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Framework

1. Varieties: categories whose

- objects are sets S endowed with a given set of
operations µ : Sn → S , µ ∈ On, satisfying a given set of
equational axioms

- morphisms are set maps preserving all given operations

are called algebraic categories or varieties.

2. Semi-abelian categories by definition are pointed,
finitely complete and cocomplete, protomodular and
Barr-exact categories [Janelidze, Márki, Tholen 2002].
In particular, each morphism f : X → Y admits a
natural regular epi–mono factorisation

X ,2,2 X/Ker(f ) � ,2 ,2 Y .

Hence f is monic iff Ker(f ) = 0.
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Properties of semi-abelian categories
Moreover, a semi-abelian category A has the following
strong properties:

1. All regular epimorphisms are cokernels (of their
kernel).

2. The full subcategory of abelian group objects in A is
an abelian category, called the abelian core of A denoted
by Ab(A).

3. For any morphism f : X → Y and subobject S ≤ X
in C,

f −1f (S) = S ∨ Ker(f ).

In fact, a variety is semi-abelian if and only if it satisfies
this property.

Convention: throughout this presentation, D denotes a
semi-abelian category.
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Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Examples of semi-abelian categories
- any abelian category

- the categories of groups, loops, ω-groups (or ω-one
sided loops) of any type, in particular the category of
algebras over any linear operad

- compact (Hausdorff) topological groups, C ∗-algebras

- the category of cocommutative Hopf algebras over a
field of characteristic 0 (Gadjo-Gran-Vercruyssen)

- the categories of (pre)sheaves with values in a
semi-abelian category (in particular simplicial or
Γ-groups)

- the category of internal groupoids (⇔ crossed
modules) in a semi-abelian category

- any localisation of a semi-abelian category

- the category of split extensions of a given object G in a
semi-abelian category .............



Functor calculus as
a new tool in

algebra

Manfred Hartl

Commutators - main categorical concepts
1. Subobjects A,B of an object X =⇒ [A,B]Huq C X ,
called the Huq commutator of A and B .

2. Equivalence relations R , S on an object X :

T
dT
0 ,2

dT
1

,2 XsT0
lr s.t. dT

0 ◦s
T
0 = dT

1 ◦s
T
0 = 1G , for T = R , S

=⇒ [R , S ]S-P
d0 ,2

d1
,2 Xs0lr , called the Smith-Pedicchio

commutator of R and S (subsumes the Freese-McKenzie
commutator in semi-abelian varieties).

3. New, more general concept [H, L, VdL]: subobjects
X1, . . . ,Xn of X =⇒ [X1, . . . ,Xn]Hig ≤ X , called the
Higgins commutator of X1, . . . ,Xn; in general
NOT reducable to nested binary commutators!
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Higgins commutators subsume classical

commutators
In a semi-abelian category A:

1. [A,B]Huq = C[A,B]HigB

2. Recall that there is a bijective correspondence called
normalization between equivalence relations on X and
normal subobjects of X , defined by

Nor

(
R

d0 ,2

d1
,2 Xs0lr

)
=
(
d1 : Ker(d0) � ,2 ,2 X

)
while Nor−1(N C X ) is the kernel pair of G ,2,2 G/N .

Now let K , LC X be the normalisations of two
equivalence relations R and S on X . Then

Nor ([R , S ]S-P) = [K , L]Hig ∨ [K , L,X ]Hig .
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Basic (algebraic) functor calculus

In the sequel, F : C → D denotes a functor between
categories satisfying
- C is pointed and has finite sums (= coproducts)
- D is semi-abelian.

The n-th cross-effect of F is defined to be the
multifunctor crnF : Cn → D given by

crnF (X1, . . . ,Xn) = F (X1| . . . |Xn) =⋂n
k=1 Ker

(
F (X1 + . . . + Xn)→ F (X1 + . . . + X̂k + . . .Xn)

)
C F (X1 + . . . + Xn)

In particular, cr1F (X ) = Ker
(
F (0) : F (X )→ F (0)

)
and

cr2F (X ,Y ) = Ker
(
r12 : F (X + Y ) ,2,2 F (X )× F (Y )

)
.
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Examples
- A functor F : A → B between abelian categories is
additive iff cr2F = 0.

- For T 2 : Ab→ Ab, T 2(A) = A⊗ A, we have

cr2T
2(A,B) = (A⊗ B)⊕ (B ⊗ A),

crnT
2 = 0 for n > 2.

- Let Groups denote the category of groups. Then for
groups X1, . . . ,Xn and elements xk ∈ Xk , k = 1, . . . , n,
we have

[x1, . . . , xn] ∈ IdGr (X1| . . . |Xn).

If n = 2 these elements generate IdGr (X1|X2) (freely if
one takes x1, x2 6= e).

- Let Loops denote the category of loops. Then for
loops X1,X2,X3 and elements xk ∈ Xk the associator

A(x1, x2, x3) = (x1(x2x3))\((x1x2)x3) ∈ IdLp(X1|X2|X3).
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Basic properties of cross-effects
- the multifunctor crnF is symmetric and multi-reduced

- Inductive nature: for a multifunctor M : Cn → D define
its k-th derivative ∂kM : Cn+1 → D by

∂kM(X1, . . . ,Xn+1)

= cr2(M(X1, . . . ,Xk−1,−,Xk+2, . . . ,Xn+1))(Xk ,Xk+1)

Then there is a natural isomorphism

∂kcrnF ∼= crn+1F

for all k = 1, . . . , n.

- The functor crn : Func(C,D)→ Func(Cn,D) is exact.

- Preservation of “pseudo-right-exactness” [Van der
Linden]: If F preserves coequalizers of reflexive parallel
pairs of morphisms (reflexive meaning that these
morphisms admit a common section) then so does crnF
in all variables, for any n.
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morphisms admit a common section) then so does crnF
in all variables, for any n.
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Preservation of coequalizers of reflexive

parallel pairs

A functor F : C → D as before preserves coequalizers of
reflexive parallel pairs iff for any right-exact sequence

A a ,2 B b ,2 C ,2 0

in C the sequence

F (A) + F (A|B)

〈
F (a)
δ

〉
,2 F (B)

F (b) ,2 F (C ) ,2 0

in D is exact, where

δ : F (A|B)
F (a|1B),2 F (B |B) ,2 ,2 F (B + B)

F (∇2) ,2 F (B) .
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Operadic structure of cross-effects

- Operadic structure: Let C F ,2 D G ,2 E be reduced
functors where the category E is semi-abelian, too.

Denote “multi-objects”, i.e. sequences of objects in C,
by X j = Xj ,1, . . . ,Xj ,kj and concatination of such by

X 1 ∪ . . . ∪ X n = X1,1, . . . ,X1,k1 , . . . ,Xn,1, . . . ,Xn,kn .

Then there is a natural transformation

crnG
(
crk1F (X 1), . . . , crknF (X n)

)
��

crk1+...+kn(G ◦F )
(
X 1 ∪ . . . ∪ X n

)
rendering a certain canonical diagram commutative.
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Commutators via functor calculus
Let F : C → D be a functor as before.

For subobjects xk : Xk
,2 ,2 X , k = 1, . . . , n, of an

object X of C define the commutator of X1, . . . ,Xn

relatively to F , denoted by [X1, . . . ,Xn]F to be the
image of the morphism

F (X1| . . . |Xn) ,2 ,2 F (X1 + . . . + Xn)
F (x1,...,xn),2 F (X )

Note that [X1, . . . ,Xn]F ≤ F (X ).

We call

[X1, . . . ,Xn]Hig = [X1, . . . ,Xn]IdD ≤ X

the Higgins commutator of X1, . . . ,Xn. Note that

[X1]F = Im
(
cr1F (X1) ,2 ,2 F (X1)

F (x1) ,2 F (X )
)
.
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Example: Higgins commutators in groups

1. If D is the category of groups Gr then

- [X1,X2]IdGr = [X1,X2];

- [X1,X2,X3]IdGr is the normal subgroup of
〈X1 ∪ X2 ∪ X3〉 generated by the three subgroups

[X1, [X2,X3]], [X2, [X3,X1]], [X3, [X1,X2]].

In particular, if X1,X2,X3 are normal subgroups of X
then [X1,X2,X3]IdGr is their symmetric commutator.

- [X1, . . . ,Xn]IdGr is generated as a subgroup by all nested
commutators (with arbitrary bracketting) of elements
x1 ∈ Xk1 , . . . , xm ∈ Xkm such that
{k1, . . . , km} = {1, . . . , n}. [B. Loiseau]
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Example: Higgins commutators in loops

2. If D is the category of loops then

- [X1,X2]IdLp is the normal subloop of 〈X1 ∪ X2〉
generated by the elements [x2, x1], A(x1, y1, y2),
A(x1, x2, y1), A(x1, x2, y2) A(x2, x1, y2), and
A3(x1, x2, x1, y2) where xi , yi ∈ Xi and

[a, b] = ba\ab

A(a, b, c) = a(bc)\(ab)c

A3(a, b, c , d) = (A(a, b, c)A(a, b, d))\A(a, b, cd) .
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Example: Higgins commutators in ω-loops
3. If D is a category of ω-loops then [X1,X2]IdD is the
normal subobject of X1 ∨ X2 generated by the elements

[(x1, . . . , xn), (y1, . . . , yn)]θ =

θ(x1y1, . . . , xnyn)
/(
θ(x1, . . . , xn)θ(y1, . . . , yn)

)
where x1, . . . , xn ∈ X1, y1, . . . , yn ∈ X2 and θ runs
through a family of strongly generating operations of D.

- 3a) If D = Groups then [x , y ]inv = y−1x−1yx and
[(x1, x2), (y1, y2)]prod = x1[y1, x2].

- 3b) If D = Loops then

[(x1, x2), (y1, y2)]prod =
(
(x1y1)(x2y2)

)/(
(x1x2)(y1y2)

)
.

In particular,
[(e, x2), (y1, e)]prod = (y1x2)/(x2y1) = [y1, x2]r
[(x1, e), (y1, y2)]prod = ((x1y1)y2)/(x1(y1y2))

= Ar (x1, y1, y2).
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Example: Higgins commutators in algebras

over a linear operad

4. If D is the category of P-algebras P-Alg , then

[X1, . . . ,Xn]P-Alg=
∑
pk≥1

µp(X⊗p11 ⊗ . . .⊗ X⊗pnn ⊗ P(p)).

where p = p1 + . . . + pn.
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Commutators relatively to composite

functors [T. Defourneau]

Let C F ,2 D G ,2 E be reduced functors where the
category E is semi-abelian, too. Suppose that G
preserves coequalizers of reflexive parallel pairs. Let Z
be an object of C and X ,Y ≤ Z . Then

[X ,Y ]G◦F =[
[X ,Y ]F

]
G
∨
[
[X ]F , [Y ]F

]
G

∨
[
[X ,Y ]F ,[X ]F

]
G
∨
[
[X ,Y ]F ,[Y ]F

]
G

∨
[
[X ,Y ]F , [X ,Y ]F

]
G
∨
[
[X ,Y ]F , [X ]F , [Y ]F

]
G



Functor calculus as
a new tool in

algebra

Manfred Hartl

Properties of commutators
- Reducedness: if one of the Xi = 0 then
[X1, . . . ,Xn]F = 0.

- Distributivity law:

[A,B ∨ C ]F = [A,B]F ∨ [A,C ]F ∨ [A,B ,C ]F

where A ∨ B denotes the smallest subobject containing
both A and B .

The relations below indicated in red color are valid only if
C is semi-abelian and F preserves regular epimorphisms:

- Removing internal brackets or repetitions of subobjects
enlarges the commutator:

[[A,B]IdC ,C ]F ⊂ [A,B ,C ]F ⊃ [[A,B]F , [C ]F ]IdD

[A,A,B]F ⊂ [A,B]F .
- Preservation by morphisms: For f : X → Y in C,

F (f )
(
[X1, . . . ,Xn]F

)
=[f (X1), . . . , f (Xn)]F .
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Applications of commutators: the kernel of

(the image under a functor of) a cokernel
Suppose that C is semi-abelian and that F preserves
coequalizers of reflexive graphs, that is, of parallel
morphisms admitting a commun section. Then for any
subobject u : U ,2 ,2 X in C, there is a natural short
exact sequence in D

0→ [U]F ∨ [U ,X ]F → F (X )→ F (Coker(u))→ 0

Taking F = IdC we obtain the following description of
the normal closure CUB of U in X [H & Loiseau]:

CUB = U ∨ [U ,X ]IdC

Consequently, U is normal in X iff [U ,X ]IdC ⊂ U
[cf. also Mantovani & Metere].

Application: [U ,X ] is always normal since
[[U ,X ],X ] ⊂ [U ,X ,X ] ⊂ [U ,X ].
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Lower central series
For an object X of D let

γFn (X ) = [X , . . . ,X ]F ≤ F (X )

Suppose that F is reduced, i.e. that F (0) = 0. We then
obtain a natural filtration

F (X ) = γF1 (X ) ≥ γF2 (X ) ≥ . . .

of F (X ) which is an N-series, that is,

[Nk1 , . . . ,Nkn ]IdD ⊂ Nk1+...+kn

for Nk = γFk (X ). In particular, taking F = IdD we obtain
the Higgins lower central series (H.l.c.s.) of X ,

X = γIdD1 (X ) ≥ γIdD2 (X ) ≥ . . .
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Examples: Higgins lower central series in

the fundamental varieties

1. If D is the category of groups, then the Higgins lower
central series coincides with the classical l.c.s.

2. If D is the category of loops, then the categorically
defined lower central series coincides with the
commutator-associator filtration introduced by
Mostovoy.

3. If D is the category of P-algebras P-Alg , then

γ
Id

P-Alg
n (X ) =

∑
k≥n

µk(X⊗k ⊗ P(k)).

How to prove this?
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Characterisation of the c.l.c.s.
Theorem. Let X (X ) : X = X1 ≥ X2 ≥ . . . be a natural
filtration of all objects X in D by normal subobjects Xn

of X . Then X (X ) coincides with the Higgins l.c.s. of X
for all X if and only if

there exist

- multifunctors Mn : Dn → D
- natural maps mn : Mn(X , . . . ,X )→ Xn

such that the following two conditions are satisfied:

1. Factorisations mn exist and are cokernels rendering
the following diagrams commutative:

Mn(X , . . . ,X )
mn ,2

t1
����

Xn

qn

����

(T1Mn)(X , . . . ,X )
mn ,2,2 Xn/Xn+1
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mk : Mk(X , . . . ,X )→ Xk ↪→ Xn,

k ≥ n, jointly generate Xn as a normal subobject of X .

Application:

Proof of the identity γIdDn (X ) = γn(X ) in D = Groups:
take
- Mn(X1, . . . ,Xn) to be the free group generated by the
set X1× . . .×Xn modulo the normal subgroup generated
by the tuples (x1, . . . , xn) where one of the xk ’s is trivial

- mn to send a basis element (x1, . . . , xn) ∈ X n to
[x1, . . . , xn].
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Example: Lower central series of the group

ring functor

Let F : Groups → Ab be the functor sending a group G
to its group ring Z[G ] (but forgetting the
multiplication!). Then

γFn (G ) = I n(G )

where I n(G ) is the n-th power of the augmentation ideal
of Z[G ].



Functor calculus as
a new tool in

algebra

Manfred Hartl

Linearisation of algebraic structures
Reminder: Relations between groups and Lie algebras

1. Lie groups: Classical equivalence of simply connected
Lie groups and Lie algebras (G 7→ (Te(G ), [−,−])).

2. The associated graded of arbitrary groups: For any
group G and elements x , y ∈ G let [x , y ] = (xy)(yx)−1.
An N-series of G is a filtration

N : G = N1 ⊃ N2 ⊃ . . .

of G by subgroups Nn such that [Ni ,Nj ] ⊂ Ni+j .
Then GrNn (G ) = Nn/Nn+1 is an abelian group, and

GrN (G ) =
∑
k≥1

GrNn (G )

is a graded Lie ring whose bracket is induced by the
commutator of G .
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Examples of N-series

1. The lower central series

γ : G = γ1(G ) ⊃ γ2(G ) ⊃ . . .

where γn(G ) = 〈[x1, . . . , xn] | x1, . . . , xn ∈ G 〉 with

[x1, . . . , xn] = [x1, [x2, . . . [xn−1, xn] . . .]

.

2. The dimension series: let K be a commutative ring.
Then the subgroups

Dn,K(G ) = G ∩ (1 + I nK(G ))

form an N-series where I nK(G ) denotes the n-th power of
the augmentation ideal of the group algebra K(G ).
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Relations between groups and Lie

algebras - sequel

3. Mal’cev/Lazard equivalence: There is a canonical
equivalence between the categories of radicable n-step
nilpotent groups and n-step nilpotent Lie algebras over
Q, based on the Baker-Campbell-Hausdorff formula.

4. Primitive operations on group algebras: Primitive
elements of Hopf algebras (the bialgebra type of group
algebras) form a Lie algebra under the usual ring
commutator.
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Relations between groups and Lie

algebras - Summary

1. Lie groups

2. The associated graded of arbitrary groups

3. Mal’cev/Lazard equivalence

4. Primitive operations on group algebras

GOAL: develop semi-abelian Lie theory!

That is, given a semi-abelian variety (generalizing
groups),

- exhibit a related linear structure = type of algebras ∼
linear operad (generalizing Lie algebras)

- generalize the relations 1. to 4. above to this situation.
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Examples: varieties of loops I

semi-abelian variety: Moufang loops

(a(bc))a = (ab)(ca)

Linearization: Mal’cev algebras: antisymmetric binary
bracket [−,−] satisfying

[[x , y ], [x , z ]] = [[[x , y ], z ], x ] + [[[y , z ], x ], x ] + [[[z , x ], x ], y ]

———————————————————————–
semi-abelian variety: Bruck loops:

Bol: a(b(ac)) = (a(ba))c and ((ab)c)a = a((bc)a)

automorphic inverse: (ab)−1 = a−1b−1

Linearization: Lie triple systems: left antisymmetric
triple bracket [−,−,−] satisfying the Jacobi identity and

[u,v ,[x , y , z ]] = [[u, v , x ],y ,z ] + [x , [u, v , y ],z ] + [x , y ,[u, v , z ]]
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Examples: varieties of loops II

semi-abelian variety: Bol loops (contain Moufang and
Bruck loops)

a(b(ac)) = (a(ba))c and ((ab)c)a = a((bc)a)

Linearization: Bol algebras:

I antisymmetric binary bracket [−,−]

I Lie triple system [−,−,−]

satisfying

[x ,y ,[u, v ]] = [[x , y , u],v ] + [u, [x , y , v ]]

+ [u, v ,[x , y ]] + [[x , y ], [u, v ]]
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Example: arbitrary loops
semi-abelian variety: Loops

Linearization: Sabinin algebras: multilinear operations

I 〈x1, x2, ..., xm; y , z〉, m ≥ 0

I Φ(x1, x2, ..., xm; y1, y2, ..., yn), m ≥ 1, n ≥ 2

such that

I 〈x1, x2, ..., xm; y , z〉 is antisymmetric in y , z

I Φ(x1, x2, ..., xm; y1, y2, ..., yn) is symmetric
in the xi ’s and the yj ’s

I 〈x1, . . . , xr , u, v , xr+1, . . . , xm; y , z〉−
〈x1, . . . , xr , v , u, xr+1, . . . , xm; y , z〉 = . . .

I . . .

Due to Miheev and Sabinin; Shestakov and Umirbaev;
Mostovoy, Pérez-Izquierdo
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Mostovoy, Pérez-Izquierdo



Functor calculus as
a new tool in

algebra

Manfred Hartl

Example: arbitrary loops
semi-abelian variety: Loops

Linearization: Sabinin algebras: multilinear operations

I 〈x1, x2, ..., xm; y , z〉, m ≥ 0

I Φ(x1, x2, ..., xm; y1, y2, ..., yn), m ≥ 1, n ≥ 2

such that

I 〈x1, x2, ..., xm; y , z〉 is antisymmetric in y , z

I Φ(x1, x2, ..., xm; y1, y2, ..., yn) is symmetric
in the xi ’s and the yj ’s

I 〈x1, . . . , xr , u, v , xr+1, . . . , xm; y , z〉−
〈x1, . . . , xr , v , u, xr+1, . . . , xm; y , z〉 = . . .

I . . .

Due to Miheev and Sabinin; Shestakov and Umirbaev;
Mostovoy,



Functor calculus as
a new tool in

algebra

Manfred Hartl

Example: arbitrary loops
semi-abelian variety: Loops

Linearization: Sabinin algebras: multilinear operations

I 〈x1, x2, ..., xm; y , z〉, m ≥ 0

I Φ(x1, x2, ..., xm; y1, y2, ..., yn), m ≥ 1, n ≥ 2

such that

I 〈x1, x2, ..., xm; y , z〉 is antisymmetric in y , z

I Φ(x1, x2, ..., xm; y1, y2, ..., yn) is symmetric
in the xi ’s and the yj ’s

I 〈x1, . . . , xr , u, v , xr+1, . . . , xm; y , z〉−
〈x1, . . . , xr , v , u, xr+1, . . . , xm; y , z〉 = . . .

I . . .

Due to Miheev and Sabinin; Shestakov and Umirbaev;
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such that
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Mostovoy, Pérez-Izquierdo and Shestakov, who also
developed a general theory treating arbitrary varieties of
loops, and explicitly treated many more examples of
those.
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Linearisation of arbitrary semi-abelian

varieties
- use algebraic functor calculus to construct a suitable
notion of commutators and a suitable operad in abelian
groups, satisfying relation 2. (basically done, see below)

- use polynomial functor theory to generalize relation 3.
(the Lazard correspondence, in particular the
Baker-Campbell-Hausdorff-formula (work in progress -
done for n = 2 (T. Defourneau))

- combine this with (a suitable generalization of)
Loday’s theory of generalized bialgebras in order to
generalize relation 4. (work in (slow) progress)

- try to generalize relation 1. (needs magic from
differential geometry, FAR beyond the author’s reach...)
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Linearisation of a semi-abelian variety

Construction of an operad in abelian groups
associated with a semi-abelian variety A:
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Let E be a free object of rank 1 in A and write Ē = E ab.
Let Fn = MultiLin(crnIdA) : An → A be the
multilinearisation of the n-th cross-effect of IdA, i.e.

Fn(X1, . . . ,Xn) =

Coker
(∐n

k=1 Id(X1, . . . ,Xk ,Xk , . . . ,Xn)→ Id(X1, . . . ,Xn)
)

which is an abelian object in A.

Then a (right) operad
P = AbOp(A) in Ab is defined by

P(n) = A
(
Ē ,Fn(Ē , . . . , Ē )

)
and composition operations

γk1,...,kn;n : P(k1)⊗ . . .⊗ P(kn)⊗ P(n)→ P(k1 + . . . + kn),

f1 ⊗ . . .⊗ fn ⊗ g 7→ µk1,...,kn◦Fn(f1, . . . , fn)◦g

where

µk1,...,kn : Fn

(
Fk1(Ē ), . . . ,Fkn(Ē )

)
→ Fk1+...+kn(Ē )

is induced by the composition operations for the
cross-effects of the composable functors IdA, IdA.
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Examples

1. If A is the category of groups, then AbOp(A)⊗Q is
the Lie operad.

2. If A is the category of loops/Moufang loops/Bruck
loops/Bol loops, then AbOp(A)⊗Q is the
Sabinin/Mal’cev/Lie triple/Bol operad.

3. If Q is an operad in k-modules and A is the category
of Q-algebras then AbOp(A) = Q.
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Lazard equivalence/BCH-formula

Let D be a 2-step nilpotent semi-abelian variety. Then
there exists a (non unique) 2-step nilpotent group
structure among the operations in D, denoted by +M .

Let E be a distinguished free object of rank 1 in D and
let e denote its basis element.

Suppose that 1E ab + 1E ab is invertible in the ring
D(E ab,E ab). Then the 2-step nilpotent (right) operad
AbOp(D) actually is an operad in the monoidal category
of Z[1

2
]-modules as

AbOp(D)(1) = |E ab|

AbOp(D)(2) = |IdD(E ab|E ab)|
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Lazard equivalence/BCH-formula
Theorem: There exists a Lazard equivalence

L∗ : Alg-AbOp(D)→ D
given by |L∗(A)| = |A| and the following
Baker-Campbell-Hausdorff formula: an n-ary operation θ
of the variety D acts on |L∗(A)| by

θ(x1, . . . , xn) =
n∑

p=1

(
λ1(xp ⊗ θp(e)) +

1

2
λ2(xp ⊗ xp ⊗ H(θp))

)
+

1

2

∑
1≤p<q≤n

λ2

(
xp ⊗ xq ⊗ γ1,1;2

(
θp(e)⊗ θq(e)⊗ [e1, e2]

))
+

∑
1≤p<q≤n

λ2(xp ⊗ xq ⊗∆(θpq))

with ∆(θpq) = θpq(e1, e2)− (θp(e1) +M θq(e2)).
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• θp is the unary operation of D given by
θp(a) = θ(0, . . . , 0, a, 0, . . . , 0) where a is placed in the
p-th variable. Similarly, θpq is the binary operation of D
given by θpq(a, b) = θ(0, . . . , 0, a, 0, . . . , 0, b, 0, . . . , 0)
where a, b are placed in the p-th and q-th variable,
respectively;

• for any unary operation ϑ of D,
H(ϑ) = ϑE+E (i1e +M i2e)−M (i1ϑE (e) +M i1ϑE (e))
where ip : E → E + E is the injection of the p-th
summand;

• for k = 1, 2, ek = ike ∈ E + E . Furthermore,
[a, b]M = (a +M b)−M (b +M a).
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Internal actions
Let G be an object of a category C which has a 0-object
and kernels. An internal action of G on some object A of
C morally should be some additional data linking G and
A which is equivalent with a split extension in C

0 ,2 A
i
,2 X

p
,2 G

slr ,2 0

THEOREM [Bourn-Janelidze]: If C = A is semi-abelian
then there exists a monad TG on A whose algebras A
are equivalent with split extensions as above. The
underlying functor TG of TG is given by
TG (A) = Ker(rG : A + G → G ).

Thus an (internal) action of G on A is an arrow
ξ : TG (A)→ A satisfying the usual unit and associativity
axioms.

Example: In A = Groups,
TG (A) = 〈ga ∈ A + G | a ∈ A, g ∈ G 〉and g ·ξ a = ξ(ga).
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Action cores

Observing that there is a split short exact sequence

0 ,2 Id(A|G )
jA ,2 TG (A)

rA
,2 A

iAlr ,2 0

we may restrict an action ξ : TG (A)→ A to a map
ψξ = ξ ◦ jA : Id(A|G )→ A which is the non-unital part
of ξ; we call it the action core of ξ [H-Loiseau].

It sends a generator [g , a] of Id(A|G ) ≤ A + G to
(g ·ξ a)a−1 in A.

Definition: An (abstract, or strict) action core of G on A
is a morphism ψ : Id(A|G )→ A rendering the following
three diagrams commutative.
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Axioms for abstract action cores

Id(Id(A|G )|A)
CA
A,G ,2

Id(ψ|1A)
��

Id(A|G )

ψ

��
Id(A|A)

cA2

,2 A

Id(Id(A|G )|G )
CG
A,G ,2

Id(ψ|1G )
��

Id(A|G )

ψ

��
Id(A|G )

ψ
,2 A

Id(Id(A|G )|A|G )
CA,G
A,G ,2

Id(ψ|1A|1G )
��

Id(A|G )

ψ

��
Id(A|A|G )

SA,G
2,1 ,2 Id(A|G )

ψ ,2 A
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Equivalence of actions with action cores
THEOREM [H-Loiseau]: Assigning the action core ψξ
with an action ξ establishes an equivalence between
actions and action cores, and thus of action cores with
split extensions in C

0 ,2 A
i
,2 X

p
,2 G

slr ,2 0

Example: The conjugation action core

1. of G on itself is given by

cX2 : Id(G |G ) ,2 ,2 G + G ,2 G .

2. of G on a normal subobject N � ,2 n ,2 G is given by
the unique map cN,G : Id(N |G )→ N rendering the
following square commutative.

Id(N |G )
cN,G ,2

Id(n|1G )
��

N

n

��
Id(G |G )

cG2 ,2 G
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Action cores and semi-direct products

There is a natural construction of a semidirect product
of G with A along a given action core ψ : Id(A|G )→ A,
which is a natural split short exact sequence

0 ,2 A
iψ ,2 Aoψ G

pψ
,2 G

sψlr ,2 0

in C such that

s∗ψ cAoψG ,A = ψ.
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Representations

Recall that a representation of a

I group G is a group homomorphism G → Aut(A) for
some abelian group A

I associative algebra A is an associative algebra
homomorphism g→ End(V ) for some vector space
V

I Lie algebra g is a Lie algebra homomorphism
g→ End(V ) for some vector space V

I loop Q is ???

Definition [Beck]: Let C be a category with pullbacks.
Then a representation of an object G of C (or Beck
module over G ) is an abelian group object in the
category C/G .
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Recall that
- objects in C/G are arrows p : X → G in C

- morphisms in C/G from p : X → G to p′ : X ′ → G are
arrows f : X → X ′ in C such that p′ ◦ f = p

- products in C/G are given by

p × p′ = p ◦ pr1 = p′ ◦ pr2 : X ×G X ′ → G

Hence an abelian group object in C/G is a triple

(p : X → G , η : 1G → p, µ : p × p → p)

satisfying the usual axioms. In particular, η : G → X is a
splitting of p, so that the extension

0 ,2 A ,2 X
p
,2 G

ηlr ,2 0 with A = Ker(p) is

equivalent with an action core ψ : Id(A|G )→ A of G on
A if C = A is semi-abelian.
Note that A is an abelian object.
Moreover, in A the multiplication µ is unique if it exists,
in which case ψ is said to be a G -module structure on A.
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Characterisation of module structures
Examples:

1. Any action of a group G on an abelian group A is a
G -module structure.

2. NOT EVERY action of a loop Q on an abelian loop
(= abelian group) A is a Q-module structure [H-VdL]!

What is the general obstruction of an action on an
abelian object to be a module?

THEOREM [H-VdL]: An action core ψ : Id(A|G )→ A of
an object G of A on an abelian object A of A is a
G -module structure iff the composite map

Id(A|A|G )
S2,1 ,2 Id(A|G )

ψ ,2 A

is trivial.
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In A = Groups, Id(A|A|G ) is the normal subgroup of
A + A + G generated by the three subgroups

[i1A, [i2A, i3G ]], [i2A, [i3G , i1A]], [i3G , [i1A, i2A]]

which all map to commutators in the abelian group A,
hence to the trivial element, under the map ψ ◦ S2,1

followed by the injection iψ : A ,2 ,2 Aoψ G .

In A = Loops, Id(A|A|G ) contains the associators
A(i1a, i1a

′, i3g), which may map to non-trivial associators
in Aoψ G under the map ψ ◦ S2,1 followed by the

injection iψ : A ,2 ,2 Aoψ G .

For example this happens when Aoψ G is the
quaternion loop H = {±1,±i ,±j ,±k} [H-VdL]: Here
A = {±1,±j} is the Klein 4-group and G = {1, i} is the
cyclic group of order 2, while the associator
A(j , j , i) = −1 6= 1.
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For example this happens when Aoψ G is the
quaternion loop H = {±1,±i ,±j ,±k} [H-VdL]: Here
A = {±1,±j} is the Klein 4-group and G = {1, i} is the
cyclic group of order 2, while the associator
A(j , j , i) = −1 6= 1.
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Representations of a given object G of A

Examples:

In A = Groups, G -modules are equivalent with modules
over the ring Z[G ].

In A = Liek , g-modules are equivalent with modules
over the enveloping algebra U(g).

In A = Loops, Q-modules are equivalent with modules
over the group ring of a certain group U(Q, Loops)e .

And for an arbitrary semi-abelian category (variety) A?

Note that modules over a ring R are algebras over the
linear monad TR on the abelian category Ab with
underlying functor TR = R ⊗−.
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Representations of a given object G of A

THEOREM [H]: Representations of an object G of a
semi-abelian category A are equivalent with algebras
over the monad Lin(TG ) on Ab(A) which is the
linearization of the monad TG on A (whose algebras are
G -actions).

In particular, the underlying functor of Lin(TG ) is given
by restricting to Ab(A) the linearisation Lin(TG ) of the
underlying functor TG of TG .

Moreover, Lin(TG ) is right-exact, and even preserves all
colimits if A is a variety.

Here the linearisation Lin(F ) : C → A of a functor
F : C → A is given by

Lin(F )(X ) = Coker
(
F (X |X ) ,2 ,2 F (X + X )

F (∇) ,2 F (X )
)

.
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Representations of a given object G of A

Now suppose that A is a variety, and let E be a free
object of rank 1 in A. Then

IA(G ) = A
(
E ab, Lin(IdA(−|G )(E ab)

)

is a bimodule over the ring R = EndA(E ab) equipped
with a non-unital, R-bilinear ring structure
IA(G )⊗R IA(G )→ IA(G ). Thus we have a ring

U(G ) = IA(G ) o R .

THEOREM [Gray,H]: Representations of an object G of
a semi-abelian variety are equivalent with modules over a
ring [Gray]. This ring can be chosen to be U(G ) [H].
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