ) ∼= HomS(SM )(X,SpY )q.
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This implies that we have a simplicial isomorphism

HomPro(RpX,Y ) ∼= HomS(SM )(X,SpY )

and Rp:S(SM/ff)/fd −→ Pro is a partial simplicial left adjoint functor for Sp:Pro −→
S(SM ). The functors Rp and Sp induce the following adjointness on the categories π0(Pro)
and π0(S(SM )). If X is an object of S(SM/ff)/fd and Y an object of Pro, then

π0(Pro)(RpX,Y ) ∼= π0(S(SM ))(X,SpY ).

The last properties give the following results:

Theorem 1. The proper realization functor Rp:S(SM )/ff)/fd −→ Pro is simplicial
partial left adjoint to the proper singular functor Sp:Pro −→ S(SM ).

Theorem 2. If X is a cofibrant object of S(SM/ff)/fd and Y an object of Pro, then

π0(Pro)(RpX,Y ) ∼= Ho(S(SM ))(X,SpY )

Proof. Let U :S(SM ) −→ SS denote the forgetful functor. Notice that

U(SpY ) ∼= USe(Y N
p ) = S(Y N

p )

is a fibrant object of SS. By the definition of fibration in S(SM ), see Definition 2.1, it
follows that SpY is fibrant in S(SM ). Therefore we have

π0(Pro)(RpX,Y ) = π0 HomPro(RpX,Y ) ∼=
∼= π0 HomS(SM )(X,SpY ) ∼= Ho(S(SM ))(X,SpY )

The last isomorphism follows from the fact that X is cofibrant and SpY is fibrant.

4) Realization and singular functors for pro–spaces.

Let C be a category with countable sums (coproducts). Using the sum of C, we can
define a functor c:C −→ proC as follows, if X is an object of C, cX: N −→ C is defined
by

(cX)i = t
j≥i

X

where N is considered in this case with its left filtering category structure. The standard
“inclusions” of the coproduct define the natural map (cX)i+1 −→ (cX)i. Recall that the
objects of the category (proC,C) are promorphisms of the form Y → B, where Y : I → C is
an object in proC and B: 1 = {0} → C is a constant object. To determine a promorphism
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Y → B it suffices to give a map ϕ: 1 → I and a morphism fϕ(0):Yϕ(0) → B0. Since
cX: N → C is an object in proC and (cX)0 is a constant object, the map ϕ: 1 → N,
ϕ(0) = 0, and id: (cX)ϕ(0) → (cX)0 determine a promorphism cgX: cX → (cX)o; that is,
an object in (proC,C). This defines a global (or augmented) functor cg:C → (proC,C). If
it is necessary to distinguish the two functors we shall use the notation c∞:C → proC and
cg:C → (proC,C), otherwise we just write c.

Consider the following functors
a) The functor χ∞: ∆ −→ M∞(proSS).
The functor c:SS −→ proSS gives an object c∆[0] in proSS and we can consider the

monoid M∞ = proSS(c∆[0], c∆[0]) which is isomorphic to Pro∞(N,N). As in example
3, c∆[0] has a natural structure as a left M∞–object. The functor − ⊗ ∆[q]: proSS −→
proSS induces left M∞–object structures on c∆[0] ⊗ ∆[q] ∼= c∆[q], so there is a functor
χ∞: ∆ −→ M∞(proSS), (χ∞)q = c∆[q]. Now by Theorem 3.2, we obtain a realization
functor Rχ∞ :S(SM∞) −→ proSS which is simplicial left adjoint to the corresponding
singular functor Sχ∞ : proSS −→ S(SM∞).

b) The global functor χg: ∆ −→ M (proSS, SS).
Using the global version of the c functor, cg:SS −→ (proSS, SS), and the monoid

M = (proSS, SS)(cg∆[0], cg∆[0]) which is isomorphic to Pro(N,N), we have an induced
functor χg: ∆ −→ M (proSS, SS). Associated with the functor χg, there are a realization
functor Rχg :S(SM ) −→ (proSS, SS) and a singular functor Sχg : (proSS, SS) −→ S(SM )
that induce a simplicial adjunction isomorphism

Hom(proSS,SS)(Rχg
X,Y ) ∼= HomS(SM )(X,Sχg

Y ).

c) The functor χ∗∞: ∆ −→ M∗∞
(proSS∗).

Recall that for a simplicial set K, K t ∆[0] is denoted by K+. Using the functor
c:SS∗ −→ proSS∗, we get the object c∆[0] and we can consider the monoid M∗∞ =
proSS∗(c∆[0]+, c∆[0]+) which is isomorphic to Top∞∗ (N̂, N̂). As a consequence of Theorem
3.2, we also have a natural adjunction isomorphism

HomproSS∗(Rχ∗∞X,Y ) ∼= HomS(SM∗∞
)(X,Sχ∗∞Y ).

d) The functor χ∗g: ∆ −→ M∗g
(proSS∗, SS∗).

The monoid M∗g = (proSS∗, SS∗)(cg∆[0]+, (cg∆[0]+) is isomorphic to Top∗(N̂, N̂).
As in the cases above, we have a functor χ∗g: ∆ −→ M∗g

(proSS∗, SS∗) and a simplicial
isomorphism

Hom(proSS∗,SS∗)(Rχ∗gX,Y ) ∼= HomS(SM∗g
)(X,Sχ∗gY ).
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5. Brown′s P functor and the singular functor proSS −→ S(SM )

In 1975, E.M. Brown [Br.1] gave a definition of a proper fundamental group Bπ∞1 (X)
of a σ–compact space X with a base ray. He also defined a functor P̄: towGps −→ Gps

that gives the relation between the tower of fundamental groups, π1εX, of a tower of
neighbourhoods of X at infinity and the proper fundamental group. This relation in given
by P̄π1εX ∼= Bπ

∞
1 (X). In this section we extend this definition to other categories and

study the relation with the singular functor proSS −→ S(SM ).

Let C denote one of the following categories:
Set = (sets),
Set∗ = (pointed sets),
Gps = (groups),
Ab = (abelian groups).

The small projective generators of these (algebraic) categories will be denoted by ∗, S0,N,

Na, respectively.
Since C has sums, we have the functor c:C −→ proC defined by cX: N −→ C,

(cX)i = t
j≥i

X. Sometimes, we will also consider the global (or augmented) version c:C −→

−→ (proC,C).
Let G denote the small projective generator of C and let PcG denote the endomor-

phism set
PcG = proC(cG, cG)

If C = Set, G = ∗, Pc∗ has a monoid structure. Notice that Pc∗ ∼= proSS(c∆[0], c∆[0]) ∼=
Pro∞(N,N). In the pointed case, C = Set∗, G = S0, the endomorphism set admits the
structure of a 0–monoid, see section 2, and we have that PcS0 ∼= proSS∗(c∆[0]+, c∆[0]+)
∼= Top∞∗ (N̂, N̂). If C = Gps, G = N, the endomorphism set has a natural near–ring
structure, see [Mel, Pilz]. Finally for C = Ab, G = Na, the endormorphism set PcNa

becomes a ring isomorphic to the ring of locally finite matrices modulo the ideal of finite
matrices, see [F–W.1, F–W.2].

Let CPcG denote one of the following categories:
If C = Set, G = ∗, then SetPc∗ is the category of right Pc∗–sets.
If C = Set∗, G = S0, then Set∗PcS0 is the category of right PcS0–pointed sets.
If C = Grp, G = N, then GrpPcN is the category of right PcN–groups. This

category is also known as the category of right near modules over the near–ring PcN, see
[Mel, Pilz].
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If C = Ab, G = Na, then AbPcNa is the category of right PcNa–abelian groups that
is usually called the category of right PcNa–modules.

If we consider the global (or augmented) functor c = cg:C −→ (proC,C), we will get
the endomorphism set PgcgG = (proC,C)(cgG, cgG) that will also be denoted by PgcG
and the corresponding category CPgcG.

Given an object X of proC, it is easy to check that proC(cG,X) is an object of CPcG.
Therefore we have a functor

P: proC −→ CPcG

defined by PX = proC(cG,X).
The full subcategory of proC determined by objects indexed by natural numbers is

usually denoted by towC. We say that an object X of proC is finitely generated if there
is an effective epimorphism Q −→ X where Q is a finite sum of copies of cG.

We summarize some properties of the P functors in the following results, see [He.1].

Theorem 1. The functor P: proC −→ CPcG satisfies:
i) the restriction P: towC −→ CPcG is faithful;
ii) the restriction P: towC/fg −→ CPcG is also full, where towC/fg is the full subcategory
of towC of finitely generated towers.

Theorem 2. The functor P: proC −→ CPcG has a left adjoint functor L:CPcG −→ proC.

Remark. There are similar results for the category (proC,C) of global pro–objects in C

and the category CPgcG.
Since the forgetful functor U :CPcG −→ C has a left adjoint functor −� PcG:C −→

−→ CPcG, we have the pairs of adjoint functors

proC
L←−−−−−−−−−−→
P

CPcG
− � PcG←−−−−−−−−−−→

U

C

and the composites L = L(−� PcG), P = UP give a new pair of adjoint functors

proC
L←−−−−−−−−−−→
P

C.
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Notice that P: proGps −→ Gps is the functor defined by Brown and denoted in his paper
[Br.1] by P.

Remark. It is easy to check that LG = L(G � PcG) ∼= L(PcG) = cG and Lf = cf for
any morphism f :G −→ G. Therefore L = c on the full subcategory of C obtained from G

by considering finite colimits of copies of G.

Given a left filtering small category I, the equivalence of categories (CI)∆ ' (C∆)I

induces a natural functor F : proSC −→ SproC defined by (FX)q(i) = (X(i))q, where X
is an object in proSC. On the other hand the functors L:CPcG −→ proC and P: proC −→
CPcG induce functors SL:SCPcG −→ SproC and SP:SproC −→ SCPcG. Next we analyse
the relation between the P functor and the singular functor Sχ∞ : proSC −→ S(CPcG)
defined in 4) of the previous section.

The relation between these functors is given in the following:

Theorem 3. The following diagram is commutative up to natural isomorphism,

proSC
F−−−−−→ SproC

Sχ∞ ↘ ↙ SP

S(CPcG).

Proof. We are going to use the fact that the functor c:C −→ proC agrees with L in some
cases (see Remark above). We also consider several functors of the form in: C −→ SC,
where (inX)q = X and the face and degeneracy operators are equal to the identity of X.
We have the following isomorphisms
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(Sχ∞X)q = proSC(χ∞[q], X)
∼= proSC(c(inG⊗∆[q]), X)
∼= proSC(c inG⊗∆[q], X)

(1) ∼= SproC(F (c inG⊗∆[q]), FX)
∼= SproC(F c inG⊗∆[q], FX)
∼= SproC(in cG⊗∆[q], FX)
∼= SproC(inL G⊗∆[q], FX)
∼= SproC(inL(G� PcG)⊗∆[q], FX)
∼= SproC(SL in(G� PcG)⊗∆[q], FX)
∼= SproC(SL(in(G� PcG)⊗∆[q]), FX)
∼= S(SPcG)(in(G� PcG)⊗∆[q], SP FX)
∼= (SP FX)q

The isomorphism (1) follows from the fact that c inG ⊗∆[q] is a finite dimensional pro–
object. If S≤qC denotes the category of q–truncated simplicial objects in C; that is, func-
tors (∆/q)op −→ C where ∆/q is the full subcategory of ∆ determined by the objects
[0], [1], . . . , [q]. It is not hard to check that

proSC(c inG⊗∆[q], X) ∼= proS≤qC(c inG⊗∆[q], X)

(2) ∼= S≤q proC(F (c inG⊗∆[q]), FX)
∼= SproC(F (c inG⊗∆[q]), FX).

The isomorphism (2) is a consequence of the theorem of C.V. Meyer, see [Mey], that says
that pro(CD) is equivalent to (proC)D if D is a finite category and C has finite limits.

Remark. As a consequence of Theorem 3, we observe that the singular functor Sχ∞ is
calculated dimensionwise by the P functor. In this way, the functor Sχ∞ can be considered
as an extension of the functor P: proC −→ CPcG. For this reason, in the sequel, the
functors Sχ∞ , Sχg , Sχ∗∞ , Sχ∗g will be denoted by P and the corresponding realization
functors Rχ∞ , Rχg

, Rχ∗∞ , Rχ∗g by L.

The forgetful functors Set∗ −→ Set, Gps −→ Set∗ and Ab −→ Gps have left adjoint
functors denoted by

( )+:Set −→ Set∗,

f :Set∗ −→ Gps,

ab:Gps −→ Ab.
We consider the induced functors
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pro( )+: proSet −→ proSet∗,

prof : proSet∗ −→ proGps

pro(ab): proGps −→ proAb
and the induced monoid homomorphisms

proSet(c∗, c∗) −→ proSet∗(cS0, cS0) −→ proGrp(cN, cN) −→ proAb(cNa, cNa).

Using the isomorphism Pro∞(N,N) ∼= proS(c∗, c∗), the proper map sh: N −→ N,
sh(i) = i+1, i ∈ N, define an element of proS(c∗, c∗). The monoid homomorphisms above
determine new canonical elements in the other monoids. Any one of these elements will
be denoted by sh and it will be called the shift operator.

For C any of the categories with which we are working, we define a functor
Fsh:CPcG −→ C by

Fsh X = {x ∈ X | x sh = x}.

It is easy to check the functor diagram

towC
P−−−−−→ CPcG

lim↘ ↙ Fsh

C

is commutative up to natural isomorphism, where lim is the standard inverse limit. We
can also prove the following result.

Theorem 4. The following diagram

towSC
P−−−−−→ S(CPcG)

lim↘ ↙ Fsh

SC

is commutative up to natural isomorphism.
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Proof. By Theorem 3, P is isomorphic to SP F . It is clear that S lim ∼= SFsh SP. Since
the diagram

tow SC
F−−−−−→ Stow C

lim↘ ↙ Slim

SC

is commutative, we have that

Fsh P ∼= Fsh SP F ∼= SFsh SP F ∼= Slim F ∼= lim.

Remark. The functors lim: proSC −→ SC, P: proSC −→ S(CPcG), Fsh:S(CPcG) −→
−→ SC have left adjoint functors.
6. Derived functors of L and P

In this section we analyse the properties of the pair of adjoint functors
L = Rχ∗∞ :S(S∗PcS0 ) −→ proSS∗, P = Sχ∗∞ : proSS∗ −→ S(S∗PcS0 ) with respect to the
closed model structures of these categories. In the category proSS∗ we consider the struc-
ture given by Edwards–Hastings [E–H] and the category S(S∗PcS0 ) is provided with the
structure given in section 2.

Recall that if A′ is a full subcategory of A, we say that a functor F :A′ −→ B is
a partial left adjoint to the functor G:B −→ A if for any A of A′ and B of B, there is
a natural isomorphism B(FA,B) ∼= A(A,GB). If A,B are simplicial categories and this
isomorphism extends to a simplicial isomorphism HomB(FA,B) ∼= HomA(A,GB), it is
said that F is a partial simplicial left adjoint functor to G.
Lemma 1. The restriction of the functor c:SS∗ −→ proSS∗ to the full subcategory of
finite simplicial sets is a partial simplicial left adjoint functor to P̄ = UP: proSS∗ −→ SS∗.

Proof. For a finite simplicial set X, we have the isomorphisms
HomproSS∗(cX, Y ) ∼= HomproSS∗(c ∆[0]+ ⊗X,Y ) ∼=
∼= HomSS∗(X,HomproSS∗(c ∆[0]+, Y )) ∼= HomSS∗(X, P̄Y ).

Lemma 2. The functor P: proSS∗ −→ S(S∗PcS0 ) satisfies
1) If p:E −→ B is a fibration in proSS∗ in the sense of Edwards–Hastings, then Pp is a
fibration in S(S∗PcS0 ).
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2) Let p:E −→ B be a level morphism in towSS∗ (p = {pi:Ei −→ Bi | i ∈ N}) such that
each pi:Ei −→ Bi is a fibration in SS∗. Then Pp is a fibration in S(S∗PcS0 ).
Proof. By Definition 2.1, Pp is a fibration in S(S∗PcS0 ) if and only if UPp = P̄p is a
fibration in SS∗. By Lemma 1, c is partial left adjoint to P̄: proSS∗ −→ SS∗. Therefore
the existence of a lift in the commutative diagram

V (n, k) −−−−−→ P̄Ey
y

∆[n] −−−−−→ P̄B

is equivalent to the existence of a lift in the corresponding commutative diagram

cV (n, k) −−−−−→ Ey
y

c∆[n] −−−−−→ B

In case 1), the lift exists because proSS∗ is a closed model category and
cV (n, k) −→ c∆[n] is a trivial cofibration. For case 2), taking into account that the
bonding morphisms of cV (n, k), c∆[n] are injections, lim cV (n, k) = ∅ = lim c∆[n],
cV (n, k) −→ c∆[n] is a levelwise morphism and that for each i ≥ 0, pi:Ei −→ Bi is a
fibration, it is easy to find a lift in the diagram above.

In the following Lemma for a given closed model category C, we use Quillen′s notation
Cf to denote the full subcategory of fibrant objects. We are also going to use the following
notation and results: Let SSN

∗ denote the category of functors N −→ SS∗ and natural
transformations. Given an object Y : N −→ SS∗, consider N+ = {−1} ∪ N and define
Y +: N+ −→ SS∗ by Y +

−1 = ∗ and Y +
i = Yi if i ≥ 0. For an injective increasing map

ϕ: N −→ N, define ϕ̄: N −→ N+ by ϕ̄(j) = −1 if j ≤ ϕ(0) and ϕ̄(j) = i if ϕ(i) <
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< j ≤ ϕ(i + 1). Now we define an object Y ∗ϕ: N −→ SS∗ by (Y ∗ϕ)j = Y +
ϕ̄(j). There is

a natural morphism Y −→ Y ∗ϕ and towSS∗ is equivalent to the category of left fractions
Σ−1SSN

∗ associated with the family of morphisms of the form Y −→ Y ∗ϕ (see [G-Z]). As
a consequence of this fact we have that

HomtowSS∗(X,Y ) ∼= colimϕ HomSSN
∗

(X,Y ∗ϕ)
A more detailed description of these results is contained in [He.1].

We also have the functor c:SS∗ −→ SSN
∗ defined as usual by (cX)i = t

j≥i
X and the

functor p:SSN
∗ −→ SS∗ defined by pY =

+∞
Π
i=0

Yi. It is easy to check that c is left adjoint

to p.
These results are applied to prove the second part of the following Lemma that will

be useful to find the relation between the proper singular functor and the right–derived
functor of the P functor.

Lemma 3. The functor P: proSS∗ −→ S(S∗PcS0 ) satisfies
1) If f is a weak equivalence in (proSS∗)f , then Pf is a weak equivalence in S(S∗PcS0 ).
Moreover, Pf is a homotopy equivalence in S(S∗PcS0 ).
2) If f = {fi:Xi −→ Yi} is a level map such that for each i ≥ 0, fi:Xi −→ Yi is a
weak equivalence in SS∗ and Xi, Yi are fibrant in SS∗, then Pf is a weak equivalence in
S(S∗PcS0 ).
Proof. 1) Since (proSS∗)f = (proSS∗)cf and f is a weak equivalence, it follows that f is
a homotopy equivalence. Because P: proSS∗ −→ S(S∗PcS0 ) induces a functor π0(proSS∗)
−→ π0(S(S∗PcS0 )), we get that Pf is also a homotopy equivalence. Therefore Pf is a
weak equivalence in S(S∗PcS0 ).
2) In order to prove that Pf :PX −→ PY is a weak equivalence it suffices to show that
UPf :UPX −→ UPY is a weak equivalence. Since for each i ≥ 0, Xi, Yi are fibrant,
applying 2) of Lemma 2, one has that PX,PY are fibrant in S(S∗PcS0 ). Therefore UPX,
UPY are fibrant in SS∗ and we obtain the following isomorphisms:

[∆[q]/∆̇[q], UPf ] = π0 HomSS∗ (∆[q]/∆̇[q], UPf) =
= π0 HomSS∗(∆[q]/∆̇[q], colimϕ p(f∗ϕ)) ∼=
∼= π0 colimϕ HomSS∗(∆[q]/∆̇[q], p(f∗ϕ)) ∼=
∼= π0 colimϕ p(HomSS∗(∆[q]/∆̇[q], f∗ϕ(j))) ∼=
∼= colimϕ p π0 HomSS∗(∆[q]/∆̇[q], f+

ϕ̄(j)) ∼=
∼= colimϕ p[∆[q]/∆̇[q], f+

ϕ̄(j)]
where we have taken into account that

UPX = HomproSS∗(c∆[0]+, X) ∼=
∼= HomtowSS∗(c∆[0]+, X) ∼=
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∼= colimϕ HomSSN
∗

(c∆[0]+, X∗ϕ) ∼=
∼= colimϕ HomSS∗(∆[0]+, p(X∗ϕ)) ∼=
∼= colimϕ p(X∗ϕ)

and that for maps a similar expression is obtained.
Finally, since each [∆[q]/∆̇[q], f+

ϕ̄(j)] is an isomorphism, we obtain that [∆[q]/∆̇[q], UPf ]
is an isomorphism. Therefore UPf is a weak equivalence and by the definition of weak
equivalence in S(S∗PcS0 ) it follows that Pf is also a weak equivalence in S(S∗PcS0 ).

Remark. Since L:S(S∗PcS0 ) −→ proSS∗ is left adjoint to P: proSS∗ −→ S(S∗PcS0 ) and
proSS∗, S(S∗PcS0 ) are closed model categories, it is easy to check that L preserves cofi-
brations. Using that L is simplicial left adjoint to P, we also get that L carries a weak
equivalence between cofibrant objects into a weak equivalence.

Notice that Lemma 2, Lemma 3 and the Remark after Lemma 3 prove that the functor
L:S(S∗PcS0 ) −→ proSS∗ and P: proSS∗ −→ S(S∗PcS0 ) satisfy the conditions of Theorem
4.3 of ch.I of [Q.1]. Therefore we have the following:

Theorem 1. The functor L:S(S∗PcS0 ) −→ proSS∗ induces a left–derived functor
LL:Ho(S(S∗PcS0 )) −→ Ho(proSS∗) and P: proSS∗ −→ S(S∗PcS0 ) induces a right–derived
functor PR:Ho(proSS∗) −→ Ho(S(S∗PcS0 )) such that LL is left adjoint to PR. Moreover,
LL preserves cofibration sequences and PR preserves fibration sequences.

Recall that by Theorem 2.2 we also have the following pair of adjoint functors

Ho(S(S∗PcS0 ))
− � M←−−−−−−−−−−→

U

Ho(SS∗)

The composition of the two pairs of functor gives a new pair of adjoint functors
L̄L = LL(−�M):Ho(SS∗) −→ Ho(proSS∗) and P̄R = UPR:Ho(proSS∗) −→ Ho(SS∗).
Therefore we have:

Corollary 1. The functor L̄ = L(− �M):SS∗ −→ proSS∗ has a left–derived functor
L̄L:Ho(SS∗) −→ Ho(proSS∗) and P̄ = UP: proSS∗ −→ SS∗ has a right–derived functor
P̄R:Ho(proSS∗) −→ Ho(SS∗) such that L̄L is left adjoint to P̄R. Moreover L̄L preserves
cofibration sequences and P̄R preserves fibration sequences.
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Notice that for a finite simplicial set X, we have that

Ho(proSS∗)(L̄LX,Y ) ∼= Ho(SS∗)(X, P̄RY ).

It is easy to check that c:SS∗ −→ proSS∗ preserves cofibrations, then

Ho(proSS∗)(cX, Y ) ∼= Ho(proSS∗)(cX, Y ′)

where Y −→ Y ′ is a weak equivalence and Y ′ is a fibrant object in proSS∗. Since cX is
cofibrant and Y ′ is fibrant, we have

Ho(proSS∗)(cX, Y ′) ∼= π0(proSS∗)(cX, Y ′).

Applying Lemma 1, it follows that
π0(proSS∗)(cX, Y ′) ∼= π0(SS∗)(X, P̄Y ′) ∼=
∼= π0(SS∗)(X, P̄RY ) ∼= Ho(SS∗)(X, P̄RY ).

Therefore as a consequence of these isomorphisms, we have the following

Theorem 2. Let Ho(SS∗)/f be the full subcategory of Ho(SS∗) determined by finite sim-
plicial sets. Then c:Ho(SS∗)/f −→ Ho(proSS∗) is a partial left adjoint to
P̄R:Ho(proSS∗) −→ Ho(SS∗). The functors L̄L and c agree up to natural isomorphism on
the subcategory Ho(SS∗)/f , moreover, c preserves cofibration sequences associated with
a map between finite simplicial sets.

Corollary 2. The following diagram

Ho(proSS∗)
P̄R

−−−−−→ Ho(SS∗)

Gπ∞q ↘ ↙ πq

Gps

is commutative up to natural isomorphism, where πq denotes the standard qth homo-
topy group and Gπ∞q denotes the qth Grossman homotopy group, defined by Gπ∞q (X) =
= Ho(proSS∗)(cSq, X), Sq = ∆[q]/∆̇[q].
Proof. By Theorem 2 above, c is partial left adjoint to P̄R, so

Gπ∞q (X) = Ho(proSS∗)(cSq, X) ∼= Ho(SS∗)(Sq, P̄RX) ∼= πq(P̄RX).
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Theorem 3 (Brown). The following diagram

Ho(towSS∗)
towπq−−−−−→ towGps

Gπ∞q ↘ ↙ P̄

Gps

is commutative up to natural isomorphism, where towπq is the natural prolongation of the
functor πq to the category of towers.

Proof. We use again the fact that towSS∗ can be obtained as a category of left fractions
of the category SSN

∗ , see the notation given before Lemma 3 and [He.1].
Gπ∞q (X) = Ho(towSS∗)(cSq, X)

∼= π0HomtowSS∗(cS
q, RX)

∼= π0 colimϕ HomSSN
∗

(cSq, (RX)∗ϕ)
∼= π0 colimϕ HomSSN

∗
(Sq, p((RX)∗ϕ))

∼= colimϕ π0 HomSSN
∗

(Sq, p((RX)∗ϕ))
∼= colimϕ πq (p((RX)∗ϕ))
∼= colimϕ p((πq(RX))∗ϕ) ∼= colimϕ p((πqX)∗ϕ)
∼= U P towπq X ∼= P̄ towπq X

where πq(RX) = {πq(RX(i)) | i ≥ 0} ∼= {πq(X(i)) | i ≥ 0} = πqX.

In Theorem 5.4, we have seen that the functors P: towSS∗ −→ S(S∗PcS0 ) and
lim: towSS∗ −→ SS∗ are related by the functor Fsh:S(S∗PcS0 ) −→ SS∗ in such a way
that lim ∼= Fsh P. The following result gives an induced relation between the right–
derived functor limR = holim of the lim functor and the right–derived functor PR of the
P functor. We refer the reader to [E–H] for the definition and properties of the functor
holim:Ho(towSS∗) −→ SS∗.
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Theorem 4. The functor holim = limR:Ho(towSS∗) −→ Ho(SS∗) can be factorized as

Ho(towSS∗)
limR

−−−−−→ Ho(SS∗)

PR ↘ ↗ Fsh

π0(S(S∗PcS0 ))

Proof. We have proved that P: (towSS∗)f −→ S(S∗PcS0 ) sends weak equivalences into
simplicial homotopy equivalences. Since Fsh preserves finite limits, it follows that Fsh
preserves homotopy relations defined by cocylinders (Y ∆[1]). Therefore Fsh induces a
functor Fsh:π0(S(S∗PcS0 )) −→ Ho(SS∗).

Given an object X in towSS∗, we have that

FshPRX = FshPRX
(1)∼= limRX = holimX

where (1) is a consequence of Theorem 5.4 and we have used the definition of holim given
by Edwards–Hastings [E–H, page 133].
7. Simplicial complexes and simplicial M–sets.

In this section we consider noncompact simplicial complexes X satisfying
1) X is locally finite. Each point of x ∈ X has a neighbourhood U which has points

in common with only a finite number of simplexes.
2) X has finite dimension.
3) X has a countably infinite number of simplexes.
A simplicial complex of this type is homeomorphic to a subspace of some euclidean

space Rm which is the union of countably many simplexes of dimensions 0 through n.
Two simplexes have empty intersection or they meet in a common face and the countable
family of simplexes is locally finite. A simplicial complex is said to be n–dimensional if it
contains at least one n–simplex but none of higher dimension. A simplicial complex X is
said to be n–dimensional at infinity if for every finite subcomplex K of X, there is at least
an n–simplex of X −K and none of higher dimension. In this section, simplicial complex
means a simplicial complex satisfying conditions 1), 2) and 3).

Recall the functor Rp:S(SM/ff)/fd −→ Pro defined in 3) of section 4, where
M = Pro(N,N). In this section for each simplicial complex X, we construct a sim-
plicial M–set, N , in S(SM/ff)/fd such that RpN ∼= X. The simplicial M–set N satisfies
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that for each dimension q ≥ 0, Nq is (ff), a free M–set over a finite set. The condition fd
means that N has finite dimension, that is, there is n such that for q ≥ n every simplex
of Nq is degenerate. The simplicial M–set N will be proved to be cofibrant in the closed
model structure of S(SM ).

Let X be a simplicial complex (satisfying 1), 2) and 3)) such that both the dimension
of X and the dimension of X at infinity are equal to n. We can define a simplicial M–set,
N , associated with X as follows: Define N0 = M , N1 = s0M tM , where s0M is a copy
of M and t denotes the sum of M–sets. For a k with 0 ≤ k ≤ n, define

Nk =sk−1sk−2 . . . s0M t
( t
k>ik−2>···>i0≥0

sik−2 · · · si0M) t

· · ·
( t
k>i1>i0≥0

si1si0M) t

( t
k>i0≥0

si0M) t

M
where any sir . . . si0M is a copy of M . For k > n, Nk is similarly defined except that the
last M above is removed.

The degeneracy operators of N are defined using the identity of M . Given M or a
copy of M of the form sir−1 · · · si0M with k > ir−1 > · · · > i0 ≥ 0 and k ≥ i ≥ 0 we use
the relations sisj = sj+1si if i ≤ j to find a copy sir−1+1 · · · si · · · si0M such that ir−1 +1 >
· · · > i > · · · i0. Then si is defined from sir−1 · · · si0M to sir−1+1 · · · si · · · si0M by the
“identity” map.

To define the face operator we consider two cases: If we have a copy of M of the from
sir · · · si0M or if we have M . In the first case we use the relations disj = sj−1di if i < j,
disj = id if i = j or i = j + 1 and disj = sjdi−1 if i > j + 1 to transform an expression of
the form disir · · · si0M into an expression of the form sjr−1 · · · sj0M . Then the restriction
of the face operator di to sir · · · si0M is defined by the “identity” map from sir · · · si0M to
sjr−1 . . . sj0M .

Now we have to define the face operators for the term of Nk (1 ≤ k ≤ n) equal to M .
It is in this step where we use the combinatorial structure of the simplicial complex X.

Given a simplicial complex X (satisfying 1), 2) and 3)) such that the dimension of X
and the dimension of X at infinity are equal to n, firstly, a enumeration can be chosen for
the countable set of 0–simplexes of X, E0

0 , E
0
1 , E

0
2 , etc. This enumeration induces a unique

order to the finite set of vertexes of each k–simplex Ek of X. Therefore for each k–simplex
Ek of X the different faces d0E

k, d1E
k, . . . , dkE

k are well determined. We also choose and
enumeration for the countable set of 1–simplexes of X, the countable set of 2–simplexes,
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etc, and finally for the countable set of n–simplexes.
If 0 < k ≤ n, 0 ≤ i ≤ k, for each l ∈ N the face diEkl is equal to some Ek−1

ϕil
. This

defines a proper map ϕi: N −→ N; that is, an element ϕi ∈M . The restriction of the face
operator di applies the term M of Nk into the term M of Nk−1. Since M is a right M–set
freely generated by 1 ∈M , it suffices to define d01 = ϕ0, . . . , dk1 = ϕk.

The simplicial M–set, N , satisfies that RpN ∼= X, where Rp:S(SM/ff)/fd −→ Pro

is the realization functor defined in 3) of section 4. The reason of this fact is that space X
admits the following inductive construction: We start with a “proper” 0-simplex N×|∆[0]|.
We attach a “proper” 1-simplex to obtain the 1-skeleton, and continue in this way to obtain
the n-skeleton of X . On the other hand, if we look at the definiton of RpN and take into
account Proposition 3.2, we have to consider the diagram D(SknN), see Section 3. In
this case, because sj1M = 1M we can reduce again D(SknN) to a diagram that contains
exactly the necessary instructions to attach each face N×|∂i∆[q]| of the “proper q-simplex
N× |∆[q]|.

Notice that the realization functor satisfies

Rp(∆[q]�M) ∼= N× |∆[q]| ∼= t
N
|∆[q]|,

Rp(∆̇[q]�M) ∼= N× |∆̇[q]| ∼= t
N
|∆̇[q]|.

For the case that both the dimension of X and the dimension of X at infinity are equal
to n, we have constructed a simplicial M–set, N , such that RpN ∼= X. For the general
case we have that dimX = m ≥ n, where n is the dimension of X at infinity. We note
that there are finitely many simplexes of dimension greater than n. Using the construction
above we can find a simplicial M -set, N ′, such that RpN ′ ∼= sknX. In order to attach
the simplexes of dimension greater than n, for each q ≥ n, we are going to construct a

simplicial M -set, ∆1[q] such that Rp ∆1[q] ∼= |∆[q]| t (
+∞
t
1
∗). Now instead of attaching

|∆[q]| by using a map |∆̇[q]| → skq−1X, we attach |∆[q]| t (
+∞
t
1
∗) by using a proper map

|∆̇[q]| t (
+∞
t
1
∗) −→ skq−1X.

We note that if Y is a simplicial M -set, we have the following isomorphisms:

HomS(SM ))(∆[q]�M,Y ) ∼= HomSS(∆[q], UY ) ∼= UYq

where U is right adjoint to − �M . Therefore each element y ∈ Yq determines a map
fy: ∆[q] � M → Y . Recall that for each simplicial set Z, we have that (Z � M)q ∼=
Zq�M ∼= Zq×M , and an element (z,m) of Zq�M is also denoted by z�m. If iq denotes
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the identity of [q] and sh: N → N is an element of M defined by sh(i) = i + 1, we have
that the element iq � sh of (∆[q]�M)q determines a map fiq�sh: ∆[q]�M → ∆[q]�M.

We also consider the restriction of fiq�sh to the corresponding (q − 1)-skeletons that will
be denoted by skq−1(fiq�sh). On the other hand the final map ∗: ∆[q] → ∆[0] induces a
map ∗ �M : ∆[q] �M −→ ∆[0] �M . Using this notation the simplicial M -set, ∆1[q] is
determined by the pushout

∆[q]�M ∗ � M−−−−−→ ∆[0]�M

fiq�sh

y
y

∆[q]�M −−−−−→ ∆1[q]

and similarly one also has the pushout

∆̇[q]�M ∗ � M−−−−−→ ∆[0]�M

skq−1(fiq�sh)

y
y

∆̇[q]�M −−−−−→ ∆̇1[q]

It is easy to check that

Rp ∆1[q] ∼= |∆[q]| t (
+∞
t
1
∗),

Rp ∆̇1[q] ∼= |∆̇[q]| t (
+∞
t
1
∗).

If we suppose that we have a simplicial M -set, N ′, such that RpN ′ ∼= sknX. Because
there are finitely many simplexes with dimension greater than n, we can consider pushouts
of the form N ′′ = N ′ t

∆̇1[p]
∆1[p] to obtain finally the desired N .

Notice that the simplicial M–set N has the following skeletal structure

sk0N ⊂ sk1N ⊂ · · · ⊂ sknN ⊂ · · · ⊂ skmN
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where if l ≤ n, sklN is obtained from skl−1N by a pushout of the form

∆̇[l]�M −−−−−→ skl−1Ny
y

∆[l]�M −−−−−→ sklN

where the map ∆[l]�M → sklN is determined by the adjoint isomorphisms by the identity
1 of M considered as an element of the term M of (sklN)l ∼= Nl. If l > n, Nl is obtained
from Nl−1 by a pushout of the form

t
finite

∆̇1[l] −−−−−→ skl−1Ny
y

t
finite

∆1[l] −−−−−→ sklN

Since ∆̇1[l] −→ ∆1[l] is a retract of ∆̇[l]�M −→ ∆[l]�M , which is a cofibration, it follows
that ∆̇1[l] −→ ∆1[l] and ∆̇[l] �M −→ ∆[l] �M are cofibrations in S(SM ). Therefore N
is a cofibrant object in S(SM ). It is also clear that N is an object of S(SM/ff)/fd.

Then we have proved the following:
Theorem 1. For any simplicial complex X, there is an object N in S(SM/ff)/fd which
is cofibrant in S(SM ) and such that RpN ∼= X.

We are going to analyse the relationship between the proper realization functor
Rp:S(SM/ff)/fd −→ Pro and the realization functor L = Rχg

∞
:S(SM ) −→ (proSS, SS).

Consider the Edwards–Hastings embedding ε:Pro −→ (proTop, Top) and the restrictions
ε:Proσ −→ (proTop, Top) and ε:PC −→ (proTop, Top), where Proσ is the full subcate-
gory of Pro determined by locally compact, σ–compact Hausdorff spaces and PC is the
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full subcategory of Proσ determined by spaces that admits a triangulation as a simplicial
complex satisfying the conditions 1), 2) and 3) of the beginning of the section.

Edwards and Hastings [E–H; Proposition 6.2.7] proved that the induced functors
ε:π0(Proσ) −→ HoSt(proTop, Top)
ε:π0((Proσ)∞) −→ HoSt(proTop)

are full embeddings, where π0(Proσ) and π0((Proσ)∞) are defined dividing by proper
homotopies and germs of proper homotopies and HoSt(proTop, Top), HoSt(proTop) are
obtained by the inversion of the weak equivalences of (proTop, Top) (resp., proTop) of
the closed model structure defined by Edwards–Hasting [E–H] on these procategories and
induced by the Strøm closed model structure of Top.

If one considers the closed simplicial model structure of Top defined by Quillen [Q.1],
using the Edwards–Hastings method there are induced closed simplicial model structures
on the categories (proTop, Top) and proTop. Let HoQ(proTop, Top), HoQ(proTop) denote
the corresponding localized categories. Using these new closed model structures, there are
also full embeddings

ε:π0(PC) −→ HoQ(proTop, Top)
ε:π0((PC)∞) −→ HoQ(proTop)

if we consider the restriction of ε to spaces that admit a triangulation as a simplicial
complex.

The standard realization and singular functor Top
R←−−−−−−−−−−→
S

SS induce equivalences

of categories

HoQ(proTop, Top)
R←−−−−−−−−−−→
S

Ho(proSS, SS)

HoQ(proTop)
R←−−−−−−−−−−→
S

Ho(proSS) .

Therefore we also have the full embeddings
Sε:π0(PC) −→ Ho(proSS, SS)
Sε:π0((PC)∞) −→ Ho(proSS)
The following proposition relates the proper realization functor Rp:S(SM/ff)/fd −→

−→ PC and the realization functor L:S(SM ) −→ (proSS, SS).
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Proposition 1. Let X be an object of PC and let N be a simplicial M–set associated
with X by the construction given in this section (RpN ∼= X). Then LN is isomorphic to
SεX in the category Ho(proSS, SS).

Proof. Let X be a simplicial complex and assume that the set of vertexes of each simplex
of X is provided with a fixed order. We can define a simplicial set sX by

(sX)q = {f : |∆[q]| −→ X | f is a simplicial, order–preserving map}
It is well known that sX −→ SX is a weak equivalence in SS. Therefore if X is an object
of PC provided with an enumeration for the countable set of its vertexes and X = X(0) ⊃
X(1) ⊃ · · · is a decreasing sequence of subcomplexes such that X(i+ 1) ⊂ IntX(i), i ≥ 0,
and ∩X(i) = ∅, we have that sε′X −→ SεX is a weak equivalence in (proSS, SS), where
sε′X = {sX(i)}.

Assume that X is an object in PC with dimX = m and the dimension of X at infinity
is equal to n (m ≥ n). Suppose that X is provided with the corresponding enumerations
for the countable sets of 0–simplexes, 1–simplexes, . . . , and n–simplexes. Then we have
the following pushouts

Rp(∆̇[l]�M) ∼= t
N
|∆̇[l]| −−−−−→ skl−1Xy

y
Rp(∆[l]�M) ∼= t

N
|∆[l]| −−−−−→ sklX 1 ≤ l ≤ n

and for n < l ≤ m

t
finite

Rp∆̇1[l] −−−−−→ skl−1Xy
y

t
finite

Rp ∆1[l] −−−−−→ sklX
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The “functor” sε′ preserves these colimits and we have, in (proSS, SS), the pushouts

sε′(Rp(∆̇[l]�M)) −−−−−→ sε′(skl−1X)y
y

sε′(Rp(∆[l]�M)) −−−−−→ sε′(sklX) 1 ≤ l ≤ n

sε′( t
finite

Rp(∆̇1[l])) −→ sε′(skl−1X)

y
y

sε′( t
finite

Rp(∆1[l])) −→ sε′(sklX) n < l ≤ m

The left adjoint L:S(SM ) −→ (proSS, SS) preserves colimits, so for the simplicial
M–set, N , we have the sequence

Lsk0N ⊂ Lsk1N ⊂ · · · ⊂ LsknN ⊂ · · · ⊂ LskmN ∼= LN

and the pushouts

L(∆̇[l]�M) −−−−−→ L(skl−1N)y
y

L(∆[l]�M) −−−−−→ L(sklN) 1 ≤ l ≤ n
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L( t
finite

∆̇1[l]) −−−−−→ L(skl−1N)

y
y

L( t
finite

∆1[l]) −−−−−→ L(sklN) n < l ≤ m

But we have that
L(∆̇[l]�M) ∼= sε′(Rp(∆̇[l]�M))
L(∆[l]�M) ∼= sε′(Rp(∆[l]�M))
L(∆̇1[l]) ∼= sε′(Rp∆̇1[l])
L(∆1[l]) ∼= sε′(Rp∆1[l])

Then by induction it follows that L(sk0N) ∼= sε′sk0X, L(sk1N) ∼= sε′sk1X, . . . , and finally
LN ∼= sε′X. Therefore SεX is isomorphic in Ho(proSS, SS) to L(N) where N is an object
of S(SM/ff)/fd which is cofibrant in S(SM ).
8. Applications to proper homotopy theory.

Associated with the monoid M = Pro(N,N), we have introduced the proper real-
ization functor Rp:S(SM/ff)/fd −→ Pro and the proper singular functor Sp:Pro −→
S(SM ). Given an object N of S(SM/ff)/fd and a space Y , by Theorem 4.1, we have
that π0(Pro)(RpN,Y ) ∼= π0(S(SM ))(N,SpY ). If N is also a cofibrant object in S(SM ),
then Theorem 4.2 implies that π0(Pro)(RpN,Y ) ∼= Ho(S(SM ))(N,SpY ). Consequently,
in some cases, the problem of computing sets of proper homotopy classes is translated from
the proper homotopy category π0(Pro) to the category of fractions Ho(S(SM )).

We note that the definition of the functor Sp is given by sequences of singular simplexes
converging to infinity. Therefore the use of the functors Rp and Sp will be more convenient
for spaces which are first countable at infinity. For more general spaces we have to use
nets instead of sequences and the category S(SM ) would have to be modified to one of the
form S(SM) where M is a category of “proper maps” between directed sets. In any case,
many of the more important applications of the proper homotopy theory are concerning
with noncompact spaces which are first countable at infinity.

An important class of these latter spaces are the simplicial complexes considered
in section 7. Recall that PC denotes the category of proper maps between spaces that
admit a simplicial decomposition with a countably infinite number of simplexes, we also
assume that this triangulation is locally finite and has finite dimension. By Theorem 7.1,
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a simplicial complex X of PC is of form X ∼= RpN where N is an object of S(SM/ff)/fd
which is cofibrant in S(SM ). Then it follows that

π0(Pro)(X,Y ) ∼= π0(Pro)(RpN,Y ) ∼= Ho(S(SM ))(N,SpY ).

In order to define the proper homotopy groups of a space X, we choose a base sequence
σ: N −→ X converging to infinity. Associated with X, one has the simplicial M–set, SpX,
and the forgetful functor U :S(SM ) −→ SS gives the simplicial set S̄pX = USpX. Notice
that σ is a 0–simplex of S̄pX. We consider the following definition of proper homotopy
groups pπq(X,σ)

Definition 1. Let X be a space and σ: N −→ X a proper map, then the qth proper
homotopy group is defined by

pπq(X,σ): = πq(S̄pX,σ).

Remarks. 1) For the category Pro∞ of germs of proper maps and the monoid
M∞ = Pro∞(N,N), we have similar notions and results. For instance, we can consider
the proper homotopy groups at infinity pπ∞q (X,σ) of a space X and base sequence σ.
2) E.M. Brown [Br.1] defined the proper homotopy groups Bπ∞q (X,α) of a space X with a
proper base ray α: [0,+∞) −→ X. If Sq denotes the q-sphere and ∗ is a base point of Sq, we
can consider the Brown q-sphere BSq = ([0,∞)×{∗})∪(N×Sq). It is easy to check that the
inclusion N×Sq → ([0,∞)×{∗})∪(N×Sq) induces a group isomorphism ηα:B π∞q (X,α)→
pπ∞q (X,α/N). We note that if α, α′: [0,∞) → X are two proper rays such that α/N =
α′/N, we have the group isomorphism θ = η−1

α′ ηα:Bπ∞q (X,α) → Bπ
∞
q (X,α′). However,

two different choices of base ray can lead to non-isomorphic progroups. We refer the
reader to Siebenmann’s thesis [Sie.1]. He considers a space X (an infinity cylinder with
an infinity string of circles) and two proper maps α, α′: [0,∞) → X that lead to non-
isomorphic progroups

G = towπ1(ε(X,α)) 6∼= towπ1(ε(X,α′)) = G′

Siebenmann shows that for α, limG is a cyclic infinite group, and for α′, limG′ is a trivial
group. Recall that if one consider the functor P: towGrp −→ GrpPcN, for the progroups
G, G′ we have the group isomorphisms:

limG ∼= {x ∈ PG | x sh = x}.
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limG′ ∼= {x′ ∈ PG′ | x′sh = x′}.

Therefore, as a consequence of Siebenmman’s example we obtain that PG is not isomorphic
to PG′ in the category GrpPcN (notice that any morphism in GrpPcN has to ‘commute’
with the shift operator sh).

On the other hand, by Theorem 6.3, one has canonical isomorphisms

P̄G ∼= Bπ
∞
1 (X,α),

P̄G′ ∼= Bπ
∞
1 (X,α′).

In the Siebenmann example we have that the group isomorphism θ does not preserve the
action of sh, hence θ is not a morphism of the category GrpPcN.

Now we obtain the following version of the Whitehead Theorem in the proper setting.

Theorem 1. Let f :X −→ Y be a proper map between simplicial complexes (that is,
f is a morphism of PC). Then f is a proper homotopy equivalence if and only if
pπq(f): pπq(X,σ) −→ pπq(Y, fσ) is an isomorphism for all q ≥ 0 and for every base se-
quence σ.
Proof. Let Z be a object in PC. By Theorem 7.1, there is an object N in S(SM/ff)/fd
which is cofibrant in S(SM ) and such that Z ∼= RpN . Using Theorem 7.2 we obtain the
following commutative diagram

π0(Pro)(RpN,X) ∼= Ho(S(SM ))(N,SpX)

f∗

y
y (Spf)∗

π0(Pro(RpN,Y )) ∼= H0(S(SM ))(N,SpY )

By the definition of pπq, one has that S̄pf = USpf is a weak equivalence in SS. Taking
into account the definition of weak equivalence in S(SM ), we have that Spf is a weak
equivalence. Therefore (Spf)∗ is an isomorphism in the diagram above and this implies
that f∗ is also isomorphism. This follows for any Z ∼= RpN and by the Yoneda Lemma, one
obtains, that f is an isomorphism in π0(Pro); that is, f is a proper homotopy equivalence.
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Remarks. 1) A similar version of this proper Whitehead Theorem can be proved for germs
of proper maps and the proper homotopy groups at infinity pπ∞q .
2) Siebenmann [Sie.2], Farrel–Taylor–Wagoner [ F–T–W], Edwards–Hastings [E–H] and
Bassendoski [ Bas] have proved different versions of the proper Whitehead Theorem. There
are also other versions of the Whitehead Theorem for prospaces and pro–simplicial sets
that can be applied to proper homotopy. Extremiana–Hernández–Rivas [E–H–R.1] gave
a version that only uses strong (Steenrod) proper homotopy groups. Baues [Ba.2] and
Ayala–Domı́nguez–Quintero have given a Whitehead Theorem for spaces with a base tree.
3) Let π = pπ1(X) and assume that there is an action of π on an abelian group A. One
can define proper cohomology of X with twisted coefficients by pHq(X;A) := Hq(S̄pX;A).
It is clear that the cohomological version of the standard Whitehead Theorem implies a
similar version for the proper category.

The following result gives the relation between the proper singular functor, the right–
derived functor of the P functor and the Edwards–Hasting functor.

Theorem 2. Let Proσ be the full subcategory of Pro determined by locally compact,
σ–compact Hausdorff spaces. Then the following diagram

π0(Proσ) Sε−−−−−→ Ho(proSS, SS)

Sp ↘ ↙ PR

Ho(S(SM ))

is commutative up to natural isomorphism.

Proof. Let X be an object in Proσ. From the topological properties of X, we infer that
εX ∼= {Xi | i∈N}. Therefore SεX ∼= {SXi}. Using the properties of the model structure
of (towSS, SS), one has a levelwise map {fi:SXi −→ (RSεX)i} such that RSεX is a
fibrant object, and for each i ≥ 0, SXi and (RSεX)i are fibrant objects, and fi is a weak
equivalence. We can now apply Lemma 6.3, to obtain that

PSεX ∼= P{SεXi} −→ P(RSεX) = PRSεX

is a weak equivalence; that is, an isomorphism in Ho(S(SM )).
On the other hand, one has the isomorphisms
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(PSεX)q ∼= (proSS, SS)(L(∆[q]�M), SεX)
∼= (proTop, Top)(|c∆[q]|, εX)
∼= (proTop, Top)(ε(N× |∆[q]|), εX)
∼= Pro(N× |∆[q]|, X)
∼= (SpX)q

Therefore PSεX is isomorphic to SpX and SpX −→ PRSεX is an isomorphism in
Ho(S(SM )).

A partial version of the Edwards–Hastings embedding Theorem can be obtained as a
Corollary.

Corollary 1. Let X be an object in PC, then π0(Pro)(X,Y ) ∼=
Ho(proSS, SS)(SεX, SεY ) for any space Y in Proσ.
Proof. By Theorem 7.1 there is an object N in S(SM ) such that RpN ∼= X and

π0(Pro)(X,Y ) ∼= Ho(S(SM ))(N,SpY ).

By the above Theorem, SpY is isomorphic to PRSεY in Ho(S(SM )), so one has
Ho(S(SM ))(N,SpY ) ∼= Ho(S(SM ))(N,PRSεY ∼= Ho(proSS, SS)(LN,SεY )

In the last isomorphism, we have taking into account that N is cofibrant in S(SM ).
Applying Proposition 7.1, one has that LN is isomorphic to SεX. Therefore

π0(Pro)(X,Y ) ∼= Ho(proSS, SS)(SεX, SεY ).

Different homology theories can be defined in order to have Hurewicz Theorems. If one
considers the following definition, we have that the standard Hurewicz Theorem implies
a proper Hurewicz Theorem. Recall that S̄pX denotes the simplicial set USpX where
U :S(SM ) −→ SS is the forgetful functor and Sp is the proper singular functor.

Definition 2. Let X be a space, the qth proper homology group of X is defined by

pHq(X): = Hq(S̄pX).

Theorem 3 (Proper Hurewicz Theorem). Let X be a noncompact space and suppose
that X is properly 0–connected (pπ0(X,σ) = ∗ for some base sequence σ). Then there is
a homomorphism pπq(X) −→ pHq(X) for each q ≥ 0 such that

xlviii



1) For q = 1, pπ1(X) −→ pH1(X) is up to isomorphism the natural epimorphism from
a group to its abelianization. The first proper homology group is isomorphic to the
abelianization of the proper fundamental group.
2) If X is properly (n−1)–connected, n ≥ 2, (pπq(X) ∼= 0 for q ≤ n−1), then the Hurewicz
homomorphism pπn(X) −→ pHn(X) is an isomorphism and pπn+1(X) −→ pHn+1(X) is
an epimorphism.

Remarks. 1) If X is a space and α: [0,+∞) −→ X a base ray, such that α is a “proper
cofibration”. Then the pushout

ε[0,+∞) −−−−−→ ∗

εα

y
y

εX −−−−−→ ε′X

defines an object ε′X of (proTop∗, T op∗) and εX −→ ε′X is a weak equivalence in
(proTop, Top). Then P̄RSεX −→ P̄Sε′X is a weak equivalence in SS and we have that
πq(P̄RSεX) ∼= πq(P̄RSε′X). The proper homotopy groups satisfy

pπq(X) = πq(SpX) ∼= πq(P̄RSεX) ∼=
∼= πq(P̄RSε′X) ∼= P̄(proπq, πq)(ε′X).

That is the functor πq commutes with the P̄ functor.
2) The functor Hq does not commute with the P̄ functor. Take X obtained from the
semiopen interval [0,+∞) by attaching one 1–sphere at each nonnegative integer. In this
case, the natural map pH1(X) −→ P̄((proH1, H1)ε′X) is not an isomorphism.
3) We can also consider the following functor

Pro
Sε−−−−−→(proSS, SS)

f−−−−−→(proSA, SA) PR

−−−−−→S(APcN) U−−−−−→SA

that induces another proper homology theory that also satisfies a Hurewicz Theorem. In
this case, the functor Hq “commutes” with P̄.
4) Other useful proper invariants are the Strong (Steenrod) homotopy groups of a rayed
space that can be defined by πq(FshPRε′X) or by πqlimRε′X, see [H-P.1, H-P.2]. Other
alternative definition can be seen in [Če]. A proper homology theory for these groups,
that satisfy the Hurewicz Theorem, can be defined by Hq(FshPRε′X). Other Hurewicz
Theorems for the strong homotopy groups are proved in [E-H-R.2].
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9. Applications to prohomotopy theory.

In this section, in order to prove new versions of standard theorems for the homotopy
category Ho(proSS∗), we will use the pair of adjoint functors

Ho(S(S∗PcS0 ))
LL

←−−−−−−−−−−→
PR

Ho(proSS∗).

Definition 1. An object X of proSS∗ is said to be L–cofibrant if X is isomorphic in
Ho(proSS∗) to some LG, where G is a cofibrant object in S(S∗PcS0 ). If G is cofibrant and
dim G ≤ k, then X is said to be L–k–cofibrant.

There are many versions of the Whitehead theorem in prohomotopy theory. On
one side, there are theorems that give algebraic conditions to ensure that a morphism of
proHo(Top) is an isomorphism, see for instance [Rau] and [M-S]. On the other side, there
are theorems of the same type for a morphism ofHo(proTop). The monograph of Edwards–
Hastings [E–H] and the papers of Grossman [Gr.1, Gr.2, Gr.3] include some versions of
the last type for maps between towers that satisfy additional conditions on (co) dimension
or movability. Here we prove a slightly different version of the Whitehead theorem for
L–cofibrant objects. In general, an L–cofibrant object is not necessarily isomorphic to
a tower. The algebraic condition of our result is given in terms of Grossman homotopy
groups or equivalent cohomological conditions.

Theorem 1. Let X,Y be L–cofibrant objects in proSS∗ and let u:X −→ Y be a map in
Ho(proSS∗). If PRu is an isomorphism in Ho(S(S∗PcS0 )), then u is an isomorphism in
Ho(proSS∗).

Proof. It suffices to prove that for any cofibrant object G of S(S∗PcS0 ) the induced map

u∗:Ho(proSS∗)(LG,X) −→ Ho(proSS∗)(LG, Y )

is an isomorphism. Because LL is left adjoint to PR, this condition is equivalent to showing
that

(PRu)∗:Ho((S∗PcS0 ))(G,PRX) −→ Ho((S∗PcS0 ))(G,PRY )

is an isomorphism. This follows because PRu is an isomorphism by hypothesis.
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Consider a simplicial q–sphere, for instance Sq = ∆̇[q + 1], and recall that
L(Sq � PcS0) ∼= cSq. Given an object X in proSS∗, the qth Grossman homotopy group
of X (see [Gr.3]) can be defined by Gπ∞q (X) = Ho(proSS∗)(cSq, X). It is clear that
Gπ∞q (X) ∼= Ho((S∗PcS0 ))(Sq � PcS0,PRX) ∼= Ho(SS∗)(Sq, P̄RX) ∼= πq(P̄RX). A pro–
pointed simplicial set is said to be (Grossman) 0–connected if Gπ∞0 (X) is trivial.

Corollary 1. Let X,Y be L–cofibrant objects in proSS∗ and assume that X and Y are
0–connected (Gπ∞0 = 0). If u:X −→ Y is a morphism in Ho(proSS∗), then u is an
isomorphism if and only if Gπ∞q X −→G π∞q Y is an isomorphism for all q ≥ 1.

Proof. By Theorem 1, u is an isomorphism if and only if PRu is an isomorphism. It is
easy to check that PRu is an isomorphism in Ho(S(S∗PcS0 )) if and only if P̄Ru = UPRu
is an isomorphism in Ho(SS∗). We note that the simplicial sets P̄RX and P̄RY are
0–connected. Therefore this is equivalent to saying that πqP̄Ru is an isomorphism for
q ≥ 1. Since πqP̄Ru = Gπ

∞
q u, we get the algebraic condition of the Corollary.

Remark. We can define the cohomology of a pro–simplicial set X with twisted coefficients
in A by Hq(X;A): = Hq(P̄RX;A) where A is a π–module and π = Gπ

∞
1 X. It is clear that

we can give a cohomological version of the Whitehead Theorem for L–cofibrant objects.

Recall that the natural “inclusion” Ho(SS) −→ Ho(proSS) is left adjoint to the
homotopy limit limR:Ho(proSS) −→ Ho(SS) and for the case of towers limR factorizes
as limR = FshPR. We also have similar functors and properties for the pointed case.

Given an object X in proSS∗ the qth strong homotopy group of X is defined by
Sπq(X) = πq(limRX). If X is a tower we have that πq(limRX) = πq(FshPRX). The Čech
homotopy groups of X are defined by π̌q(X) = lim πqX, where πqX denotes the progroup
proπqX. If X is a tower then π̌q(X) = lim πqX ∼= Fsh P πqX ∼= Fsh πq PRX. Then the
homotopy groups πqPRX determines the Čech homotopy groups π̌q(X) (the homotopy
group πqPRX is provided in a natural way with a shift operator sh).

For an object X in proSS∗, we have the natural map limRX −→ X in proSS∗.
Consider the following notion.

Definition 2. An object X in proSS∗ is said to be P̄–movable if the induced map
P̄RlimRX −→ P̄RX is a weak equivalence in SS∗.

Proposition 1. Let X be an object of towSS∗ and assume that X is P̄–movable, then
i) The Čech homotopy groups π̌q(X) are isomorphic to the strong homotopy groups
Sπq(X).
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ii) The strong homotopy groups determine the Grossman homotopy groups by the formula
Gπ∞q (X) ∼= P̄(Sπq(X)).

Proof. To prove i), consider the following isomorphisms

π̌q(X) = lim πq X ∼= Fsh P πq X ∼=
∼= Fsh πq PR X ∼= Fsh πq PR limR X ∼=
∼= Fsh P(πq limR X) ∼= πq limR X ∼=
∼= Sπq(X)

Part ii) follows from the isomorphisms

Gπ∞q (X) = πq(P̄R X) ∼= πq(P̄R limR X) ∼= P̄ πq limR X ∼= P̄(Sπq(X)).

Now we obtain the following Whitehead Theorem for P̄–movable prosimplicial sets.

Corollary 2. Let X,Y be objects in towSS∗ and assume that X,Y are L–cofibrant and
P̄–movable. Suppose also that X and Y are π̌–0–connected. If u:X −→ Y is a morphism
in Ho(proSS∗), then the following conditions are equivalent
i) u is an isomorphism in Ho(proSS∗)
ii) π̌q(X) −→ π̌q(Y ) is an isomorphism for all q ≥ 1
iii) Sπq(X) −→ Sπq(Y ) is an isomorphism for all q ≥ 1.

Proof. Since X,Y are P̄–movable, we infer by the Proposition above that π̌q(X) ∼= Sπq(X)
and similarly for Y . Because Sπq(X) is isomorphic to Sπq(Y ), by the Proposition above
it follows that Gπ∞q (X) ∼= P̄(Sπq X) ∼= P̄(Sπq Y ) ∼= Gπ

∞
q (Y ), q ≥ 1. Applying Corollary

1 we have that condition iii) implies that u is an isomorphism.

Remarks. 1) Let X be a topological space and α: [0,+∞) → X be a “proper” cofibra-
tion. In Remark 1) after Theorem 8.3 we have considered the pointed pro-simplicial set
Sε′(X,α). We say that X is P̄-movable at infinity if Sε′(X,α) is P̄-movable. As a conse-
quence of Proposition 1, we have that for a space X, which is P̄-movable at infinity, the
strong (Steenrod) homotopy group

Sπq(X,α) ∼= π0(Pro∞)((Sq × [0,+∞), ∗ × [0,+∞)), (X,α))

is isomorphic to the proper Čech group

π̌q(X,α) = limπqε(X,α).
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Therefore we also have the following proper Whitehead Theorem: Let (X,α) (Y, β) be two
“well rayed” simplicial complexes (objects in PC) and let f : (X,α)→ (Y, β) be the germ
of a proper map. Assume that i) X, Y have finite dimension, ii) X, Y are P̄-movable at
infinity, iii) X, Y have one Freudenthal end. Then f is a proper homotopy equivalence at
infinity if and only if π̌q(f): π̌q(X,α) −→ π̌q(Y, β) is an isomorphism for q ≥ 1.
A Whitehead Theorem involving only strong (Steenrod) proper homotopy groups was
proved in [E-H-R.1].
2) If we define the HP̄-homology groups of a pro-simplicial set X by HP̄q (X) = Hq(P̄RX),
we also have a homology theory that satisfies the Hurewicz Theorem for the Grossman
homotopy groups. We will analyse this case in the following section for the pro-simplicial
set V X associated with a compact metrisable space X.
3) Many of the notions and theorems of this section can also be obtained for the non
pointed case proSS, and the corresponding global (augmented) categories (proSS, SS),
(proSS∗, SS∗).
10. Applications to strong shape theory.

First we recall the definitions of the Čech nerve CX of a space X and the Vietoris
nerve V X that was introduced by Porter [P.1].

Given a space X, consider the directed set covX. An element of covX is an open
covering U of X. If U , ϑ ∈ covX, it is said that ϑ refines U (ϑ ≥ U) if for any V ∈ ϑ, there
is some U ∈ U such that V ⊂ U . Given a space X and an open covering U , (CX)U , denotes
a simplicial set such that a typical n–simplex is given by (U0, . . . , Un) where U0, . . . , Un ∈ U
and U0 ∩ · · · ∩Un 6= ∅. The correspondence X −→ {(CX)U |U ∈ covX} defines a functor
C:Top −→ proHo(SS).

If U is an open covering of the space X, the Vietoris nerve of U , (V X)U , is the
simplicial set in which an n–simplex is an ordered (n + 1)–tuple (x0, . . . , xn+1) of points
contained in an open set U ∈ U . One important difference with the Čech nerve is that if ϑ
refines U there is a canonical map (V X)ϑ −→ (V X)U in SS, in the case of the Čech nerve
the corresponding map (CX)ϑ −→ (CX)U has to be considered only in Ho(SS).

Using the Vietoris functor V :Top −→ proSS, one can define the category, StSh(Top),
of strong shape of topological spaces by taking as objects the topological spaces and for
two spaces X,Y the hom–set StSh(X,Y ) is defined by

StSh(X,Y ) = Ho(proSS)(V X, V Y ),

where proSS is provided with the closed model structure given by Edwards–Hastings [E–
H]. We shall also use the Dowker Theorem [E–H; page 125], which asserts that for an open
covering U of a topological space the Vietoris nerve (V X)U is isomorphic to the Čech nerve
(CX)U in the category Ho(SS).
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It is not difficult to check that ifX is a compact metrisable space, then there is a cofinal
sequence . . . ,U2,U1,U0 of open coverings in covX. Therefore CX = {(CX)U | U ∈ covX}
is isomorphic to C ′X = {(CX)Ui

| i ∈ N} in proHo(SS) and V X = {(V X)U | U ∈ covX}
is isomorphic to V ′X = {(V X)Ui

| i ∈ N} in proSS and in Ho(proSS).
Recall that if X is a compact metrisable space we can assume (up to homeomorphism)

that X is a subspace of s =
+∞
Π
n=1

(
−1
n
,

1
n

), the pseudo-interior of the Hilbert cube Q =
+∞
Π
n=1

[
−1
n
,

1
n

]. Consider the open neighbourhoods of X in Q

NX = {U | X ⊂ U,U is an open subset of Q}

as an object of proTop. Since X is a compact space, there is a cofinal sequence of neigh-
bourhoods N ′X = {Ui | X ⊂ Ui, i ∈ N} such that NX is isomorphic to N ′X in proTop.
Applying the singular functor we get SNX = {SU | U ∈ NX} which is isomorphic to V X
in Ho(proSS). It is also interesting to remark that the natural inclusion

N ′cX = {Ui −X | X ⊂ Ui, i ∈ N} ⊂ {Ui | X ⊂ Ui, i ∈ N} = N ′X

is an isomorphism in Ho(proTop) and therefore SN ′X and SN ′cX are isomorphic in
Ho(proSS).

Notice that by considering the functor Ho(towSS) −→ towHo(SS) and the Dowker
Theorem we have that for a compact metrisable space X, C ′X and V ′X are isomorphic
in towHo(SS). If we choose representative maps of the bounding maps of C ′X, we obtain
an object C ′′X in the category towSS and by Theorem 5.2.9 of [E–H] we also have that
C ′′X and V ′X are isomorphic in Ho(towSS). Therefore for a compact metrisable space
the objects V X, SNX, V ′X,SN ′X,SN ′cX,C ′′X are isomorphic in Ho(proSS).

Recall that in the Example 2 of section 2, we introduced the simplicial M–sets ss(X)
and ssc(X) for a compact subset X of the pseudo–interior of the Hilbert cube. The
following result gives a geometric interpretation of the simplicial M–set PRV X.

Proposition 1. Let X be a compact subset of the pseudo–interior of the Hilbert cube,
then PRV X, ss(X), and ssc(X) are isomorphic in the category Ho

(
S(SM )

)
, where M =

Pro(N,N).

Proof. Since V X is isomorphic to SNX, then PRV X ∼= PRSNX ∼= PRSN ′X ∼=
∼= PRSN ′cX. The objects SN ′X = {SUi | i ∈ N} and SN ′cX = {S(Ui − X) | i ∈ N}
satisfy that for each i ∈ N, SUi and S(Ui−X) are fibrant in SS. By Lemma 6.3, we infer
that PRSN ′X is isomorphic to PSN ′X and PRSN ′cX is isomorphic to PSN ′cX in the
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category Ho
(
S(SM )

)
. Now it is easy to check that PSN ′X is isomorphic to ss(X) and

PSN ′cX is isomorphic to ssc(X) in the category S(SM ).

Remark. From the definition of ssc(X) and Sp(Q−X), it is clear that ssc(X) = Sp(Q−X).

To define invariants for the strong shape category, consider the following functors

StSh(CM) V−→Ho(proSS) P
R

−→Ho
(
S(SM )

) U−→Ho(SS)

where StSh(CM) is the strong shape category for compact metrisable spaces and M is
the monoid Pc∗. Recall that we also use the notation UPR = P̄R. We also note that a
base point ∗ of a compact metrisable space determines a base point of P̄RV X.

Definition 1. The πP̄–homotopy groups of a pointed compact metrisable space are defined
by

πP̄q (X) = πq(P̄RV X)

and the HP̄–homology groups of X (non pointed) by

HP̄q (X) = Hq(P̄RV X).

Remarks. 1) The πP̄–homotopy groups πP̄q (X) are isomorphic to the “inward” groups
QπIq (X) of Quigley [Quig, P.6].
2) Notice that π and P̄ commute; that is πqP̄RV X ∼= P̄πqV X, where πqV X denotes the
homotopy progroup proπqV X.
3) In general H and P̄ do not commute; that is, HqP̄RV X 6∼= P̄HqV X, where HqV X

denotes the pro–abelian group proHqV X.
4) To define homology theories, we can consider functors into a category of simplicial
objects in an abelian category, for instance the free abelian functor f :Set −→ Ab induces
natural functors f :SS −→ SA, f : proSS −→ proSA where SA is the category of simplicial
abelian groups. We also have the free functor f :S(SPc∗) −→ S(SPcN) where S(APcN)
denotes the category of simplicial objects in APcN (Ab = A). Therefore we have the
following simplicial objects to define homology of a pro–simplicial set X

a) f U PR X in SA
b) U f PR X in SA
c) U PR f X in SA
d) f PR X in SAPcN
e) PR f X in SAPcN
f) f X in proSA
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For the cases c) and e) we have that H and P̄ commute. The homology in cases d)
and e) has a natural structure as a PcN–module. Recall that PcN is ring of locally finite
matrices modulo the ideal of finite matrices, see [F–W].

As an immediate consequence of the definition one has that theHP̄–homology satisfies
the Hurewicz Theorem for the inward groups of Quigley.

Theorem 1. Let X be a compact metrisable space and assume that X is QπI–0–connected(Q
πI0(X) = 0

)
, then there is a canonical homomorphism QπIq (X) −→ HP̄q (X) such that

1) For q = 1,QπI1(X) −→ HP̄1 (X) is the abelianization of QπI1(X).
2) If X is QπI–(n−1)–connected, n ≥ 2, (that is, QπIq (X) = 0, q ≤ n−1), then QπIn(X) −→
HP̄n (X) is an isomorphism and QπIn+1(X) −→ HP̄n+1(X) is an epimorphism.

Proof. It suffices to apply the standard Hurewicz Theorem to the simplicial set P̄RV X.

Remark. There are other homologies that satisfy Hurewicz theorems for the inward groups
of Quigley. For instance consider the HP̄f–homology groups, HP̄fq (X) =
= Hq(P̄RfX).

It is also interesting to analyse the family of invariants obtained when one consider
the commutative diagram

Ho(towSS)

↙ ↘ limR

Ho(proSS) −−−−−→
PR

π0

(
S(SM )

)
−−−−−→
Fsh

Ho(SS)

For a compact metrisable space the prosimplicial set V X is isomorphic to a tower
of simplicial sets, then holimV X = limRV X ∼= FshPRV X. That is limRV X is a sub–
simplicial set of P̄RV X. The inclusion limRV X ⊂ P̄RV X induces many relations between
the homotopy invariants of limRV X and the invariants of P̄RV X.

Definition 2. The πFP–homotopy groups of a pointed metrisable space are defined by

πFPq (X) = πq(Fsh PRV X)

and the HFP–homology groups of X (non pointed) by

HFP
q (X) = Hq(FshPRV X)
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Remarks. 1) The πFP–homotopy groups πFPq (X) are isomorphic to the approaching
groups QπAq (X) defined by Quigley [Quig, P.6].
2) The functors πq and Fsh do not commute. There are spaces X such that
πqFshPRV X 6∼= FshπqPRV X. Notice that FshπqPRV X ∼= FshPπqV X ∼=
∼= limπqV X is isomorphic to the Čech homotopy group π̌q(X). Therefore the
FπP–homotopy groups of X, FπPq (X) = FshπqPV X are up to isomorphism the Čech
homotopy groups.
3) We can consider the following simplicial objects, in different abelian categories, associ-
ated with a pro–simplicial set X.

a) fFshPRX = f limRX in SA,
b) FshfPRX in SA,
c) FshPRfX = limRfX in SA.

The HFPf–homology groups (or Hlimf) HFPf
q (X) = Hq(FshPRfX) are the strong (or

Steenrod) homology groups SHq(X), see [E–H; pag 208], [Co] and [P.4]. We can also
consider FPH–homology groups FPHq(X) = Fsh P HqX ∼= lim HqX ∼= lim proHqX ∼=
Ȟq(X) which are isomorphic to the Čech homology groups.

There are Theorems of Hurewicz type for the approaching groups QπAq (X) of Quigley
and the strong (Steenrod) homology groups SHq(X), see the paper of Kodama–Koyama
[K–K]. We can also prove that the HFP–homology groups satisfy a Hurewicz Theorem
for the approaching groups of Quigley.

Theorem 2. Let X be a compact metrisable space and assume that X is QπA–0–connected
(that is, QπA0 (X) = 0), then there is a canonical homomorphism QπAq (X) −→ HFP

q (X)
such that
1) For q = 1, QπA1 (X) −→ HFP

q (X) is the abelianization of QπA1 (X)
2) If X is QπA–(n − 1)–connected, n ≥ 2, (that is, QπAq (X) = 0, q ≤ n − 1), then
QπAn (X) −→ HFP

n (X) is an isomorphism and QπAn+1(X) −→ HFP
n+1(X) an epimorphism.

Proof. This is a particular case of the standard Hurewicz Theorem.

If X is a compact metrisable space V X is isomorphic to C ′′X in Ho(proSS). If the
covering dimension of X is finite, then C ′′X is isomorphic to a tower of finite simplicial sets
of dimension less than or equal to the covering dimension of X. It is not hard to check that
a tower of finite simplicial sets of dimension ≤ n (for some n) is a L–cofibrant object in
the sense of Definition 9.1. Therefore if X is a compact metrisable space and X has finite
covering dimension we have that V X is an L–cofibrant object. As a consequence of the
Whitehead Theorem proved in section 9, we obtain the following version of the Whitehead
Theorem for the strong shape category.

lvii



Theorem 3. Let X,Y be compact metrisable spaces with finite covering dimension.
Assume also that X and Y are QπI–0–connected

(Q
πI0 = 0

)
. A strong shape morphism

f :X −→ Y (that is a map f :V X −→ V Y in Ho(proSS)) is a strong shape isomorphism
if and only if f∗:Qπ

I
q(X) −→ Qπ

I
q(Y ) is an isomorphism for q ≥ 1.

Remarks. 1) For a compact metrisable space X, let π = Qπ
I
1(X) be the fundamental

inward group and let A be a π–module. Define the cohomology of X with twisted coefficient
in A by Hq(X;A) = Hq(P̄RV X;A). Then in the Theorem above we can give the following
equivalent condition

i) f∗:Qπ
I
1(X) −→ Qπ

I
1(Y ) is an isomorphism

ii) f∗:Hq(Y ;A) −→ Hq(X;A) is an isomorphism for q ≥ 0 and any twisted
coefficients A.
2) The functors FshPR and P̄R can be used to transform many notions and results of
standard homotopy theory into strong shape notions and results. We have just included
some canonical examples about Hurewicz and Whitehead Theorems.

Definition 3. A compact metrisable space X is said to be P̄–movable if V X is P̄–movable
(see Definition 9.2).

An immediate consequence of Corollary 9.2 is the following Whitehead Theorem

Theorem 4. Let X,Y be compact metrisable spaces and assume that X and Y have
finite covering dimension and that X and Y are P̄–movable. Suppose also that X,Y are
π̌–0–connected (π̌0 = 0). If f :X −→ Y is a strong shape morphism the following conditions
are equivalent
i) f is a strong shape isomorphism,
ii) π̌q(X) −→ π̌q(Y ) is an isomorphism for q ≥ 1,
iii) QπA(X) −→Q πAq (Y ) is an isomorphism for q ≥ 1.
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algébrique”, Man. Math. 59 (1987) 35-52.

[C-P] J.-M. Cordier and T. Porter, “Shape Theory, categorical methods of approxima-
tion”, Ellis Horwood Series in Math. and its Appl., 1989.
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