La conjetura de Doeraene-El Haouari

En colaboración con J.G. Carrasquel y L. Vandembroucq

Departamento de Matemáticas, Estadística e I.O. Universidad de La Laguna

Métodos Categóricos y Homotópicos en Álgebra, Geometría y Topología (Logroño 2016)

Contenidos de la charla

- 1 Complejidad topológica-Introducción.
 - Espacios de configuraciones
 - El problema del planificador de movimientos
 - Complejidad topológica
- 2 La complejidad topológica monoidal
 - Complejidad topológica monoidal
 - La conjetura de Iwase-Sakai
- 3 Categoría seccional y su versión relativa
 - Categoría seccional
 - Categoría (seccional) relativa
 - La conjetura de Doeraene-El Haouari
- Respuestas positivas a versiones de la conjetura de D-EH
 - Una versión estable de la conjetura de D-EH
 - Una versión débil de Berstein-Hilton de la conjetura de D-EH

Espacio de configuraciones.

El **espacio de configuraciones** X asociado a un sistema mecánico dado S es el conjunto de todos los posibles estados de S. En la mayoría de los casos el espacio de configuraciones viene equipado con una estructura de espacio topológico:

Espacio de configuraciones.

El **espacio de configuraciones** *X* asociado a un sistema mecánico dado *S* es el conjunto de todos los posibles estados de *S*. En la mayoría de los casos el espacio de configuraciones viene equipado con una estructura de espacio topológico:

• Estados (or configuraciones) del sistema S se corresponden con puntos $A \in X$

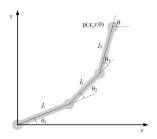
Espacio de configuraciones.

El **espacio de configuraciones** *X* asociado a un sistema mecánico dado *S* es el conjunto de todos los posibles estados de *S*. En la mayoría de los casos el espacio de configuraciones viene equipado con una estructura de espacio topológico:

- Estados (or configuraciones) del sistema S se corresponden con puntos $A \in X$
- **Movimientos** del sistema desde un estado *A* a un estado *B* se corresponden con **caminos** en *X* que unen *A* con *B*.

Ejemplos de espacios de configuraciones:

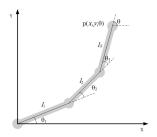
• Un *brazo robótico* consistente en varias barras conectadas por codos. Permitimos autointersecciones en el brazo



El espacio de configuraciones es $X = S^1 \times S^1 \times ... \times S^1$

Ejemplos de espacios de configuraciones:

• Un *brazo robótico* consistente en varias barras conectadas por codos. Permitimos autointersecciones en el brazo



El espacio de configuraciones es $X = S^1 \times S^1 \times ... \times S^1$ En el caso espacial tenemos: $X = S^2 \times S^2 \times ... \times S^2$ • Un robot volador que se puede trasladar y rotar.

El espacio de configuraciones requiere de 6 parámetros: (x, y, z) para la traslación, y ángulos de Euler (α, β, γ) para la rotación. El espacio de configuraciones es $X = \mathbb{R}^3 \times SO(3)$.

El problema del planificador de movimientos.

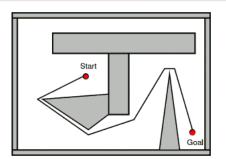
El planificador de movimientos es un tema central en robótica

El problema del planificador de movimientos.

El planificador de movimientos es un tema central en robótica

Motion planning

El **problema de planificador de movimientos** consiste en producir un movimiento continuo que conecte una configuración inicial *A* con una configuración final *B* predeterminados.

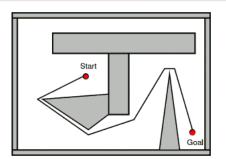


El problema del planificador de movimientos.

El planificador de movimientos es un tema central en robótica

Motion planning

El **problema de planificador de movimientos** consiste en producir un movimiento continuo que conecte una configuración inicial *A* con una configuración final *B* predeterminados.



En términos del espacio de configuraciones *X* el algoritmo del planificador de movimientos consiste:

- **Input**: Un punto $(A, B) \in X \times X$
- **Output**: un camino $\alpha : [0,1] \to X$ tal que $\alpha(0) = A$ y $\alpha(1) = B$.

En términos del espacio de configuraciones *X* el algoritmo del planificador de movimientos consiste:

- **Input**: Un punto $(A, B) \in X \times X$
- **Output**: un camino $\alpha : [0,1] \to X$ tal que $\alpha(0) = A$ y $\alpha(1) = B$.

Si X es el espacio de configuraciones, consideremos la fibración de caminos libre:

$$\pi: X^I \to X \times X, \quad \alpha \mapsto (\alpha(0), \alpha(1))$$

En términos del espacio de configuraciones *X* el algoritmo del planificador de movimientos consiste:

- **Input**: Un punto $(A, B) \in X \times X$
- **Output**: un camino $\alpha : [0,1] \to X$ tal que $\alpha(0) = A$ y $\alpha(1) = B$.

Si *X* es el espacio de configuraciones, consideremos la fibración de caminos libre:

$$\pi: X^I \to X \times X, \qquad \alpha \mapsto (\alpha(0), \alpha(1))$$

donde X^I denota al espacio de todos los caminos en X.

En términos del espacio de configuraciones X el algoritmo del planificador de movimientos consiste:

- **Input**: Un punto $(A, B) \in X \times X$
- **Output**: un camino $\alpha:[0,1]\to X$ tal que $\alpha(0)=A$ y $\alpha(1)=B$.

Si *X* es el espacio de configuraciones, consideremos la fibración de caminos libre:

$$\pi: X^I \to X \times X, \qquad \alpha \mapsto (\alpha(0), \alpha(1))$$

donde X^I denota al espacio de todos los caminos en X.

En estos términos, un algoritmo de planificador de movimientos es exactamente una **sección** (no necesariamente continua) de π . Esto es, una aplicación

$$s: X \times X \to X^I$$

tal que $\pi \circ s = id$

La **continuidad** de un algoritmo de planificador de movimientos s es de vital importancia. Significa que el camino sugerido s(A,B) desde A hasta B dependa con continuidad de los estados A y B

La **continuidad** de un algoritmo de planificador de movimientos s es de vital importancia. Significa que el camino sugerido s(A,B) desde A hasta B dependa con continuidad de los estados A y B

Teorema

Existe una *sección continua* $s: X \times X \to X^I$ de π si y sólo si el espacio X is contráctil.

La **continuidad** de un algoritmo de planificador de movimientos s es de vital importancia. Significa que el camino sugerido s(A,B) desde A hasta B dependa con continuidad de los estados A y B

Teorema

Existe una *sección continua s* : $X \times X \to X^I$ de π si y sólo si el espacio X is contráctil.

Consecuencia

En general, los algoritmos de planificador de movimientos tienen discontinuidades.

Teorema

Existe una *sección continua s* : $X \times X \to X^I$ de π si y sólo si el espacio X is contráctil.

Consecuencia

En general, los algoritmos de planificador de movimientos tienen discontinuidades.

Podemos considerar secciones continuas **locales** de π . Éstas son aplicaciones definidas sobre abiertos $U \subset X \times X$

$$s:U\to X^I$$

tales que $\pi \circ s = inc : U \hookrightarrow X \times X$.

Complejidad topológica

Con el fin de estudiar la discontinuidad de estos algoritmos, el matemático ruso M. Farber introdujo en 2003 la siguiente noción:

Complejidad topológica

Con el fin de estudiar la discontinuidad de estos algoritmos, el matemático ruso M. Farber introdujo en 2003 la siguiente noción:

Definición (Farber)

La **complejidad topológica** de un espacio X, TC(X), es el menor entero no negativo k tal que $X \times X$ se puede recubrir por k+1 abiertos

$$X \times X = U_0 \cup U_1 \cup ... \cup U_k$$

en cada uno de los cuales $\pi: X^I \to X \times X$ admite una sección continua local.

• TC(X) depende del tipo de homotopía de X

- TC(X) depende del tipo de homotopía de X
- TC(X) = 0 si y sólo si $X \simeq *$ es contráctil

- TC(X) depende del tipo de homotopía de X
- TC(X) = 0 si y sólo si $X \simeq *$ es contráctil
- Supongamos que X es un espacio conexo por caminos. Entonces

$$cat(X) \leq TC(X) \leq 2 cat(X)$$

- TC(X) depende del tipo de homotopía de X
- TC(X) = 0 si y sólo si $X \simeq *$ es contráctil
- Supongamos que X es un espacio conexo por caminos. Entonces

$$cat(X) \le TC(X) \le 2 cat(X)$$

Recordemos que:

Definición

La categoría de Lusternik-Schnirelmann de un espacio X, cat(X), es el menor entero no negativo k tal que X admite un recubrimiento abierto $X = U_0 \cup U_1 \cup ... \cup U_k$ donde cada U_i es contráctil en X.

Complejidad topológica monoidal

La siguiente situación no es deseable para un algoritmo de planificador de movimientos local $s: U \to X^I$:

Complejidad topológica monoidal

La siguiente situación no es deseable para un algoritmo de planificador de movimientos local $s: U \to X^I$:

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Complejidad topológica monoidal

La siguiente situación no es deseable para un algoritmo de planificador de movimientos local $s:U\to X^I$:

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Se quiere que s sea óptimo requiriendo que s(A,A) sea el camino constante en A (i.e., sin movimiento desde A a A)

Definición (Iwase-Sakai)

La **complejidad topológica monoidal** de un espacio X, $TC^{M}(X)$, es el menor entero no negativo k tal que $X \times X$ admite un recubrimiento abierto

$$X \times X = U_0 \cup U_1 \cup ... \cup U_k$$

tal que para cada i, $\Delta_X(X) \subset U_i$ y $\pi: X^I \to X \times X$ admite una sección continua local s_i satisfaciendo $s_i(A,A) = c_A$ (i.e., el camino constante en A).

Definición (Iwase-Sakai)

La **complejidad topológica monoidal** de un espacio X, $TC^{M}(X)$, es el menor entero no negativo k tal que $X \times X$ admite un recubrimiento abierto

$$X \times X = U_0 \cup U_1 \cup ... \cup U_k$$

tal que para cada i, $\Delta_X(X) \subset U_i$ y $\pi: X^I \to X \times X$ admite una sección continua local s_i satisfaciendo $s_i(A,A) = c_A$ (i.e., el camino constante en A).

Para cualquier CW complejo X, $TC(X) = TC^{M}(X)$

Para cualquier CW complejo X, $TC(X) = TC^{M}(X)$

Teorema (Iwase-Sakai)

Si *X* es un CW complejo, entonces $TC(X) \le TC^{M}(X) \le TC(X) + 1$

Para cualquier CW complejo X, $TC(X) = TC^{M}(X)$

Teorema (Iwase-Sakai)

Si *X* es un CW complejo, entonces $TC(X) \le TC^M(X) \le TC(X) + 1$

Teorema (Dranishnikov)

Sea X un CW complejo (q-1)-conexo. Si

$$\dim(X) \le q(\mathrm{TC}(X) + 1) - 2,$$

entonces $TC(X) = TC^{M}(X)$.

Para cualquier CW complejo X, $TC(X) = TC^{M}(X)$

Teorema (Iwase-Sakai)

Si *X* es un CW complejo, entonces $TC(X) \le TC^{M}(X) \le TC(X) + 1$

Teorema (Dranishnikov)

Sea X un CW complejo (q-1)-conexo. Si

$$\dim(X) \le q(\mathrm{TC}(X) + 1) - 2,$$

entonces $TC(X) = TC^{M}(X)$.

Sin embargo, la conjetura de Iwase-Sakai aún permanece como un problema abierto.

Categoría seccional

Definición

La **categoría seccional** (o género de Schwarz) de una fibración p: E woheadrightarrow B, secat(p), es el menor entero no negativo k tal que B se puede recubrir por k+1 abiertos $B=U_0\cup U_1\cup\ldots\cup U_k$ en cada uno de los cuales p admite una sección local continua $s_i:U_i\to E$.

Categoría seccional

Definición

La **categoría seccional** (o género de Schwarz) de una fibración p: E woheadrightarrow B, secat(p), es el menor entero no negativo k tal que B se puede recubrir por k+1 abiertos $B=U_0\cup U_1\cup ...\cup U_k$ en cada uno de los cuales p admite una sección local continua $s_i: U_i \to E$.

La categoría seccional puede definirse para *cualquier* aplicación continua $f: X \to Y$ sin más que requirir secciones *homotópicas* locales $s_i: U_i \to E$. Esto es, $ps_i \simeq inc: U_i \hookrightarrow B$.

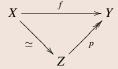
Categoría seccional

Definición

La **categoría seccional** (o género de Schwarz) de una fibración $p: E \rightarrow B$, secat(p), es el menor entero no negativo k tal que B se puede recubrir por k+1 abiertos $B=U_0\cup U_1\cup ...\cup U_k$ en cada uno de los cuales p admite una sección local continua $s_i: U_i \to E$.

La categoría seccional puede definirse para *cualquier* aplicación continua $f: X \to Y$ sin más que requirir secciones homotópicas locales $s_i: U_i \to E$. Esto es, $ps_i \simeq inc : U_i \hookrightarrow B$.

Equivalentemente, podemos considerar la fibración asociada a f:



y definir secat(f) := secat(p).

La complejidad topológica es una categoría seccional

 $\mathrm{TC}(X) = \mathrm{secat}(\pi: X^I \to X \times X)$. Obsérvese que también podemos considerar

$$TC(X) = secat(\Delta_X : X \to X \times X)$$

La complejidad topológica es una categoría seccional

 $TC(X) = secat(\pi : X^I \to X \times X)$. Obsérvese que también podemos considerar

$$TC(X) = secat(\Delta_X : X \to X \times X)$$

La categoría de Lusternik-Schnirelmann es una categoría seccional

 $\operatorname{cat}(X) = \operatorname{secat}(p : PX \to X)$. Aquí

$$PX = \{\alpha \in X^I : \alpha(0) = *\}; \quad p(\alpha) = \alpha(1).$$

Nótese que también podemos considerar

$$cat(X) = secat(* \rightarrow X)$$

La complejidad topológica es una categoría seccional

 $TC(X) = secat(\pi : X^I \to X \times X)$. Obsérvese que también podemos considerar

$$TC(X) = secat(\Delta_X : X \to X \times X)$$

La categoría de Lusternik-Schnirelmann es una categoría seccional

 $\operatorname{cat}(X) = \operatorname{secat}(p : PX \to X)$. Aquí

$$PX = \{\alpha \in X^I : \alpha(0) = *\}; \quad p(\alpha) = \alpha(1).$$

Nótese que también podemos considerar

$$cat(X) = secat(* \rightarrow X)$$

Definición (Pullback homotópico)

Definición (Pullback homotópico)

Considérese aplicaciones continuas $A \xrightarrow{f} C \xleftarrow{g} B$. El *pullback homotópico* de este diagrama es el espacio resultante a partir de la siguiente construcción

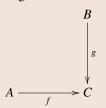
 Se factoriza g (or f) a través de una equivalencia de homotopía seguida de una fibración

Definición (Pullback homotópico)

- Se factoriza g (or f) a través de una equivalencia de homotopía seguida de una fibración
- Se toma el pullback a lo largo de esta fibración

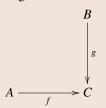
Definición (Pullback homotópico)

- Se factoriza g (or f) a través de una equivalencia de homotopía seguida de una fibración
- Se toma el pullback a lo largo de esta fibración



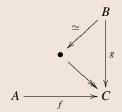
Definición (Pullback homotópico)

- Se factoriza g (or f) a través de una equivalencia de homotopía seguida de una fibración
- Se toma el pullback a lo largo de esta fibración



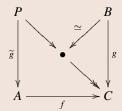
Definición (Pullback homotópico)

- Se factoriza g (or f) a través de una equivalencia de homotopía seguida de una fibración
- Se toma el pullback a lo largo de esta fibración



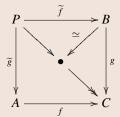
Definición (Pullback homotópico)

- Se factoriza g (or f) a través de una equivalencia de homotopía seguida de una fibración
- Se toma el pullback a lo largo de esta fibración



Definición (Pullback homotópico)

- Se factoriza g (or f) a través de una equivalencia de homotopía seguida de una fibración
- Se toma el pullback a lo largo de esta fibración



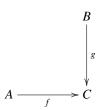
• El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*

- El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*
- La noción dual (en el sentido de Eckmann-Hilton) se corresponde con la de *pushout homotópico*

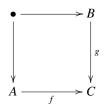
- El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*
- La noción dual (en el sentido de Eckmann-Hilton) se corresponde con la de *pushout homotópico*
- Los pullbacks y pushouts homotópicos también se pueden definir por la *propiedad universal débil* de los límites y colímites homotópicos, o bien mediante pullbacks y pushouts homotópicos *estándar*.

- El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*
- La noción dual (en el sentido de Eckmann-Hilton) se corresponde con la de *pushout homotópico*
- Los pullbacks y pushouts homotópicos también se pueden definir por la propiedad universal débil de los límites y colímites homotópicos, o bien mediante pullbacks y pushouts homotópicos estándar.
- El join del diagrama A → C ← B es el pushout homotópico del pullback homotópico de tal diagrama:

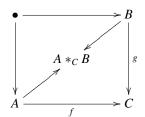
- El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*
- La noción dual (en el sentido de Eckmann-Hilton) se corresponde con la de *pushout homotópico*
- Los pullbacks y pushouts homotópicos también se pueden definir por la propiedad universal débil de los límites y colímites homotópicos, o bien mediante pullbacks y pushouts homotópicos estándar.
- El *join* del diagrama $A \xrightarrow{f} C \xleftarrow{g} B$ es el pushout homotópico del pullback homotópico de tal diagrama:



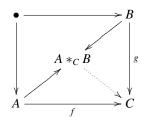
- El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*
- La noción dual (en el sentido de Eckmann-Hilton) se corresponde con la de pushout homotópico
- Los pullbacks y pushouts homotópicos también se pueden definir por la propiedad universal débil de los límites y colímites homotópicos, o bien mediante pullbacks y pushouts homotópicos estándar.
- El join del diagrama A → C ← B es el pushout homotópico del pullback homotópico de tal diagrama:



- El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*
- La noción dual (en el sentido de Eckmann-Hilton) se corresponde con la de *pushout homotópico*
- Los pullbacks y pushouts homotópicos también se pueden definir por la *propiedad universal débil* de los límites y colímites homotópicos, o bien mediante pullbacks y pushouts homotópicos *estándar*.
- El *join* del diagrama $A \xrightarrow{f} C \xleftarrow{g} B$ es el pushout homotópico del pullback homotópico de tal diagrama:



- El cuadrado resultante, o cualquiera homotópicamente equivalente a éste, es el *pullback homotópico*
- La noción dual (en el sentido de Eckmann-Hilton) se corresponde con la de *pushout homotópico*
- Los pullbacks y pushouts homotópicos también se pueden definir por la *propiedad universal débil* de los límites y colímites homotópicos, o bien mediante pullbacks y pushouts homotópicos *estándar*.
- El *join* del diagrama $A \xrightarrow{f} C \xleftarrow{g} B$ es el pushout homotópico del pullback homotópico de tal diagrama:

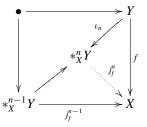


Existe una caracterización de tipo Ganea para la categoría seccional:

Existe una caracterización de tipo Ganea para la categoría seccional: Si $f: Y \to X$ es una aplicación continua, entonces podemos formar la aplicación join $Y*_X Y \to X$ resultante del join de f consigo mismo.

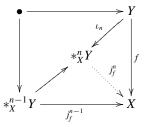
Existe una caracterización de tipo Ganea para la categoría seccional: Si $f:Y\to X$ es una aplicación continua, entonces podemos formar la aplicación join $Y*_XY\to X$ resultante del join de f consigo mismo. Podemos obtener inductivamente $j_f^n: *_X^nY\to X$ como el join de j_f^{n-1} con f:

Existe una caracterización de tipo Ganea para la categoría seccional: Si $f: Y \to X$ es una aplicación continua, entonces podemos formar la aplicación join $Y*_X Y \to X$ resultante del join de f consigo mismo. Podemos obtener inductivamente $j_f^n: *_X^n Y \to X$ como el join de j_f^{n-1} con f:



(establecemos
$$j_f^0 = f$$
, $*_X^0 Y = Y$).

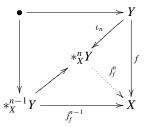
Existe una caracterización de tipo Ganea para la categoría seccional: Si $f: Y \to X$ es una aplicación continua, entonces podemos formar la aplicación join $Y*_X Y \to X$ resultante del join de f consigo mismo. Podemos obtener inductivamente $j_f^n: *_X^n Y \to X$ como el join de j_f^{n-1} con f:



(establecemos $j_f^0 = f$, $*_X^0 Y = Y$).

La caracterización de Ganea secat viene dada por el siguiente resultado, debido a A. Schwarz:

Existe una caracterización de tipo Ganea para la categoría seccional: Si $f: Y \to X$ es una aplicación continua, entonces podemos formar la aplicación join $Y*_XY \to X$ resultante del join de f consigo mismo. Podemos obtener inductivamente $j_f^n: *_X^n Y \to X$ como el join de j_f^{n-1} con f:



(establecemos $j_f^0 = f$, $*_X^0 Y = Y$).

La caracterización de Ganea secat viene dada por el siguiente resultado, debido a A. Schwarz:

Teorema (A. Schwarz)

 $Seaf: Y \rightarrow X$ una aplicación continua, con X paracompacto. Entonces

$$secat(f) \le n \Leftrightarrow j_f^n$$
 admite una sección homotópica.

Categoría relativa

Categoría relativa

Por construcción del join iterado $j_f^n: *_X^n Y \to X$ obtenemos, para cada $n \ge 0$, un diagrama homotópicamente conmutativo:

En particular, para n=0, la aplicación $\iota_0:Y\to Y$ es, simplemente, la identidad.

Definición (Doeraene-El Haouari)

Sea $f: Y \to X$ una aplicación continua. La **categoría relativa** de f, denotada por relcat(f), es el menor entero no negativo n tal que j_f^n admite una sección homotópica σ satisfaciendo la condición adicional $\sigma f \simeq \iota_n$.

Para toda aplicación continua $f: Y \rightarrow X$ se tiene

$$\operatorname{secat}(f) \le \operatorname{relcat}(f) \le \operatorname{secat}(f) + 1$$

Para toda aplicación continua $f: Y \to X$ se tiene

$$secat(f) \le relcat(f) \le secat(f) + 1$$

También establecieron la siguiente conjetura, la cual nos referiremos como la *conjetura D-EH* :

Conjetura de Doeraene-El Haouari

Sea $f: Y \to X$ una aplicación continua. Si $f: Y \to X$ admite una retracción homotópica entonces $\operatorname{secat}(f) = \operatorname{relcat}(f)$.

Para toda aplicación continua $f: Y \to X$ se tiene

$$secat(f) \le relcat(f) \le secat(f) + 1$$

También establecieron la siguiente conjetura, la cual nos referiremos como la *conjetura D-EH* :

Conjetura de Doeraene-El Haouari

Sea $f: Y \to X$ una aplicación continua. Si $f: Y \to X$ admite una retracción homotópica entonces $\operatorname{secat}(f) = \operatorname{relcat}(f)$.

Nota

La hipótesis sobre la existencia de una retración homotópica no se puede relajar:

Para toda aplicación continua $f: Y \to X$ se tiene

$$\operatorname{secat}(f) \le \operatorname{relcat}(f) \le \operatorname{secat}(f) + 1$$

También establecieron la siguiente conjetura, la cual nos referiremos como la conjetura D-EH:

Conjetura de Doeraene-El Haouari

Sea $f: Y \to X$ una aplicación continua. Si $f: Y \to X$ admite una retracción homotópica entonces secat(f) = relcat(f).

Nota

La hipótesis sobre la existencia de una retración homotópica no se puede relajar:

• La inclusión $f: S^1 \hookrightarrow D^2$ satisface $\operatorname{secat}(f) = 0$ y $\operatorname{relcat}(f) = 1$.

Para toda aplicación continua $f: Y \to X$ se tiene

$$secat(f) \le relcat(f) \le secat(f) + 1$$

También establecieron la siguiente conjetura, la cual nos referiremos como la conjetura D-EH:

Conjetura de Doeraene-El Haouari

Sea $f: Y \to X$ una aplicación continua. Si $f: Y \to X$ admite una retracción homotópica entonces secat(f) = relcat(f).

Nota

La hipótesis sobre la existencia de una retración homotópica no se puede relajar:

- La inclusión $f: S^1 \hookrightarrow D^2$ satisface $\operatorname{secat}(f) = 0$ y $\operatorname{relcat}(f) = 1$.
- La fibración de Hopf, $p: S^3 \to S^2$, satisface $\operatorname{secat}(p) = 1$ y relcat(p) = 2.

Complejidad topológica monoidal como una categoría relativa

A partir de la fibración $\pi: X^I \to X \times X$, se puede comprobar fácilmente que existe un diagrama conmutativo, para cada $n \ge 0$:

$$X^{I} \xrightarrow{\iota_{n}} *_{X \times X}^{n} X^{I}$$

$$\downarrow j_{\pi}^{n}$$

$$X \times X.$$

Como $s_0: X \to X^I$, $x \mapsto \hat{x}$, satisface $\pi s_0 = \Delta_X$, establecemos $s_n := \iota_n s_0$ y tenemos para cada $n \ge 0$, $j_\pi^n s_n = \Delta_X$.

Proposición (Dranishnikov)

Sea X un espacio paracompacto. Entonces $\mathrm{TC}^M(X) \leq n$ si y sólo si $j^n_\pi: *^n_{X\times X}X^I \to X\times X$ admite una sección estricta σ tal que $\sigma\Delta_X = s_n$.

Complejidad topológica monoidal como una categoría relativa

Teorema (Carrasquel-GC-Vandembroucg)

Sea X un espacio localmente equiconexo (e.d., la aplicación diagonal $\Delta_X: X \to X \times X$ es una cofibración cerrada). Entonces

$$TC^M(X) = relcat(\Delta_X)$$

Complejidad topológica monoidal como una categoría relativa

Teorema (Carrasquel-GC-Vandembroucg)

Sea X un espacio localmente equiconexo (e.d., la aplicación diagonal $\Delta_X: X \to X \times X$ es una cofibración cerrada). Entonces

$$TC^M(X) = relcat(\Delta_X)$$

Corolario

La conjetura D-EH contiene a la conjetura de I-S.

Complejidad topológica monoidal como una categoría relativa

Teorema (Carrasquel-GC-Vandembroucg)

Sea X un espacio localmente equiconexo (e.d., la aplicación diagonal $\Delta_X: X \to X \times X$ es una cofibración cerrada). Entonces

$$TC^M(X) = relcat(\Delta_X)$$

Corolario

La conjetura D-EH contiene a la conjetura de I-S.

Demostración

La aplicación diagonal $\Delta_X : X \to X \times X$ admite la proyección $p_2 : X \times X \to X$ como retracción (homotópica). Entonces simplemente observar que $TC(X) = secat(\Delta_X)$ y $TC^M(X) = relcat(\Delta_X)$.

Una versión estable de la Conjetura de D-EH

Si $f:Y\to X$ es continua, recordemos el diagrama homotópicamente conmutativo:

Una versión estable de la Conjetura de D-EH

Si $f:Y\to X$ es continua, recordemos el diagrama homotópicamente conmutativo:

$$Y \xrightarrow{\iota_n} *_X^n Y$$

$$\downarrow j_f^n$$

$$X.$$

Suspendiendo *i* veces este diagrama obtenemos un diagrama homotópicamente conmutativo:

$$\Sigma^{i}Y \xrightarrow{\sum^{i} t_{n}} \Sigma^{i} *_{X}^{n} Y$$

$$\Sigma^{i}f \qquad \qquad \bigvee_{\sum^{i} j_{f}^{i}} \Sigma^{i}X.$$

Una versión estable de la Conjetura de D-EH

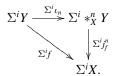
Si $f:Y\to X$ es continua, recordemos el diagrama homotópicamente conmutativo:

$$Y \xrightarrow{\iota_n} *_X^n Y$$

$$\downarrow^{j_f^n}$$

$$X.$$

Suspendiendo *i* veces este diagrama obtenemos un diagrama homotópicamente conmutativo:



- σ^{i} **secat**(**f**) el menor entero no negativo n tal que $\Sigma^{i}j_{f}^{n}$ admite una sección homotópica;
- σ^i relcat(f) el menor entero no negativo n tal que $\Sigma^i j_f^n$ admite una sección homotópica σ que satisface $\sigma \Sigma^i f \simeq \Sigma^i \iota_n$

Una versión estable de la conjetura de D-EH

Teorema (Carrasquel-GC-Vandembroucg)

Si $f: Y \to X$ admite una retracción homotópica entonces

$$\sigma^i \operatorname{secat}(f) = \sigma^i \operatorname{relcat}(f)$$

para todo $i \ge 1$. En particular, si $\sigma^i TC(X) := \sigma^i \operatorname{secat}(\Delta_X)$ y $\sigma^i TC^M(X) := \sigma^i \operatorname{relcat}(\Delta_X)$, entonces

$$\sigma^i TC(X) = \sigma^i TC^M(X).$$

Una versión estable de la conjetura de D-EH

Teorema (Carrasquel-GC-Vandembroucg)

Si $f: Y \to X$ admite una retracción homotópica entonces

$$\sigma^i \operatorname{secat}(f) = \sigma^i \operatorname{relcat}(f)$$

para todo $i \ge 1$. En particular, si $\sigma^i TC(X) := \sigma^i \operatorname{secat}(\Delta_X)$ y $\sigma^i TC^M(X) := \sigma^i \operatorname{relcat}(\Delta_X)$, entonces

$$\sigma^i TC(X) = \sigma^i TC^M(X).$$

Lema

Sea $Y \xrightarrow{f} X \xrightarrow{\lambda} C_f$ una sucesión cofibrada. Si $f: Y \to X$ admite una retracción homotópica r, entonces existe una aplicación continua $\sigma: \Sigma C_f \to \Sigma X$ tal que

(i)
$$(\Sigma \lambda) \sigma \simeq id y$$

(ii)
$$\sigma(\Sigma \lambda) + (\Sigma f)(\Sigma r) \simeq id$$
.

Supongamos que $\sigma^i secat(f) \leq n$ por medio de $s: \Sigma^i X \to \Sigma^i *_X^n Y$ una sección homotópica de $\Sigma^i j_f^n$.

Supongamos que $\sigma^i secat(f) \leq n$ por medio de $s: \Sigma^i X \to \Sigma^i *_X^n Y$ una sección homotópica de $\Sigma^i j_f^n$.

• Por el lema anterior podemos tomar $\sigma: \Sigma^i C_f \to \Sigma^i X$ tal que $(\Sigma^i \lambda) \sigma \simeq id$ y $\sigma(\Sigma^i \lambda) + (\Sigma^i f)(\Sigma^i r) \simeq id$.

Supongamos que $\sigma^i secat(f) \leq n$ por medio de $s: \Sigma^i X \to \Sigma^i *_X^n Y$ una sección homotópica de $\Sigma^i j_f^n$.

- Por el lema anterior podemos tomar $\sigma: \Sigma^i C_f \to \Sigma^i X$ tal que $(\Sigma^i \lambda) \sigma \simeq id$ y $\sigma(\Sigma^i \lambda) + (\Sigma^i f)(\Sigma^i r) \simeq id$.
- Definimos $s' := s\sigma \Sigma^i \lambda + \Sigma^i \iota_n \Sigma^i r$

Supongamos que $\sigma^i secat(f) \leq n$ por medio de $s: \Sigma^i X \to \Sigma^i *_X^n Y$ una sección homotópica de $\Sigma^i j_f^n$.

- Por el lema anterior podemos tomar $\sigma: \Sigma^i C_f \to \Sigma^i X$ tal que $(\Sigma^i \lambda) \sigma \simeq id$ y $\sigma(\Sigma^i \lambda) + (\Sigma^i f)(\Sigma^i r) \simeq id$.
- Definimos $s' := s\sigma \Sigma^i \lambda + \Sigma^i \iota_n \Sigma^i r$

Entonces tenemos:

$$(\Sigma^{i}j_{f}^{n})s' = (\Sigma^{i}j_{f}^{n})s\sigma(\Sigma^{i}\lambda) + (\Sigma^{i}j_{f}^{n})(\Sigma^{i}\iota_{n})(\Sigma^{i}r) = \sigma(\Sigma^{i}\lambda) + (\Sigma^{i}f)(\Sigma^{i}r) \simeq id.$$

Supongamos que $\sigma^i secat(f) \leq n$ por medio de $s: \Sigma^i X \to \Sigma^i *_X^n Y$ una sección homotópica de $\Sigma^i j_f^n$.

- Por el lema anterior podemos tomar $\sigma: \Sigma^i C_f \to \Sigma^i X$ tal que $(\Sigma^i \lambda) \sigma \simeq id$ y $\sigma(\Sigma^i \lambda) + (\Sigma^i f)(\Sigma^i r) \simeq id$.
- Definimos $s' := s\sigma \Sigma^i \lambda + \Sigma^i \iota_n \Sigma^i r$

Entonces tenemos:

$$(\Sigma^{i}j_{f}^{n})s' = (\Sigma^{i}j_{f}^{n})s\sigma(\Sigma^{i}\lambda) + (\Sigma^{i}j_{f}^{n})(\Sigma^{i}\iota_{n})(\Sigma^{i}r) = \sigma(\Sigma^{i}\lambda) + (\Sigma^{i}f)(\Sigma^{i}r) \simeq id.$$

Además, como $\Sigma^i f$ es una co-H-aplicación y $\lambda f \simeq *$, tenemos

$$s'(\Sigma^i f) \simeq s\sigma(\Sigma^i \lambda)(\Sigma^i f) + (\Sigma^i \iota_n)(\Sigma^i r)(\Sigma^i f) \simeq \Sigma^i \iota_n.$$

Esto significa que σ^i relcat $(f) \leq n$.

La categoría seccional y la categoría relativa tienen sendas caracterizaciones de Whitehead.

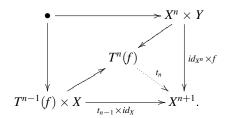
La categoría seccional y la categoría relativa tienen sendas **caracterizaciones de Whitehead**. En efecto, para cada n podemos considerar la n-ésima construcción fat wedge $t_n: T^n(f) \to X^{n+1}$ de modo inductivo como sigue:

La categoría seccional y la categoría relativa tienen sendas **caracterizaciones de Whitehead**. En efecto, para cada n podemos considerar la n-ésima construcción fat wedge $t_n: T^n(f) \to X^{n+1}$ de modo inductivo como sigue:

•
$$T^0(f) = Y y t_0 = f : Y \to X$$

La categoría seccional y la categoría relativa tienen sendas **caracterizaciones de Whitehead**. En efecto, para cada n podemos considerar la n-ésima construcción fat wedge $t_n: T^n(f) \to X^{n+1}$ de modo inductivo como sigue:

- $T^0(f) = Y y t_0 = f : Y \to X$
- Si $t_{n-1}: T^{n-1}(f) \to X^n$ está definida, entonces t^n es la aplicación join



Proposición (Clapp-Puppe) $secat(f) \leq n \text{ si y sólo si existe } \varphi : X \to T^n(f) \text{ tal que}$ $T^n(f)$ \downarrow^{t_n} $X \xrightarrow{\Delta_{n+1}} X^{n+1}$

Proposición (Doeraene-El Haouari) $relcat(f) \le n \text{ si y sólo si existe } \varphi: X \to T^n(f) \text{ tal que}$ $Y \xrightarrow{\tau_n} T^n(f)$ \downarrow^{t_n} $X \xrightarrow{\Delta_{n+1}} X^{n+1}$

Cuando $f: Y \hookrightarrow X$ es una cofibración no es muy difícil ver que tenemos inclusiones que establecen un diagrama estrictamente conmutativo

$$Y \xrightarrow{\tau_n} T^n(f)$$

$$f \downarrow t_n$$

$$X \xrightarrow{\Delta_{n+1}} X^{n+1}$$

Además, $T^n(f) = \{(x_0, x_1, ..., x_n) \in X^{n+1} : x_i \in Y \text{ para algún } i\}$ salvo equivalencia de homotopía.

Cuando $f:Y\hookrightarrow X$ es una cofibración no es muy difícil ver que tenemos inclusiones que establecen un diagrama estrictamente conmutativo

$$Y \xrightarrow{\tau_n} T^n(f)$$

$$f \downarrow t_n$$

$$X \xrightarrow{\Delta_{n+1}} X^{n+1}$$

Además, $T^n(f) = \{(x_0, x_1, ..., x_n) \in X^{n+1} : x_i \in Y \text{ para algún } i\}$ salvo equivalencia de homotopía.

Proposición (Carrasquel-GC-Vandembroucq)

Sea $f: Y \hookrightarrow X$ una cofibración. Entonces $relcat(f) \le n$ si y sólo si existen $\phi f = \tau_n$ tal que $t_n \phi \simeq \Delta_{n+1}$ rel Y.

Si $f:Y\hookrightarrow X$ es una cofibración entonces, para cada $n\geq 0$ podemos considerar la sucesión cofibrada $T^n(f)\stackrel{t_n}{\longrightarrow} X^{n+1}\stackrel{q_n}{\longrightarrow} X^{n+1}/T^n(f)$ obteniendo un diagrama

$$X \xrightarrow{\Delta_{n+1}} X^{n}(f)$$

$$X \xrightarrow{\Delta_{n+1}} X^{n+1} \downarrow^{q_n}$$

$$X^{n+1}/T^n(f).$$

Lo que viene a continuación son cotas inferiores de la categoría seccional y de la categoría relativa, respectivamente.

Definición

- La categoría seccional débil de f, wsecat(f), se define como el menor n tal que $q_n \Delta_{n+1} \simeq *$.
- The **categoría relativa débil** de $f: Y \hookrightarrow X$, wrelcat(f), es el menor n tal que $q_n \Delta_{n+1} \simeq * \text{rel } Y$.

Lo que viene a continuación son cotas inferiores de la categoría seccional y de la categoría relativa, respectivamente.

Definición

- La categoría seccional débil de f, wsecat(f), se define como el menor n tal que $q_n \Delta_{n+1} \simeq *$.
- The **categoría relativa débil** de $f: Y \hookrightarrow X$, wrelcat(f), es el menor n tal que $q_n \Delta_{n+1} \simeq * \text{rel } Y$.

Teorema (Carrasquel-GC-Vandembroucq)

Si $f:Y\hookrightarrow X$ es una cofibración que admite una retracción homotópica entonces

$$wsecat(f) = wrelcat(f)$$

Esbozo de la demostración

• Consideramos un invariante auxiliar: la **categoría débil** en el sentido de Berstein-Hilton, wcat(-). Puede definirse como

$$wcat(Z) := wsecat(* \rightarrow Z)$$

Esbozo de la demostración

 Consideramos un invariante auxiliar: la categoría débil en el sentido de Berstein-Hilton, wcat(-). Puede definirse como

$$wcat(Z) := wsecat(* \rightarrow Z)$$

• Se prueba la igualdad wcat(X/Y) = wrelcat(f).

Esbozo de la demostración

 Consideramos un invariante auxiliar: la categoría débil en el sentido de Berstein-Hilton, wcat(-). Puede definirse como

$$wcat(Z) := wsecat(* \rightarrow Z)$$

- Se prueba la igualdad wcat(X/Y) = wrelcat(f).
- Sabemos que wcat(X/Y) = wsecat(f) cuando f admite una retracción homotópica.

Esbozo de la demostración

 Consideramos un invariante auxiliar: la categoría débil en el sentido de Berstein-Hilton, wcat(-). Puede definirse como

$$wcat(Z) := wsecat(* \rightarrow Z)$$

- Se prueba la igualdad wcat(X/Y) = wrelcat(f).
- Sabemos que wcat(X/Y) = wsecat(f) cuando f admite una retracción homotópica.
- Considerando los hechos anteriores obtenemos la igualdad que queríamos, puesto que

$$wcat(X/Y) = wrelcat(f) \le wsecat(f) = wcat(X/Y)$$

Definición

• La complejidad topológica débil de X se define como

$$wTC(X) := wsecat(\Delta_X)$$

• La complejidad topológica monoidal débil de X se define como

$$wTC^M(X) := wrelcat(\Delta_X)$$

Definición

• La **complejidad topológica débil** de *X* se define como

$$wTC(X) := wsecat(\Delta_X)$$

• La **complejidad topológica monoidal débil** de *X* se define como

$$\operatorname{wTC}^M(X) := \operatorname{wrelcat}(\Delta_X)$$

Corolario

Si X es un espacio localmente equiconexo entonces

$$wTC(X) = wTC^{M}(X) = wcat(X \times X/\Delta(X))$$

La conjetura de D-EH conjectura en homotopía racional

Supondremos que $f: Y \to X$ es una aplicación continua entre espacios 1-conexos de tipo finito sobre \mathbb{Q} y que consideraremos su racionalización $f_0: Y_0 \to X_0$.

La conjetura de D-EH conjectura en homotopía racional

Supondremos que $f: Y \to X$ es una aplicación continua entre espacios 1-conexos de tipo finito sobre \mathbb{Q} y que consideraremos su racionalización $f_0: Y_0 \to X_0$.

La conjetura de D-EH en homotopía racional

Si f admite una retracción homotópica entonces $secat(f_0) = relcat(f_0)$.

La conjetura de D-EH conjectura en homotopía racional

Supondremos que $f: Y \to X$ es una aplicación continua entre espacios 1-conexos de tipo finito sobre \mathbb{Q} y que consideraremos su racionalización $f_0: Y_0 \to X_0$.

La conjetura de D-EH en homotopía racional

Si f admite una retracción homotópica entonces $secat(f_0) = relcat(f_0)$.

No está resuelto satisfactoriamente en el sentido positivo. Tan solo existen resultados parciales.

Gracias por su atención