Productos poliedrales en el problema de Kahn

Cristina Costoya (conjunto con Antonio Viruel)

Métodos Categóricos y Homotópicos en Álgebra, Geometría y Topología Logroño, 18-11-2016

• Give you a (abstract) group G

- Give you a (abstract) group G
- ullet Give you category ${\mathcal C}$

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in C such that $Aut_C(X)$

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in \mathcal{C} such that $\operatorname{Aut}_{\mathcal{C}}(X) \cong G$

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in \mathcal{C} such that $\operatorname{Aut}_{\mathcal{C}}(X) \cong G$

- $G = \mathbb{Z}_2$
- $C = HoTop_*$

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in \mathcal{C} such that $\operatorname{Aut}_{\mathcal{C}}(X) \cong G$

- $G = \mathbb{Z}_2$
- $C = HoTop_*$
- Then, $X = M(\mathbb{Z}, n)$

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in \mathcal{C} such that $\operatorname{Aut}_{\mathcal{C}}(X) \cong G$

Example 1

- $G = \mathbb{Z}_2$
- $C = HoTop_*$
- Then, $X = M(\mathbb{Z}, n)$

- $G = \mathbb{Z}_p, p \text{ odd}$
- C = Groups

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in \mathcal{C} such that $\operatorname{Aut}_{\mathcal{C}}(X) \cong G$

Example 1

- $G = \mathbb{Z}_2$
- $C = HoTop_*$
- Then, $X = M(\mathbb{Z}, n)$

- $G = \mathbb{Z}_p, p \text{ odd}$
- C = Groups
- Then, $\operatorname{Aut}_{\mathcal{C}}(X) \not\cong \mathbb{Z}_p$, $\forall X$

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in \mathcal{C} such that $\operatorname{Aut}_{\mathcal{C}}(X) \cong G$

Example 1

- $G=\mathbb{Z}_2$
- $C = HoTop_*$
- Then, $X = M(\mathbb{Z}, n)$

Example 2

- $G = \mathbb{Z}_p, p \text{ odd}$
- C = Groups
- Then, $\operatorname{Aut}_{\mathcal{C}}(X) \not\cong \mathbb{Z}_p$, $\forall X$

So, finite groups can not, in general, be realized in the category of groups

- Give you a (abstract) group G
- Give you category C
- Give me back an object X in \mathcal{C} such that $\operatorname{Aut}_{\mathcal{C}}(X) \cong G$

Example 1

- $G = \mathbb{Z}_2$
- $C = HoTop_*$
- Then, $X = M(\mathbb{Z}, n)$

Example 2

- $G = \mathbb{Z}_p, p \text{ odd}$
- C = Groups
- Then, $\operatorname{Aut}_{\mathcal{C}}(X) \not\cong \mathbb{Z}_p$, $\forall X$

So, finite groups can not, in general, be realized in the category of groups

Are finite groups realizable in HoTop*?

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

finite group *G*

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

finite group *G*

↓ Realization

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

finite group G

↓ Realization

 $G \cong \mathcal{E}(X)$ for some X?

 $\,\rhd\,$ Proposed by Kahn in the late 60's, appears recurrently in literature

- Proposed by Kahn in the late 60's, appears recurrently in literature
- ▶ Until 2012, the only general known procedure to tackle this problem was when $G = \operatorname{Aut}(\pi), \pi$ a group. Then $X = K(\pi, n)$.

- ▶ Proposed by Kahn in the late 60's, appears recurrently in literature
- ▶ Until 2012, the only general known procedure to tackle this problem was when $G = \operatorname{Aut}(\pi), \pi$ a group. Then $X = K(\pi, n)$.
- \triangleright Approach $\mathcal{E}(X)$ by its distinguished subgroups

$$\mathcal{E}_{\sharp}(X), \mathcal{E}_{*}(X), \mathcal{E}^{*}(X) \dots$$

- ▶ Proposed by Kahn in the late 60's, appears recurrently in literature
- \triangleright Until 2012, the only general known procedure to tackle this problem was when $G = \operatorname{Aut}(\pi), \pi$ a group. Then $X = K(\pi, n)$.
- \triangleright Approach $\mathcal{E}(X)$ by its distinguished subgroups

$$\mathcal{E}_{\sharp}(X), \mathcal{E}_{*}(X), \mathcal{E}^{*}(X) \dots$$

$$\mathbb{Z}_2 \cong \mathcal{E}(M(\mathbb{Z}, n))$$
$$\cong \mathcal{E}(K(\mathbb{Z}_3, n))$$

- ▶ Proposed by Kahn in the late 60's, appears recurrently in literature
- \triangleright Until 2012, the only general known procedure to tackle this problem was when $G = \operatorname{Aut}(\pi), \pi$ a group. Then $X = K(\pi, n)$.
- \triangleright Approach $\mathcal{E}(X)$ by its distinguished subgroups

$$\mathcal{E}_{\sharp}(X), \mathcal{E}_{*}(X), \mathcal{E}^{*}(X) \dots$$

Example

```
\mathbb{Z}_2 \cong \mathcal{E}(M(\mathbb{Z}, n))\cong \mathcal{E}(K(\mathbb{Z}_3, n))
```

 $\cong \mathcal{E}(X)$ for some 1-connected f.t. rational space X [Arkowitz-Lupton'00]

- ▶ Proposed by Kahn in the late 60's, appears recurrently in literature
- ▶ Until 2012, the only general known procedure to tackle this problem was when $G = \operatorname{Aut}(\pi), \pi$ a group. Then $X = K(\pi, n)$.
- \triangleright Approach $\mathcal{E}(X)$ by its distinguished subgroups

$$\mathcal{E}_{\sharp}(X), \mathcal{E}_{*}(X), \mathcal{E}^{*}(X) \dots$$

Example

```
\mathbb{Z}_2 \cong \mathcal{E}(M(\mathbb{Z}, n))
\cong \mathcal{E}(K(\mathbb{Z}_3, n))
\cong \mathcal{E}(X) \text{ for some 1-connected f.t. rational space } X \text{ [Arkowitz-Lupton'00]}
```

Which finite groups are realizable by 1-connected finite type rational spaces?

- ▷ Proposed by Kahn in the late 60's, appears recurrently in literature
- ▶ Until 2012, the only general known procedure to tackle this problem was when $G = \operatorname{Aut}(\pi), \pi$ a group. Then $X = K(\pi, n)$.
- \triangleright Approach $\mathcal{E}(X)$ by its distinguished subgroups

$$\mathcal{E}_{\sharp}(X), \mathcal{E}_{*}(X), \mathcal{E}^{*}(X) \dots$$

Example

```
\mathbb{Z}_2 \cong \mathcal{E}(M(\mathbb{Z}, n))
\cong \mathcal{E}(K(\mathbb{Z}_3, n))
\cong \mathcal{E}(X) \text{ for some 1-connected f.t. rational space } X \text{ [Arkowitz-Lupton'00]}
```

Which finite groups are realizable by 1-connected finite type Sullivan algebras?

Idea

Introduce graphs on the picture

$$\begin{array}{ccc} \mathsf{groups} & \longrightarrow & \mathsf{graphs} \\ \mathsf{graphs} & \longrightarrow & \mathsf{CDGA}_{\mathbb{O}} \end{array}$$

Idea

Introduce graphs on the picture

$$\begin{array}{ccc} \mathsf{groups} & \longrightarrow & \mathsf{graphs} \\ \mathsf{graphs} & \longrightarrow & \mathsf{CDGA}_{\mathbb{O}} \end{array}$$

Theorem (Frucht'39, Realizability in C = Graphs)

Every finite group G is realizable by a finite, connected and simple graph G.

Idea

Introduce graphs on the picture

$$\begin{array}{ccc} \mathsf{groups} & \longrightarrow & \mathsf{graphs} \\ \mathsf{graphs} & \longrightarrow & \mathsf{CDGA}_{\mathbb{Q}} \end{array}$$

Theorem (Frucht'39, Realizability in C = Graphs)

Every finite group G is realizable by a finite, connected and simple graph G.

Example ($G = \mathbb{Z}_3$, Cayley graph \to simple graph)

Our problem revisited

Problem 1

Let $\mathcal{G} = (V, E)$ be a finite, simple, connected graph (with more than one vertex). Does there exist a space X such that $Aut(\mathcal{G}) \cong \mathcal{E}(X)$?

 \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.
- G = (V, E), |V| > 1
- $f: \mathcal{G}_1 \hookrightarrow \mathcal{G}_2$ such that [v, w] edge of \mathcal{G}_1 iff [f(v), f(w)] edge of \mathcal{G}_2

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.
- ▶ Then, construct

 $A: \textit{Graph}_{\textit{fm}} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.
- ▶ Then, construct

 $A: \mathit{Graph}_{\mathit{fm}} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$ (based on an example of Arkowitz-Lupton)

7 / 30

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

$$A: Graph_{fm} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$$
$$(\mathcal{A}_{\mathcal{G}}, d) = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d\right)$$

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.
- ▶ Then, construct

$$A: Graph_{fm} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$$
$$(A_{\mathcal{G}}, d) = (\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d)$$

• generators in dimensions: $|x_1|=8, |x_2|=10, |y_1|=33, |y_2|=35,$ $|y_3|=37, |z|=119, |x_\nu|=40, |z_\nu|=119,$

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

$$A: Graph_{fm} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$$
$$(\mathcal{A}_{\mathcal{G}}, d) = (\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d)$$

- generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_v| = 40$, $|z_v| = 119$,
- differentials:

$$\begin{array}{lll} d(x_1) = & 0 & d(y_3) = & x_1 x_2^3 \\ d(x_2) = & 0 & d(x_v) = & 0 \\ d(y_1) = & x_1^3 x_2 & d(z) = & y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} + x_2^{12} \\ d(y_2) = & x_1^2 x_2^2 & d(z_v) = & x_v^3 + \sum_{[v,w] \in E} x_v x_w x_2^4 \end{array}$$

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

$$A: \textit{Graph}_{fm} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$$
$$(\mathcal{A}_{\mathcal{G}}, d) = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d\right)$$

- generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_2| = 40$, $|z_2| = 119$,
- differentials:

$$\begin{array}{lll} d(x_1) = & 0 & d(y_3) = & x_1 x_2^3 \\ d(x_2) = & 0 & d(x_v) = & 0 \\ d(y_1) = & x_1^3 x_2 & d(z) = & y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} + x_2^{12} \\ d(y_2) = & x_1^2 x_2^2 & d(z_v) = & x_v^3 + \sum_{[v,w] \in E} x_v x_w x_2^4 \end{array}$$

• A is contravariant (morphisms are as expected).

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

$$A: Graph_{fm} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$$
$$(A_{\mathcal{G}}, d) = (\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_{\mathcal{V}}, z_{\mathcal{V}} | \mathcal{V} \in \mathcal{V}), d)$$

Homotopically Rigid Encodes
$$\mathcal{G}$$

- generators in dimensions: $|x_1|=8, |x_2|=10, |y_1|=33, |y_2|=35, |y_3|=37, |z|=119, |x_\nu|=40, |z_\nu|=119,$
- differentials:

$$\begin{array}{lll} d(x_1) = & 0 & d(y_3) = & x_1 x_2^3 \\ d(x_2) = & 0 & d(x_v) = & 0 \\ d(y_1) = & x_1^3 x_2 & d(z) = & y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 + x_1^{15} + x_2^{12} \\ d(y_2) = & x_1^2 x_2^2 & d(z_v) = & x_v^3 + \sum_{[v,w] \in E} x_v x_w x_2^4 \end{array}$$

• A is contravariant (morphisms are as expected).

- \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

$$A: Graph_{fm} \longrightarrow \mathsf{CDGA}_{\mathbb{Q}}$$

$$(A_{\mathcal{G}}, d) = (\bigwedge(x_1, x_2, y_1, y_2, y_3, z) \otimes \bigwedge(x_v, z_v | v \in V), d)$$
Homotopically Rigid
Encodes \mathcal{G}

- generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_2| = 40$, $|z_2| = 119$,
- differentials:

$$\begin{array}{lll} d(x_1) = & 0 & d(y_3) = & x_1x_2^3 \\ d(x_2) = & 0 & d(x_v) = & 0 \\ d(y_1) = & x_1^3x_2 & d(z) = & y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6 + x_1^{15} + x_2^{12} \\ d(y_2) = & x_1^2x_2^2 & d(z_v) = & x_v^3 + \sum_{[v,w] \in E} x_vx_w(u_1x_1^5 + u_2x_2^4), \ u_1,u_2 \in \mathbb{Q}^* \end{array}$$

• A is contravariant (morphisms are as expected).

Theorem

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

Theorem

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

• $A_{\mathcal{G}}$ is an elliptic algebra (hence Poincaré duality) of formal dimension d=208+80|V|

Theorem

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

- $A_{\mathcal{G}}$ is an elliptic algebra (hence Poincaré duality) of formal dimension d=208+80|V|
- Let $X_{\mathcal{G}}$ the rational space whose Sullivan minimal model is $A_{\mathcal{G}}$. The monoid of self-homotopy classes of $X_{\mathcal{G}}$ is

$$[X_{\mathcal{G}}, X_{\mathcal{G}}] = \{f_0, f_1\} \cup \mathsf{Aut}(\mathcal{G})$$

Theorem

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

- $A_{\mathcal{G}}$ is an elliptic algebra (hence Poincaré duality) of formal dimension d=208+80|V|
- Let $X_{\mathcal{G}}$ the rational space whose Sullivan minimal model is $A_{\mathcal{G}}$. The monoid of self-homotopy classes of $X_{\mathcal{G}}$ is

$$[X_{\mathcal{G}}, X_{\mathcal{G}}] = \{f_0, f_1\} \cup \mathsf{Aut}(\mathcal{G})$$

Theorem

Every finite group G is realized by infinitely many (non homotopically equivalent) rational elliptic spaces X. That is, $G \cong \mathcal{E}(X)$.

Idea (Crowley-Löh, 2015)

Degree theorems "à la Gromov" are related to the existence of inflexible manifolds

Definition (Inflexible manifold)

An oriented closed connected manifold M is inflexible if

$$\{\deg f \mid f: M \to M \text{ continuous}\} \subset \{-1, 0, 1\}$$

Idea (Crowley-Löh, 2015)

Degree theorems "à la Gromov" are related to the existence of inflexible manifolds

Definition (Inflexible manifold)

An oriented closed connected manifold M is inflexible if

$$\{\deg f \mid f: M \to M \text{ continuous}\} \subset \{-1, 0, 1\}$$

Recall that

ullet $X_{\mathcal{G}}$ is an elliptic rational space of formal dimension d=208+80|V| and

$$[X_{\mathcal{G}}, X_{\mathcal{G}}] = \{f_0, f_1\} \cup \mathsf{Aut}(\mathcal{G})$$

• Therefore, if $X_{\mathcal{G}}$ is the rationalisation of a manifold M, then M is inflexible

Idea (Crowley-Löh, 2015)

Degree theorems "à la Gromov" are related to the existence of inflexible manifolds

Definition (Inflexible manifold)

An oriented closed connected manifold M is inflexible if

$$\{\deg f \mid f: M \to M \text{ continuous}\} \subset \{-1, 0, 1\}$$

Recall that

ullet $X_{\mathcal{G}}$ is an elliptic rational space of formal dimension d=208+80|V| and

$$[X_{\mathcal{G}}, X_{\mathcal{G}}] = \{f_0, f_1\} \cup \mathsf{Aut}(\mathcal{G})$$

• Therefore, if $X_{\mathcal{G}}$ is the rationalisation of a manifold M, then M is inflexible

But $d \equiv 0 \pmod{4}$, modifying our construction we get ...

Theorem

For any connected finite graph \mathcal{G} , there exist $\widetilde{A}_{\mathcal{G}},\widetilde{X}_{\mathcal{G}}$ such that:

Theorem

For any connected finite graph \mathcal{G} , there exist $\widetilde{A}_{\mathcal{G}},\widetilde{X}_{\mathcal{G}}$ such that:

• $\widetilde{A}_{\mathcal{G}}$ is an elliptic dga of formal dimension d = 2(208 + 80|V|) - 1. Since $d \equiv 3 \pmod{4}$, $\widetilde{X}_{\mathcal{G}}$ is the rationalization of a d-manifold $M_{\mathcal{G}}$.

Theorem

For any connected finite graph \mathcal{G} , there exist $\widetilde{A}_{\mathcal{G}},\widetilde{X}_{\mathcal{G}}$ such that:

- $\widetilde{A}_{\mathcal{G}}$ is an elliptic dga of formal dimension d=2(208+80|V|)-1. Since $d\equiv 3\pmod 4$, $\widetilde{X}_{\mathcal{G}}$ is the rationalization of a d-manifold $M_{\mathcal{G}}$.
- The self-monoid $[\widetilde{X}_{\mathcal{G}},\widetilde{X}_{\mathcal{G}}]\cong \{f_0,f_1\}\cup \operatorname{Aut}(\mathcal{G})$. Hence $M_{\mathcal{G}}$ is inflexible.

Theorem

For any connected finite graph \mathcal{G} , there exist $\widetilde{A}_{\mathcal{G}},\widetilde{X}_{\mathcal{G}}$ such that:

- $\widetilde{A}_{\mathcal{G}}$ is an elliptic dga of formal dimension d=2(208+80|V|)-1. Since $d\equiv 3\pmod 4$, $\widetilde{X}_{\mathcal{G}}$ is the rationalization of a d-manifold $M_{\mathcal{G}}$.
- The self-monoid $[\widetilde{X}_{\mathcal{G}}, \widetilde{X}_{\mathcal{G}}] \cong \{f_0, f_1\} \cup \operatorname{Aut}(\mathcal{G})$. Hence $M_{\mathcal{G}}$ is inflexible.

Theorem

For every finite group G, there exist infinitely many inflexible manifolds M_G such that

$$\mathcal{E}((M_G)_{\mathbb{Q}})\cong G$$

What happens if G acts on a module M?

- Algebraic structure (G, M)
 G is a group, M is a finitely generated ZG-module
- Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$ $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

- Algebraic structure (G, M)
- G is a group, M is a finitely generated $\mathbb{Z}G$ -module
- Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

$$\pi_k(-)$$
 is a $\mathbb{Z}\mathcal{E}(-)$ -module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the $\mathbb{Z}G$ -module M is isomorphic to the $\mathbb{Z}\mathcal{E}(X)$ -module $\pi_k(X)$, for some $k \geq 2$?

- Algebraic structure (G, M)
 - G is a group, M is a finitely generated $\mathbb{Z}G$ -module
- Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

$$\pi_k(-)$$
 is a $\mathbb{Z}\mathcal{E}(-)$ -module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the $\mathbb{Z}G$ -module M is isomorphic to the $\mathbb{Z}\mathcal{E}(X)$ -module $\pi_k(X)$, for some $k \geq 2$?

○ "Homotopique dual" of the G-Moore spaces problem (Steenrod'60)

- Algebraic structure (G, M)
 - G is a group, M is a finitely generated $\mathbb{Z}G$ -module
- Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

$$\pi_k(-)$$
 is a $\mathbb{Z}\mathcal{E}(-)$ -module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the $\mathbb{Z}G$ -module M is isomorphic to the $\mathbb{Z}\mathcal{E}(X)$ -module $\pi_k(X)$, for some $k \geq 2$?

- □ "Homotopique dual" of the G-Moore spaces problem (Steenrod'60)
- ▶ It implies realizability of groups

- Algebraic structure (G, V)
 G is a group, V is a finitely generated QG-module
- Homotopy invariant $(\mathcal{E}(-),\pi_k(-))$

$$\pi_k(-)$$
 is a $\mathbb{Q}\mathcal{E}(-)$ -module

Problem 2 (realizability of actions)

Is there a finite Postnikov piece X such that the $\mathbb{Q}G$ -module V is isomorphic to the $\mathbb{Q}\mathcal{E}(X)$ -module $\pi_k(X)$, for some $k \geq 2$?

- □ "Homotopique dual" of the G-Moore spaces problem (Steenrod'60)
- ▶ It implies realizability of groups

Idea

Introduce Invariant Theory on the picture.

ightharpoonup G acts on $\mathbb{Q}[V]$: for $g \in G$, $p \in \mathbb{Q}[V]$, $(gp)(v) = p(g^{-1}v)$.

Idea

Introduce Invariant Theory on the picture.

- G acts on $\mathbb{Q}[V]$: for $g \in G$, $p \in \mathbb{Q}[V]$, $(gp)(v) = p(g^{-1}v)$.
- G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p.

Idea

Introduce Invariant Theory on the picture.

- ightharpoonup G acts on $\mathbb{Q}[V]$: for $g \in G$, $p \in \mathbb{Q}[V]$, $(gp)(v) = p(g^{-1}v)$.
- ightharpoonup G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p.
- ightharpoonup The invariant ring $\mathbb{Q}[V]^G$: all the G- invariant functions in $\mathbb{Q}[V]$

Idea

Introduce Invariant Theory on the picture.

- ightharpoonup G acts on $\mathbb{Q}[V]$: for $g \in G$, $p \in \mathbb{Q}[V]$, $(gp)(v) = p(g^{-1}v)$.
- ightharpoonup G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p.
- ightharpoonup The invariant ring $\mathbb{Q}[V]^G$: all the G- invariant functions in $\mathbb{Q}[V]$

(Characterization of finite $G \leq GL(V)$, Hilbert, Noether)

Let V be a finitely generated and faithful $\mathbb{Q}G$ -module. Then, there exists algebraic forms $p_1, \ldots, p_r \in \mathbb{Q}[V]^G$ such that, for $f \in GL(V)$

 $f \in G$ if and only if $p_i \circ f = p_i$, $\forall i$

Idea

Introduce Invariant Theory on the picture.

- ightharpoonup G acts on $\mathbb{Q}[V]$: for $g \in G$, $p \in \mathbb{Q}[V]$, $(gp)(v) = p(g^{-1}v)$.
- ightharpoonup G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p.
- ightharpoonup The invariant ring $\mathbb{Q}[V]^G$: all the G- invariant functions in $\mathbb{Q}[V]$

(Characterization of finite $G \leq GL(V)$, Hilbert, Noether)

Let V be a finitely generated and faithful $\mathbb{Q}G$ -module. Then, there exists algebraic forms $p_1, \ldots, p_r \in \mathbb{Q}[V]^G$ such that, for $f \in GL(V)$

 $f \in G$ if and only if $p_i \circ f = p_i$, $\forall i$

we modify those algebraic forms

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots q_r, q_{r+1}\} \subset \mathbb{Q}[V]^G$ where

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots q_r, q_{r+1}\} \subset \mathbb{Q}[V]^{\mathcal{G}}$ where

1. $q_0 = \sum_{\substack{1 \ \neq 0}}^{N} \lambda_j v_j^2$, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}}V)$,

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots q_r, q_{r+1}\} \subset \mathbb{Q}[V]^{G}$ where

- 1. $q_0 = \sum_{\substack{1 \ \neq 0}}^{N} \lambda_j v_j^2$, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}} V)$,
- 2. $\deg(q_i) < \deg(q_{i+1})$ for all i,

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots q_r, q_{r+1}\} \subset \mathbb{Q}[V]^G$ where

- 1. $q_0 = \sum_{\substack{1 \ \neq 0}}^{N} \lambda_j v_j^2$, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}} V)$,
- 2. $\deg(q_i) < \deg(q_{i+1})$ for all i,
- 3. $q_{r+1} = (q_0)^s$ for $s \gg N$

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots q_r, q_{r+1}\} \subset \mathbb{Q}[V]^G$ where

- 1. $q_0 = \sum_{\substack{1 \ \neq 0}}^{N} \lambda_j v_j^2$, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}}V)$,
- 2. $\deg(q_i) < \deg(q_{i+1})$ for all i,
- 3. $q_{r+1} = (q_0)^s$ for $s \gg N$

such that G is the orthogonal group $O(Q) \leq GL(V)$.

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots q_r, q_{r+1}\} \subset \mathbb{Q}[V]^G$ where

- 1. $q_0 = \sum_{\substack{1 \ \neq 0}}^{N} \lambda_j v_j^2$, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}} V)$,
- 2. $\deg(q_i) < \deg(q_{i+1})$ for all i,
- 3. $q_{r+1} = (q_0)^s$ for $s \gg N$

such that G is the orthogonal group $O(Q) \leq GL(V)$.

Definition (Realizable family of forms)

A family of algebraic forms $Q \subset \mathbb{Q}[v_1, \dots, v_N]$ verifying 1, 2 and 3.

Lemma

There exist a family $\mathcal{Q} = \{q_0, q_1, \dots q_r, q_{r+1}\} \subset \mathbb{Q}[V]^G$ where

- 1. $q_0 = \sum_{\substack{1 \ \neq 0}}^{N} \lambda_j v_j^2$, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}} V)$,
- 2. $\deg(q_i) < \deg(q_{i+1})$ for all i,
- 3. $q_{r+1} = (q_0)^s$ for $s \gg N$

such that G is the orthogonal group $O(Q) \leq GL(V)$.

Definition (Realizable family of forms)

A family of algebraic forms $Q \subset \mathbb{Q}[v_1, \dots, v_N]$ verifying 1, 2 and 3.

For an arbitrary realizable family, and any $n > deg(q_{r+1}) \dots$

$$\mathcal{M}_{(\mathcal{Q},n)} = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z, v_j \mid j = 1, \dots, N), d \right)$$

$$\deg x_1 = 8, \qquad d(x_1) = 0$$

$$\deg x_2 = 10,$$
 $d(x_2) = 0$

$$\deg y_1 = 33, \qquad d(y_1) = x_1^3 x_2$$

$$\deg y_2 = 35, \qquad d(y_2) = x_1^2 x_2^2$$

$$\deg y_3 = 37, d(y_3) = x_1 x_2^3$$

$$\deg v_i = 40, \qquad d(v_i) = 0$$

$$\deg z = 80n + 39, \quad d(z) = \sum_{i=1}^{r+1} q_i x_1^{10n+5-5\deg(q_i)} + q_0(x_1^{10n-5} + x_2^{8n-4})$$

$$+ x_1^{10(n-1)} (y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6)$$

$$+ x_1^{10n+5} + x_2^{8n+4}.$$

$$\mathcal{M}_{(\mathcal{Q},n)} = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z, v_j \mid j = 1, \dots, N), d \right)$$

$$\deg x_1 = 8, \qquad d(x_1) = 0$$

$$\deg x_2 = 10, \qquad d(x_2) = 0$$

$$\deg y_1 = 33, \qquad d(y_1) = x_1^3 x_2$$

$$\deg y_2 = 35, \qquad d(y_2) = x_1^2 x_2^2$$

$$\deg y_3 = 37, \qquad d(y_3) = x_1 x_2^3$$

$$\deg v_j = 40, \qquad d(v_j) = 0$$

$$\deg z = 80n + 39, \qquad d(z) = \sum_{i=1}^{r+1} q_i x_1^{10n+5-5 \deg(q_i)} + q_0 \left(x_1^{10n-5} + x_2^{8n-4} \right) + x_1^{10(n-1)} \left(y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6 \right) + x_1^{10n+5} + x_2^{8n+4}.$$

Codifies the action

Solving Problem 2 Theorem

$$\mathcal{E}(\mathcal{M}_{(\mathcal{Q},n)}) \cong \textit{O}(\mathcal{Q})$$

Theorem

$$\mathcal{E}(\mathcal{M}_{(\mathcal{Q},n)}) \cong \mathcal{O}(\mathcal{Q})$$

Corollary

Let G be a finite group, and V a finitely generated faithful $\mathbb{Q}G$ -module. Then, there exists a Postnikov piece X such that, for some $k \geq 2$,

$$(G, V) \cong (\mathcal{E}(X), \pi_k X)$$

Theorem

$$\mathcal{E}(\mathcal{M}_{(\mathcal{Q},n)})\cong \textit{O}(\mathcal{Q})$$

Corollary

Let G be a finite group, and V a finitely generated faithful $\mathbb{Q}G$ -module. Then, there exists a Postnikov piece X such that, for some $k \geq 2$,

$$(G, V) \cong (\mathcal{E}(X), \pi_k X)$$

Example (realization of infinite groups)

Let $\mathcal{O}(m; k) < GL_{m+k}(\mathbb{R})$ preserving:

$$q_0 = x_1^2 + x_2^2 + \ldots + x_m^2 - x_{m+1}^2 - \ldots - x_{m+k}^2.$$

The family $\mathcal{Q} = \{q_0, (q_0)^{m+k+1}\} \subset \mathbb{Q}[x_1, \dots, x_{m+k}]$ is realizable. Then,

- \triangleright O(Q) can be realized by infinitely many (rational) spaces.
- \triangleright $O(Q) \cong \mathcal{O}(m; k)(\mathbb{Q})$, which is an infinite group for $m \geq 2$.

 $\,\rhd\,$ A very specific homotopically rigid algebra.

A very specific homotopically rigid algebra. It is not unique:

For a fixed
$$k > 4$$
, define $\mathcal{M}_k = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z), d\right)$

$$\deg x_1 = 5k - 2, \qquad d(x_1) = 0$$

$$\deg x_2 = 6k - 2, \qquad d(x_2) = 0$$

$$\deg y_1 = 21k - 9, \qquad d(y_1) = x_1^3 x_2$$

$$\deg y_2 = 22k - 9, \qquad d(y_2) = x_1^2 x_2^2$$

$$\deg y_3 = 23k - 9, \qquad d(y_3) = x_1 x_2^3$$

$$\deg z = 15k^2 - 11k + 1, \qquad d(z) = x_1^{3k-12}(x_1^2 y_2 y_3 - x_1 x_2 y_1 y_3 + x_2^2 y_1 y_2)$$

$$+ x_2^{\frac{6k-2}{2}} + x_2^{\frac{5k-2}{2}}$$

▷ A very specific homotopically rigid algebra. It is not unique:

For a fixed
$$k > 4$$
, define $\mathcal{M}_k = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z), d\right)$
$$\deg x_1 = 5k - 2, \qquad d(x_1) = 0$$

$$\deg x_2 = 6k - 2, \qquad d(x_2) = 0$$

$$\deg y_1 = 21k - 9, \qquad d(y_1) = x_1^3 x_2$$

$$\deg y_2 = 22k - 9, \qquad d(y_2) = x_1^2 x_2^2$$

$$\deg y_3 = 23k - 9, \qquad d(y_3) = x_1 x_2^3$$

$$\deg z = 15k^2 - 11k + 1, \qquad d(z) = x_1^{3k - 12}(x_1^2 y_2 y_3 - x_1 x_2 y_1 y_3 + x_2^2 y_1 y_2) + x_1^{\frac{6k - 2}{2}} + x_2^{\frac{5k - 2}{2}}.$$

Theorem $[\mathcal{M}_k, \mathcal{M}_k] = \{0, 1\}$

▷ A very specific homotopically rigid algebra. It is not unique:

For a fixed
$$k > 4$$
, define $\mathcal{M}_k = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z), d\right)$
$$\deg x_1 = 5k - 2, \qquad d(x_1) = 0$$

$$\deg x_2 = 6k - 2, \qquad d(x_2) = 0$$

$$\deg y_1 = 21k - 9, \qquad d(y_1) = x_1^3 x_2$$

$$\deg y_2 = 22k - 9, \qquad d(y_2) = x_1^2 x_2^2$$

$$\deg y_3 = 23k - 9, \qquad d(y_3) = x_1 x_2^3$$

$$\deg z = 15k^2 - 11k + 1, \qquad d(z) = x_1^{3k-12} (x_1^2 y_2 y_3 - x_1 x_2 y_1 y_3 + x_2^2 y_1 y_2) + x_1^{\frac{6k-2}{2}} + x_2^{\frac{5k-2}{2}}.$$

Theorem $[\mathcal{M}_k, \mathcal{M}_k] = \{0, 1\}$

> Rational homotopy theory (finite type over \mathbb{Q} , not over \mathbb{Z}).

Following our approach for $\ensuremath{\mathbb{Q}}$

Following our approach for Q

> Find an integral homotopically rigid space.

Following our approach for Q

- Find an integral homotopically rigid space.
- Find a functor from a combinatorial category to integral spaces.

Following our approach for Q

- > Find an integral homotopically rigid space.

Idea

Introduce Toric Topology in the picture

$$\mathbb{H}P^{\infty} \simeq BS^3$$

$$\mathbb{H}P^{\infty} \simeq BS^3$$

Definition (Degree)

For $f: \mathbb{H}P^{\infty} \to \mathbb{H}P^{\infty}$, if $\deg(\Omega f: S^3 \to S^3) = k$, we say that $\deg(f) = k$.

$$\mathbb{H}P^{\infty} \simeq BS^3$$

Definition (Degree)

For $f: \mathbb{H}P^{\infty} \to \mathbb{H}P^{\infty}$, if $\deg(\Omega f: S^3 \to S^3) = k$, we say that $\deg(f) = k$.

(Feder-Gitler, Sullivan)

Self-maps of $\mathbb{H}P^{\infty}$ have either degree zero or any odd square integer.

$$\mathbb{H}P^{\infty} \simeq BS^3$$

Definition (Degree)

For $f: \mathbb{H}P^{\infty} \to \mathbb{H}P^{\infty}$, if $\deg(\Omega f: S^3 \to S^3) = k$, we say that $\deg(f) = k$.

(Feder-Gitler, Sullivan)

Self-maps of $\mathbb{H}P^{\infty}$ have either degree zero or any odd square integer.

(Classification Theorem, Mislin)

Self-maps of $\mathbb{H}P^{\infty}$ are classified up to homotopy by their degree.

$$\mathbb{H}P^{\infty} \simeq BS^3$$

Definition (Degree)

For $f: \mathbb{H}P^{\infty} \to \mathbb{H}P^{\infty}$, if $\deg(\Omega f: S^3 \to S^3) = k$, we say that $\deg(f) = k$.

(Feder-Gitler, Sullivan)

Self-maps of $\mathbb{H}P^{\infty}$ have either degree zero or any odd square integer.

(Classification Theorem, Mislin)

Self-maps of $\mathbb{H}P^{\infty}$ are classified up to homotopy by their degree.

Corollary

$$\mathcal{E}(\mathbb{H}P^{\infty})=\{1\}$$

Let K be a simplicial complex on a set V of vertices, v_1, \ldots, v_n .

Let K be a simplicial complex on a set V of vertices, v_1, \ldots, v_n . Let (X, *) be a pointed space.

Let K be a simplicial complex on a set V of vertices, v_1, \ldots, v_n . Let (X, *) be a pointed space.

Definition(Bucthstaber-Panov, Bahri-Bendersky-Cohen-Gitler, Notbohm-Ray)

 \triangleright For σ ⊆ V face of K, the σ -power of X is:

$$X^{\sigma} = \{(x_1, \ldots, x_n) \in X^n \mid x_i = * \text{ if } v_i \notin \sigma\}$$

Let K be a simplicial complex on a set V of vertices, v_1, \ldots, v_n . Let (X, *) be a pointed space.

Definition(Bucthstaber-Panov, Bahri-Bendersky-Cohen-Gitler, Notbohm-Ray)

 \triangleright For $\sigma \subseteq V$ face of K, the σ -power of X is:

$$X^{\sigma} = \{(x_1, \ldots, x_n) \in X^n \mid x_i = * \text{ if } v_i \notin \sigma\}$$

➤ The polyhedral product is the colimit of the diagram:

$$X^K : CAT(K) \rightarrow Top_*$$

 $\sigma \mapsto X^{\sigma}$

CAT(K) is the small category: faces of K (\emptyset initial object) and inclusions $i_{\sigma,\tau}:\sigma\subseteq\tau$.

Let K be a simplicial complex on a set V of vertices, v_1, \ldots, v_n . Let (X, *) be a pointed space.

Definition(Bucthstaber-Panov, Bahri-Bendersky-Cohen-Gitler, Notbohm-Ray)

 \triangleright For $\sigma \subseteq V$ face of K, the σ -power of X is:

$$X^{\sigma} = \{(x_1, \ldots, x_n) \in X^n \mid x_i = * \text{ if } v_i \notin \sigma\}$$

➤ The polyhedral product is the colimit of the diagram:

$$X^K : CAT(K) \rightarrow Top_*$$

 $\sigma \mapsto X^{\sigma}$

CAT(K) is the small category: faces of K (\emptyset initial object) and inclusions $i_{\sigma,\tau}:\sigma\subseteq\tau$. By abuse of notation, we also denote X^K :

$$colim X^K = \bigcup_{\sigma \in K} X^{\sigma}$$

Let K be a simplicial complex on a set V of vertices, v_1, \ldots, v_n . Let (X, *) be a pointed space.

Definition(Bucthstaber-Panov, Bahri-Bendersky-Cohen-Gitler, Notbohm-Ray)

 \triangleright For $\sigma \subseteq V$ face of K, the σ -power of X is:

$$X^{\sigma} = \{(x_1, \ldots, x_n) \in X^n \mid x_i = * \text{ if } v_i \notin \sigma\}$$

➤ The polyhedral product is the colimit of the diagram:

$$X^K : CAT(K) \rightarrow Top_*$$

 $\sigma \mapsto X^{\sigma}$

CAT(K) is the small category: faces of K (\emptyset initial object) and inclusions $i_{\sigma,\tau}:\sigma\subseteq\tau$. By abuse of notation, we also denote X^K :

$$colim X^K = \bigcup_{\sigma \in K} X^{\sigma} \simeq hocolim X^K$$

Example 1

 $X^{\Delta[n-1]} \simeq X^n$ the *n*-fold product

$$X^{\Delta[n-1]} \simeq X^n$$
 the *n*-fold product $X^{\partial\Delta[n-1]} \simeq T^nX$ the fat wedge

```
X^{\Delta[n-1]} \simeq X^n the n-fold product X^{\partial\Delta[n-1]} \simeq T^nX the fat wedge X^\emptyset \simeq * the trivial space
```

Example 1

```
X^{\Delta[n-1]} \simeq X^n the n-fold product X^{\partial\Delta[n-1]} \simeq T^nX the fat wedge X^{\emptyset} \simeq * the trivial space
```

Example 2 (Davis-Januszkiewicz space)

For
$$X = BS^1$$
, $(BS^1)^K \simeq DJ(K)$ where $H^*(DJ(K); \mathbb{Z}) \cong \mathbb{Z}[K]$.

Example 1

```
X^{\Delta[n-1]} \simeq X^n the n-fold product X^{\partial\Delta[n-1]} \simeq T^nX the fat wedge X^{\emptyset} \simeq * the trivial space
```

Example 2 (Davis-Januszkiewicz space)

For
$$X = BS^1$$
, $(BS^1)^K \simeq DJ(K)$ where $H^*(DJ(K); \mathbb{Z}) \underset{\mathsf{face \, ring \, of}}{\cong} \mathbb{Z}[K]$.

Recall that:
$$\mathbb{Z}[K] = S_{\mathbb{Z}}(V)/(v_U: U \notin K)$$
.

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Example 1

For $K = \Delta[n-1]$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

For
$$K = \Delta[n-1]$$

$$\mathcal{E}\big((BS^3)^{\Delta[n-1]}\big)\stackrel{?}{\cong} Aut\big(\Delta[n-1]\big)$$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

For
$$K = \Delta[n-1]$$

$$\mathcal{E}\big((BS^3)^n\big)\stackrel{?}{\cong} \Sigma_n$$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

For
$$K = \Delta[n-1]$$

$$\mathcal{E}((BS^3)^n) \overset{\cong}{\underset{(\mathsf{Iwase})}{\cong}} \Sigma_n$$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Example 1

For
$$K = \Delta[n-1]$$

$$\mathcal{E}((BS^3)^n) \overset{\cong}{\underset{(\mathsf{Iwase})}{\cong}} \Sigma_n$$

For
$$X = BS^1$$
, $K = \Delta[n-1]$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Example 1

For
$$K = \Delta[n-1]$$

$$\mathcal{E}((BS^3)^n) \cong_{(Iwase)} \Sigma_n$$

For
$$X = BS^1$$
, $K = \Delta[n-1]$

$$\mathcal{E}((BS^1)^{\Delta[n-1]})\stackrel{?}{\cong} Aut(\Delta[n-1])$$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Example 1

For
$$K = \Delta[n-1]$$

$$\mathcal{E}((BS^3)^n) \cong_{(Iwase)} \Sigma_n$$

For
$$X = BS^1$$
, $K = \Delta[n-1]$

$$\mathcal{E}\big(K(\mathbb{Z}^n,2)\big)\stackrel{?}{\cong} \Sigma_n$$

For a simplicial complex K,

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Example 1

For
$$K = \Delta[n-1]$$

$$\mathcal{E}((BS^3)^n) \cong_{(Iwase)} \Sigma_n$$

For
$$X = BS^1$$
, $K = \Delta[n-1]$

$$GL(n,\mathbb{Z}) \not\cong \Sigma_n$$

Solving Conjecture

Let K be a simplicial complex

Proposition

$$\mathcal{E}((BS^3)^K)/\mathcal{E}^*((BS^3)^K) \cong Aut(K)$$

Solving Conjecture

Let K be a simplicial complex

Proposition

$$\mathcal{E}((BS^3)^K)/\mathcal{E}^*((BS^3)^K) \cong Aut(K)$$

Proof

ightharpoonup First, show $H^*((BS^3)^K; \mathbb{Z}) \cong \mathbb{Z}[K]$ with generators in degree 4.

Let K be a simplicial complex

Proposition

$$\mathcal{E}((BS^3)^K)/\mathcal{E}^*((BS^3)^K) \cong Aut(K)$$

Proof

- $ightarrow \;$ First, show $H^*((BS^3)^K;\mathbb{Z})\cong \mathbb{Z}[K]$ with generators in degree 4.
- ightharpoonup Then, identify $\mathcal{E}((BS^3)^K)/\mathcal{E}^*((BS^3)^K)$ to the image of

$$\psi: \mathcal{E}((BS^3)^K) \to Aut(H^4((BS^3)^K; \mathbb{Z}))$$

$$f \mapsto H^4(f; \mathbb{Z})$$

Let K be a simplicial complex

Proposition

$$\mathcal{E}((BS^3)^K)/\mathcal{E}^*((BS^3)^K) \cong Aut(K)$$

Proof

- ightharpoonup First, show $H^*((BS^3)^K;\mathbb{Z})\cong\mathbb{Z}[K]$ with generators in degree 4.
- ightharpoonup Then, identify $\mathcal{E}((BS^3)^K)/\mathcal{E}^*((BS^3)^K)$ to the image of

$$\psi: \mathcal{E}((BS^3)^K) \to Aut(H^4((BS^3)^K; \mathbb{Z}))$$

$$f \mapsto H^4(f; \mathbb{Z})$$

▶ Finally, the entries of $M_f \in GL(n,\mathbb{Z})$ induced by $H^4(f;\mathbb{Z})$ are non negative integers (degrees of self-maps of BS^3). Then M_f and $M_{f^{-1}}$ are permutation matrices, and $Im \psi = Aut(K)$.

Theorem

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*((BS^3)^K)\cong\{1\}$$

Theorem

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*((BS^3)^K)\cong\{1\}$$

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray) Fix notation $X = BS^3$.

Theorem

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*\big((BS^3)^K\big)\cong\{1\}$$

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray) Fix notation $X = BS^3$.

$$[X^K, X^K] \stackrel{injection}{\leadsto} [X^K, X^n]$$

Theorem

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*\big((BS^3)^K\big)\cong\{1\}$$

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray) Fix notation $X = BS^3$.

$$[X^K, X^K] \stackrel{injection}{\leadsto} [X^K, X^n] \stackrel{\{\pi_j\}_1^n}{\leadsto} [X^K, X]$$

Theorem

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*\big((BS^3)^K\big)\cong\{1\}$$

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray) Fix notation $X = BS^3$.

$$[X^K, X^K] \stackrel{injection}{\leadsto} [X^K, X^n] \stackrel{\{\pi_j\}_1^n}{\leadsto} [X^K, X] \stackrel{injection}{\leadsto} \prod_{n} [X^K, X_p^{\wedge}]$$

Theorem

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*((BS^3)^K) \cong \{1\}$$

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray) Fix notation $X = BS^3$.

Theorem

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}^*((BS^3)^K) \cong \{1\}$$

Proof (techniques of Dwyer-Mislin, Jackowski-McClure-Oliver, Nothbom-Ray) Fix notation $X = BS^3$.

Step1 We have:

we also have, for a face σ of K:

$$[X^{\sigma},X] \cong \{\underbrace{(0,0,\ldots,a_i,0)}_{\dim \sigma^{+1}} \mid a_i=0 \text{ or } a_i \text{ odd square}\}$$

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\mathcal{E}^{*}(X^{K}) \quad \leadsto \quad \left\{ [X^{\sigma}, X_{p}^{\wedge}] \mid \sigma \in CAT(K) \right\}$$

$$f \qquad \leadsto \qquad f_{j}^{\sigma} \simeq_{p} \begin{cases} \pi_{j} & \text{if } v_{j} \in \sigma \\ * & \text{if } v_{j} \notin \sigma \end{cases}$$

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\mathcal{E}^{*}(X^{K}) \quad \rightsquigarrow \quad \left\{ [X^{\sigma}, X_{\rho}^{\wedge}] \mid \sigma \in CAT(K) \right\}$$

$$f \qquad \rightsquigarrow \qquad f_{j}^{\sigma} \simeq_{\rho} \begin{cases} \pi_{j} & \text{if } v_{j} \in \sigma \\ * & \text{if } v_{j} \notin \sigma \end{cases}$$

Is there $f \not\simeq Id_{X^K}$ inducing the same family?

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\mathcal{E}^{*}(X^{K}) \quad \leadsto \quad \left\{ [X^{\sigma}, X_{p}^{\wedge}] \mid \sigma \in CAT(K) \right\}$$

$$f \qquad \leadsto \qquad f_{j}^{\sigma} \simeq_{p} \begin{cases} \pi_{j} & \text{if } v_{j} \in \sigma \\ * & \text{if } v_{j} \notin \sigma \end{cases}$$

Is there $f \not\simeq Id_{X^K}$ inducing the same family?

 \triangleright Step 3 The obstruction for the unicity lies in $\lim_{i \to 0} \Pi_i^p$ for

$$\begin{array}{ccc} \Pi_{i}{}^{p}: \mathit{CAT}^{op}(K) & \to & \mathcal{A}b \\ \sigma & \mapsto & \pi_{i}(\mathit{map}(X^{\sigma}, X^{\wedge}_{p})_{f_{i}^{\sigma}}) \end{array}$$

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\mathcal{E}^{*}(X^{K}) \quad \rightsquigarrow \quad \left\{ [X^{\sigma}, X_{\rho}^{\wedge}] \mid \sigma \in CAT(K) \right\}$$

$$f \qquad \rightsquigarrow \qquad f_{j}^{\sigma} \simeq_{\rho} \begin{cases} \pi_{j} & \text{if } v_{j} \in \sigma \\ * & \text{if } v_{j} \notin \sigma \end{cases}$$

Is there $f \not\simeq Id_{X^K}$ inducing the same family?

 \triangleright Step 3 The obstruction for the unicity lies in $\lim_{i \to \infty} \Pi_{i}^{p}$ for

$$\begin{array}{ccc} \Pi_{i}{}^{p}: \mathit{CAT}^{op}(K) & \to & \mathcal{A}b \\ \sigma & \mapsto & \pi_{i}(\mathit{map}(X^{\sigma}, X^{\wedge}_{p})_{f_{i}^{\sigma}}) \end{array}$$

that can be computed as the cohomology of a cochain complex

$$N^n(\Pi_i^p) = \prod_{\sigma_0 \to \sigma_1 \to \cdots \to \sigma_n} \Pi_i^p(\sigma_n)$$

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\mathcal{E}^{*}(X^{K}) \quad \leadsto \quad \left\{ [X^{\sigma}, X_{p}^{\wedge}] \mid \sigma \in CAT(K) \right\}$$

$$f \qquad \leadsto \qquad f_{j}^{\sigma} \simeq_{p} \begin{cases} \pi_{j} & \text{if } v_{j} \in \sigma \\ * & \text{if } v_{j} \notin \sigma \end{cases}$$

Is there $f \not\simeq Id_{X^K}$ inducing the same family?

 \triangleright Step 3 The obstruction for the unicity lies in $\lim_{i \to \infty} \Pi_{i}^{p}$ for

$$\begin{array}{ccc} \Pi_{i}{}^{p}: \mathit{CAT}^{op}(K) & \to & \mathcal{A}b \\ \sigma & \mapsto & \pi_{i}(\mathit{map}(X^{\sigma}, X^{\wedge}_{p})_{f_{i}^{\sigma}}) \end{array}$$

that can be computed as the cohomology of a cochain complex

$$N^n(\Pi_i^p) = \prod_{\sigma_0 \to \sigma_1 \to \cdots \to \sigma_n} \Pi_i^p(\sigma_n)$$

As dim K = 1, $N^{\geq 3}(\Pi_i^p) = 0$,

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\mathcal{E}^{*}(X^{K}) \quad \rightsquigarrow \quad \left\{ [X^{\sigma}, X_{\rho}^{\wedge}] \mid \sigma \in CAT(K) \right\}$$

$$f \qquad \rightsquigarrow \qquad f_{j}^{\sigma} \simeq_{\rho} \begin{cases} \pi_{j} & \text{if } v_{j} \in \sigma \\ * & \text{if } v_{j} \notin \sigma \end{cases}$$

Is there $f \not\simeq Id_{X^K}$ inducing the same family?

 \triangleright Step 3 The obstruction for the unicity lies in $\lim_{i \to \infty} \Pi_{i}^{p}$ for

$$\begin{array}{ccc} \Pi_{i}{}^{p}: \mathit{CAT}^{op}(K) & \to & \mathcal{A}b \\ \sigma & \mapsto & \pi_{i}(\mathit{map}(X^{\sigma}, X^{\wedge}_{p})_{f_{i}^{\sigma}}) \end{array}$$

that can be computed as the cohomology of a cochain complex

$$N^n(\Pi_i^p) = \prod_{\sigma_0 \to \sigma_1 \to \cdots \to \sigma_n} \Pi_i^p(\sigma_n)$$

As dim K = 1, $N^{\geq 3}(\Pi_i^p) = 0$, $N^2(\Pi_2^p) = 0$,

 \triangleright Step 2 We then have, for every j = 1, ..., n, for every p prime:

$$\mathcal{E}^{*}(X^{K}) \quad \rightsquigarrow \quad \left\{ [X^{\sigma}, X_{\rho}^{\wedge}] \mid \sigma \in CAT(K) \right\}$$

$$f \qquad \rightsquigarrow \qquad f_{j}^{\sigma} \simeq_{\rho} \begin{cases} \pi_{j} & \text{if } v_{j} \in \sigma \\ * & \text{if } v_{j} \notin \sigma \end{cases}$$

Is there $f \not\simeq Id_{X^K}$ inducing the same family?

 \triangleright Step 3 The obstruction for the unicity lies in $\lim_{i \to \infty} \Pi_{i}^{p}$ for

$$\begin{array}{ccc} \Pi_{i}{}^{p}: \mathit{CAT}^{op}(K) & \to & \mathcal{A}b \\ \sigma & \mapsto & \pi_{i}(\mathit{map}(X^{\sigma}, X^{\wedge}_{p})_{f_{i}^{\sigma}}) \end{array}$$

that can be computed as the cohomology of a cochain complex

$$N^n(\Pi_i{}^p) = \prod_{\sigma \mapsto \sigma_1 \to \dots \to \sigma} \Pi_i{}^p(\sigma_n)$$

As dim K = 1, $N^{\geq 3}(\Pi_i^p) = 0$, $N^2(\Pi_2^p) = 0$, and $H^1(N^*(\Pi_1^p)) = 0$.

Corollary 1

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Corollary 1

Let K be a simplicial complex of dimension 1. Then

$$\mathcal{E}((BS^3)^K) \cong Aut(K)$$

Corollary 2

Every finite group is realizable by infinitely many integral spaces.