
Fusion systems, groups, partial groups and simplicial sets

Carles Broto
(joint work with Àlex González)
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Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we
introduced the concept of p-local finite group.

For a fixed prime p, this is a triple (S,F ,L), where

▸ S is a finite p-group

▸ F is a saturated fusion system over S, and

▸ L is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying
space of (S,F ,L) as the p-completed nerve ∣L∣

∧
p

The aim of this talk is to describe the homotopy fixed point set

(∣L∣
∧
p)
hπ

by the action of a finite p-group π on (S,F ,L).

We describe new models for the classifying space due to Andy Chermak (2013)
and point to a precise one, L?, that carries an action of π, and for which we
can prove

[(L?)
∧
p]
hπ

≃ ∐
σ∈H1(π,L?)

(Lσ? )
∧
p

● Same result when π acts on a finite group G was shown by J. Lannes (1986)



Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we
introduced the concept of p-local finite group.

For a fixed prime p, this is a triple (S,F ,L), where

▸ S is a finite p-group

▸ F is a saturated fusion system over S, and

▸ L is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying
space of (S,F ,L) as the p-completed nerve ∣L∣

∧
p

The aim of this talk is to describe the homotopy fixed point set

(∣L∣
∧
p)
hπ

by the action of a finite p-group π on (S,F ,L).

We describe new models for the classifying space due to Andy Chermak (2013)
and point to a precise one, L?, that carries an action of π, and for which we
can prove

[(L?)
∧
p]
hπ

≃ ∐
σ∈H1(π,L?)

(Lσ? )
∧
p

● Same result when π acts on a finite group G was shown by J. Lannes (1986)



Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we
introduced the concept of p-local finite group.

For a fixed prime p, this is a triple (S,F ,L), where

▸ S is a finite p-group

▸ F is a saturated fusion system over S, and

▸ L is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying
space of (S,F ,L) as the p-completed nerve ∣L∣

∧
p

The aim of this talk is to describe the homotopy fixed point set

(∣L∣
∧
p)
hπ

by the action of a finite p-group π on (S,F ,L).

We describe new models for the classifying space due to Andy Chermak (2013)
and point to a precise one, L?, that carries an action of π, and for which we
can prove

[(L?)
∧
p]
hπ

≃ ∐
σ∈H1(π,L?)

(Lσ? )
∧
p

● Same result when π acts on a finite group G was shown by J. Lannes (1986)



Introduction

In a paper published in 2003, together with Ran Levi and Bob Oliver, we
introduced the concept of p-local finite group.

For a fixed prime p, this is a triple (S,F ,L), where

▸ S is a finite p-group

▸ F is a saturated fusion system over S, and

▸ L is an associated centric linking system.

This last is a category extending the fusion system and we define the classifying
space of (S,F ,L) as the p-completed nerve ∣L∣

∧
p

The aim of this talk is to describe the homotopy fixed point set

(∣L∣
∧
p)
hπ

by the action of a finite p-group π on (S,F ,L).

We describe new models for the classifying space due to Andy Chermak (2013)
and point to a precise one, L?, that carries an action of π, and for which we
can prove

[(L?)
∧
p]
hπ

≃ ∐
σ∈H1(π,L?)

(Lσ? )
∧
p

● Same result when π acts on a finite group G was shown by J. Lannes (1986)



Fusion systems

Definition

Let G be a finite group, p a prime number, and S ∈ Sylp(G).
The fusion system of G consists of

▸ Objects: P ≤ S, the subgroups of S, and

▸ Morphisms:

HomFS(G)(P,Q) = {ϕ∶P → Q ∣ ∃g ∈ G,ϕ(x) = gxg−1
}

≅ NG(P,Q)/CG(P )

that compose as group homomorphisms.



Fusion systems

Definition (Puig)

A fusion system F over a finite p-group S consists of a set HomF(P,Q) for
every pair P,Q of subgroups of S such that

HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q)

and form a category where every morphism decomposes as an isomorphism
followed by an inclusion.

It is saturated if it satisfies some extra axioms. Axioms

▸ If G is a finite group and S ∈ Sylp(G), then FS(G) is a saturated fusion
system.

▸ We will say that a saturated fusion system F is exotic if it is not of this
form.

● Brauer (1964) defines abstract fusion between elements in p-groups.
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Fusion systems

There are exotic saturated fusion systems at each prime p, but only one family
is know at the prime 2:

Solomon, 1974. There exists a well defined 2-local structure over the Sylow
2-subgroup of Spin7(q) (q odd prime power) which contains a
unique conjugacy class of involutions. But there is no finite
group with such structure.

Benson, 1994. There is a space BSol(q), related to Dwyer-Wilkerson exotic
2-local finite loop space DI(4), which supports the 2-local
structure defined by Solomon: A classifying space for a
non-existing group !

● M. Aschbacher is developing a program to classify simple fusion systems at
the prime 2.
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Fusion systems

Fusion systems show up while studying the homotopy type of p-completed
classifying spaces of finite groups.

▸ Martino-Priddy conjecture (1996):

BG∧
p ≃ BH

∧
p ⇐⇒ Fp(G) ≃ Fp(H)

Two sorts of objects are introduced in the arguments of the above results

▸ Linking systems (B-Levi-Oliver)

▸ Partial groups and localities (Chermak)
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Fusion systems

Definition

Fix a saturated fusion system F over a finite p-group S. Let ∆ be the family of
F-centric subgroups of S.

An associated centric linking system is a category defined with objects ∆ and
extending F in the sense that

MorF(P,Q) = MorL(P,Q)/Z(P ) .

Some Axioms should be satisfied.

● ∣L∣
∧
p , is called the classifying space of (S,F ,L).



Fusion systems

▸ If G is a finite group and S ∈ Sylp(G), then we construct a centric linking
system LcS(G) associated to FS(G) as the category with

▸ Objects: P ≤ S such that CG(P ) = Z(P ) ×C′
G(P ) with (p, ∣C′

G(P )∣) = 1

▸ Morphisms: MorLc
S
(G)(P,G) = NG(P,G)/C′

G(P )
▸ Then, (S,FS(G),LcS(G)) is a p-local finite group with classifying space

∣L
c
S(G)∣

∧
p ≃ (BG)

∧
p

▸ The Martino-Priddy conjecture is first reduced to showing that a fusion
system FS(G) admits a unique associated centric linking system.

▸ Oliver (2004, 2006): M-P conjecture is true: LS(G) is the only possible
centric linking system associated to FS(G). (The proof depends on the
classification of finite simple groups.)

▸ Chermak (2013): any (abstract) fusion system admits a unique associated
centric linking system. Still depending on CFSG,

▸ Oliver (2013): extends Chermak’s proof

▸ Glauberman-Lynd (2015): Removed the assumption of the CFSG from
Chermak’s proof
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Partial groups

Definition

A partial group is a simplicial set M satisfying

(P1) M0 consists of a unique vertex

(P2) The spine operator en∶Mn Ð→ (M1)
n is injective for all n ≥ 1.

(P3) There is an inversion (−)
−1
∶MÐ→ M such that for each u ∈ Mn, n ≥ 1:

(I1) There is a simplex [ν(u)∣u] ∈ M2n; and
(I2) Π[ν(u)∣u] = 1.



Partial groups

Definition

A partial group is a simplicial set M satisfying

(P1) M0 consists of a unique vertex

(P2) The spine operator en∶Mn Ð→ (M1)
n is injective for all n ≥ 1.

(P3) There is an inversion (−)
−1
∶MÐ→ M such that for each u ∈ Mn, n ≥ 1:

(I1) There is a simplex [ν(u)∣u] ∈ M2n; and
(I2) Π[ν(u)∣u] = 1.



Partial groups

Definition

A partial group is a simplicial set M satisfying

(P1) M0 consists of a unique vertex

(P2) The spine operator en∶Mn Ð→ (M1)
n is injective for all n ≥ 1.

It assigns to an n-simplex

(P3) There is an inversion (−)
−1
∶MÐ→ M such that for each u ∈ Mn, n ≥ 1:

(I1) There is a simplex [ν(u)∣u] ∈ M2n; and
(I2) Π[ν(u)∣u] = 1.



Partial groups

Definition

A partial group is a simplicial set M satisfying

(P1) M0 consists of a unique vertex

(P2) The spine operator en∶Mn Ð→ (M1)
n is injective for all n ≥ 1.

It assigns to an n-simplex

the sequence of edges joining the ordered vertices from 0 through n.

(P3) There is an inversion (−)
−1
∶MÐ→ M such that for each u ∈ Mn, n ≥ 1:

(I1) There is a simplex [ν(u)∣u] ∈ M2n; and
(I2) Π[ν(u)∣u] = 1.



Partial groups

Definition

A partial group is a simplicial set M satisfying

(P1) M0 consists of a unique vertex

(P2) The spine operator en∶Mn Ð→ (M1)
n is injective for all n ≥ 1.

● We write ω = [g1∣g2∣ . . . ∣gn] . if ω ∈ Mn and en(ω) = (g1, g2, . . . , gn):

We write 1 = s0(v) for v ∈ M0, and Π[x1∣x2∣ . . . ∣xn] = x1 ⋅ x2 ⋅ . . . ⋅ xn .

(P3) There is an inversion (−)
−1
∶MÐ→ M such that for each u ∈ Mn, n ≥ 1:

(I1) There is a simplex [ν(u)∣u] ∈ M2n; and
(I2) Π[ν(u)∣u] = 1.



Partial groups

Definition

A partial group is a simplicial set M satisfying

(P1) M0 consists of a unique vertex

(P2) The spine operator en∶Mn Ð→ (M1)
n is injective for all n ≥ 1.

(P3) There is an inversion (−)
−1
∶MÐ→ M such that for each u ∈ Mn, n ≥ 1:

(I1) There is a simplex [ν(u)∣u] ∈ M2n; and
(I2) Π[ν(u)∣u] = 1.



Partial groups

Definition

A partial group is a simplicial set M satisfying

(P1) M0 consists of a unique vertex

(P2) The spine operator en∶Mn Ð→ (M1)
n is injective for all n ≥ 1.
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∶MÐ→ M such that for each u ∈ Mn, n ≥ 1:
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▸ A homomorphism of partial groups is a simplicial map

▸ A extension of partial groups is a fibre bundle M
ı
ÐÐ→ E

τ
ÐÐ→ H

▸ It turns out that if H and M are partial groups, then so is E



Partial groups

We now concentrate in extensions

M
ı
ÐÐ→ E

τ
ÐÐ→ BG

where G is a finite group.

▸ There is a fibration B2Z(M) → B aut(M) → BOut(M).

▸ The classification of extensions works exactly as in the case of finite
groups

▸ The extension is regular split extension if it admits a regular section. A
regular section defines an action of G on M, and E can be described as a
semidirect product.

▸ For a regular split extension, H1
(G,M) classifies equivalence classes of

sections.



Localities

Definition

Let L be a partial group with finite L1, S ≤ L a p-subgroup and ∆ a family of
subgroups of S. Then, (L, S) is a locality via ∆ if the following holds

(O1) [u1∣ . . . ∣un] ∈ Ln if and only if there is a string of composable
conjugation maps between objects of ∆:

X0
u1
←ÐÐX1

u2
←ÐÐ . . .

un
←ÐÐXn , Xi ∈ ∆ .

(O2) ∆ is closed by overgroups. Also, if X ∈ ∆ and u ∈ L1 are such that
uX ≤ S, then uX ∈ ∆.

(L1) S is maximal in the poset (ordered by inclusion) of p-subgroups of L.

▸ Example: Let G be a finite group and fix S ∈ Sylp(G), set F = FS(G),
and let Γ be a non-empty F-invariant collection of subgroups of S, closed
under taking overgroups. Then

LΓ(G) = { [g1∣g2∣ . . . ∣gn] ∈ BG ∣ ∃P0, P1, . . . , Pn ∈ Γ ,

P0
g1
←ÐÐ P1

g2
←ÐÐ . . .

gn
←ÐÐ Pn } ⊆ BG

is a partial group, and (LΓ(G), S) a locality via Γ.



Localities

▸ The locality L(L) of a p-local finite group (S,F ,L).

This is a construction due to Chermak.

Let ≡ be the equivalence relation defined on Iso(L) such that f ≡ g if one
is a restriction of the other. Define

L(L)n = { [f̄1∣f̄2∣ . . . ∣f̄n] ∣ ∃P0, P1, . . . , Pn ∈ Ob(L) ,

P0
f1
←ÐÐ P1

f2
←ÐÐ . . .

fn
←ÐÐ Pn }

Then, (L(L), S) is a locality via ∆ = Ob(L)



Localities

Theorem (B-González)

The natural projection ∣L∣ ÐÐÐ→ L is a weak equivalence of simplicial sets.

Furthermore, it is ∣Auttyp(L)∣-equivariant and the action on L induces an
isomorphism of simplicial groups

∣Auttyp(L)∣ ≅ aut(L, S) .

(This last is the simplicial subgroup of aut(L) that leaves S stable.)

It follows B aut(∣L∣∧p) ≃ B∣Auttyp(L)∣ ≃ B aut(L, S). Auttyp

● Localities provide models for classifying spaces of p-local finite groups. Some
questions arise:

1. The homotopy type of (L, S) depends on the set of objects ∆. We need
to adjust ∆ so that we get to the right homotopy type.

2. We need a solid theory of extensions of localities

3. We need to construct new from old, e.g.: centralizers and mapping spaces
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The natural projection ∣L∣ ÐÐÐ→ L is a weak equivalence of simplicial sets.

Furthermore, it is ∣Auttyp(L)∣-equivariant and the action on L induces an
isomorphism of simplicial groups

∣Auttyp(L)∣ ≅ aut(L, S) .

(This last is the simplicial subgroup of aut(L) that leaves S stable.)

It follows B aut(∣L∣∧p) ≃ B∣Auttyp(L)∣ ≃ B aut(L, S). Auttyp

● Localities provide models for classifying spaces of p-local finite groups. Some
questions arise:

1. The homotopy type of (L, S) depends on the set of objects ∆. We need
to adjust ∆ so that we get to the right homotopy type.

2. We need a solid theory of extensions of localities

3. We need to construct new from old, e.g.: centralizers and mapping spaces



Localities

Theorem (B-González)
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Localities

1. Concerning the homotopy type.

▸ If (L, S) is a locality via ∆ and H ∈ ∆, then

NL(H) = {u ∈ L1 ∣
uH =H }.

and
CL(H) = {u ∈ L1 ∣

uh = h, ∀h ∈H}.

are subgroups of L.

▸ This allows the association of fusion and linking systems, as we did for
groups.

▸ A locality (L, S) via ∆ is centric if it satisfies
1. CL(P ) is a p-group for all P ∈ ∆, and
2. ∆ contains all centric subgroups, that is, all P ≤ S such that

CL(P ) = Z(P ).

▸ Centric localities have the right homotopy type.



Localities

3. Centralizers and mapping spaces

▸ For a locality (L, S) and an arbitrary subgroup T ≤ S, define the
centralizer of T in L as the partial subgroup CL(T ) ≤ L with n-simplices

CL(T )n = { [u1∣u2∣ . . . ∣un] ∈ L ∣
uih = h, ∀h ∈H , i = 1, . . . , n}.

Proposition

Let (L, S) be a centric locality via ∆. If T ≤ S is fully centralized, then

▸ (CL(T ),CS(T )) is a centric locality via ∆T = {CP (T ) ∣T ≤ P ∈ ∆} .

And the adjoint of the product map provides a homotopy equivalence

▸ CL(T )
∧
p

≃
ÐÐÐ→ Map(BT,L∧p)incl



Localities

2. Extensions

▸ Let (L, S) be a locality via ∆ and let G be a discrete group. An extension

LÐÐ→ EÐÐ→ BG

is called isotypical if the structural group is aut(L;S).

▸ If this is the case, then E is also a locality. More precisely:

(a) There is an associated group extension

BNL(S) //

��

BNE(S) //

��

BG

L // E // BG

(b) Fix S̃ ∈ Sylp(NE(S)). Then (E, S̃) is a locality via ∆̃ = {P ≤ S̃ ∣P ∩S ∈ ∆}.

(c) If L is a centric locality, then FS̃(E) is saturated and ∆̃ contains all of the

FS̃(E)-centric FS̃(E)-radical subgroups of S̃.



Localities

Definition

Let (L, S) be a locality via ∆ and L
ı
ÐÐ→ E

τ
ÐÐ→ BG an isotypical extension,

where G is a finite group.

A centric equivariant replacement for (L,∆, S) with respect to the extension τ
is a partial group Leq together with a map of extensions

L //



��

E
τ //

��

BG

Leq
// Eeq τeq

// BG

where ∶L→ Leq is a trivial cofibration and Eeq is a centric locality.

Theorem (B-González)

Let (L,∆, S) be a centric locality.

If π is a finite p-group and LÐ→ E
τ
Ð→ Bπ is an isotypical extension, then,

there exists a centric equivariant replacement of (L,∆, S) with respect to the
extension τ .
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Homotopy fixed points

Definition

Let (S,F ,L) be a p-local finite group and π be a finite p-group. By an action
of π on (S,F ,L) we understand an action of π on a classifying space X ≃ ∣L∣

∧
p .

▸ Borel construction gives a fibration X ÐÐ→X ×π Eπ ÐÐ→ Bπ

▸ This fibration is the fibrewise p-completion of a fibre bundle
∣L∣ ÐÐ→ Y ÐÐ→ Bπ with structure group ∣Auttyp(L)∣ (B-Levi-Oliver)

▸ Let L = L(L) be the locality of (S,F ,L), then the weak equivalence
∣L∣ ÐÐ→ L extends to a diagram of fibre bundles

L

��

∣L∣
≃woo

��

κp // X

��
E

��

Y
≃woo

��

κp // Xhπ

��
Bπ Bπ Bπ



Homotopy fixed points

▸ The extension LÐÐ→ EÐÐ→ Bπ admits a centric equivariant replacement:

Leq

��

L
≃woo

��

∣L∣
≃woo

��

κp // X

��
Eeq

��

E
≃woo

��

Y
≃woo

��

κp // Xhπ

��
Bπ Bπ Bπ Bπ

▸ It follows that Xhπ
≃ [(Leq)

∧
p]
hπ

.

▸ There are bijections

H1
(π; L) ≅H1

(π; Leq) ≅ π0((L∧p)
hπ

) .

▸ Since Eeq is a centric locality, the adjoint of the evaluation provides a mod
p homotopy equivalence

CEeq(σ(π))
≃p

ÐÐÐÐÐ→ Map(Bπ, (Eeq)
∧
p)σ



Homotopy fixed points
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Homotopy fixed points

▸ The fixed points set (Lσeq, S
σ
) is a centric locality and the above

equivalence extends to

Lσeq
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≃p // [(Leq)
∧
p]
hπ
σ̃

��
CEeq(σ(π))

��

≃p // Map(Bπ, (Eeq)
∧
p)σ

��
BZ(π)

≃ // Map(Bπ,Bπ)Id

Theorem (B-González)

Let (S,F ,L) be a p-local finite group and π a finite p-group.
Assume that π acts on a classifying space X ≃ ∣L∣

∧
p . Then,

(a) π acts on the locality L(L), and

(b) if Leq is a centric equivariant replacement for L(L), then

Xhπ
≃ ∐
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[Lσeq]
∧
p
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End

Thank you for your attention
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Saturation Axioms for fusion systems

Let F be a fusion system over a p-group S.

1. A subgroup P ≤ S is fully centralized in F if ∣CS(P )∣ ≥ ∣CS(P
′
)∣ for all

P ′
≤ S which is F-conjugate to P .

2. A subgroup P ≤ S is fully normalized in F if ∣NS(P )∣ ≥ ∣NS(P
′
)∣ for all

P ′
≤ S which is F-conjugate to P .

Definition

A fusion system F over a p-group S is a saturated if the following two
conditions hold:

(I) For all P ≤ S which is fully normalized in F , P is fully centralized in F
and AutS(P ) ∈ SylpAutF(P ).

(II) If P ≤ S and ϕ ∈ HomF(P,S) are such that ϕP is fully centralized, and
if we set

Nϕ = {g ∈ NS(P ) ∣ϕcgϕ
−1

∈ AutS(ϕP )},

then there is ϕ ∈ HomF(Nϕ, S) such that ϕ∣P = ϕ.
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Centric linking systems

Given a fusion system F over a finite p-group S we say that

▸ P is F-conjugate to P ′ if there is an isomorphism ϕ∶P Ð→ P ′ in F .

▸ P ≤ S is F-centric if all P ′
F-conjugate to P satisfies CS(P

′
) = Z(P ′

).

Let F be a fusion system over the p-group S. A centric linking system
associated to F is a category L whose objects are the F-centric subgroups of
S, together with a functor

π∶ L Ð→ F ,

and “distinguished” monomorphisms P
δP
ÐÐÐ→ AutL(P ) for each F-centric

subgroup P ≤ S, which satisfy the following conditions.
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Centric linking systems

(A) π is the identity on objects and surjective on morphisms. More precisely,
for each pair of objects P,Q ∈ L, Z(P ) acts freely on MorL(P,Q) by
composition (upon identifying Z(P ) with δP (Z(P )) ≤ AutL(P )), and π
induces a bijection

MorL(P,Q)/Z(P )
≅

ÐÐÐ→ HomF(P,Q).

(B) For each F-centric subgroup P ≤ S and each g ∈ P , π sends
δP (g) ∈ AutL(P ) to cg ∈ AutF(P ).

(C) For each f ∈ MorL(P,Q) and each g ∈ P , the following square commutes
in L:

P

δP (g)

��

f // Q

δQ(π(f)(g))

��
P

f // Q
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Fusion systems

Definition

Let (S,F ,L) be a p-local finite group. A self-equivalence of L is called
isotypical if it maps subgroups of S to isomorphic subgroups and inclusions to
inclusions.

▸ Auttyp(L) is the group of isotypical self-equivalences of L.

▸ Outtyp(L) is the group of isotypical self equivalences of L modulo natural
equivalence.

▸ Auttyp(L) is the strict monoidal category with objects Auttyp(L) and
morphisms the natural equivalences

Theorem
The nerve ∣Auttyp(L)∣ is a simplicial group that acts naturally on the nerve
∣L∣, and

πi(B∣Auttyp(L)∣) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Outtyp(L) i = 1,

Z(L) i = 2

0 i ≥ 3

Furthermore, B∣Auttyp(L)∣ ≃ B aut(∣L∣∧p).
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