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Abstract

For fixed positive integers n, we study the solution of the equation n = k + pk,
where pk denotes the kth prime number, by means of the iterative method

kj+1 = π(n− kj), k0 = π(n),

which converges to the solution of the equation, if it exists. We also analyze the
equation n = ak + bpk for fixed integer values a 6= 0 and b > 0, and its solution by
means of a corresponding iterative method. The case a > 0 is somewhat similar to the
case a = b = 1, while for a < 0 the convergence and usefulness of the method are less
satisfactory. The paper also includes a study of the dynamics of the iterative methods.

1 Introduction and main results

Let us imagine that we want to know if a Fibonacci number, a pentagonal number, one of
a pair of amicable numbers or a Pythagorean triple, the terms in a sequence in the On-line
Encyclopedia of Integer Sequences (OEIS, [8]), or any other positive integer can be written
as

n = k + pk, (1)

1The work of the author is supported by the spanish Ministerio de Ciencia, Innovación y Universidades
under Grant PGC2018-096504-B-C32.
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where (pk)k≥1 is the sequence of the prime numbers. (Let us note that neither Mathematica,
Maple nor SageMath are able to solve the equation (1) even in simple cases with small
numbers, for instance for n = 10 + p10 = 39.)

Of course, one can look at the sequence (k + pk)k≥1 (which is the sequence A014688 in
the OEIS) and check if n occurs in the sequence; but this can be a hard task. Instead, we
give here an iterative process which, given n, tells whether the equation (1) has a solution
or not, and, in the affirmative case, provides the solution k.

It is worth noting that there exist a large number of iterative methods for solving equa-
tions of the form f(x) = 0 where f is a function defined on R, C, Rd, Cd or a Banach space.
However, there are very few iterative methods for solving equations in the theory of numbers.
Perhaps the best example of an iterative method for solving an equation in this area is [6],
where the authors show how classical rootfinding methods from numerical analysis can be
used to calculate inverses of units modulo prime powers.

Along the paper, we will use some well known properties of prime numbers, which can
be found in many texts; see, for instance, [1, 3, 4, 5, 7]. As usual, π(x) denotes the quantity
of prime numbers ≤ x, which is a nondecreasing function. Moreover, we will often use the
basic properties π(pk) = k and pπ(n) ≤ n (with pπ(n) = n if and only if n is prime). Let us
also note that k + pk is strictly increasing with k. Thus, for a fixed n the solution of (1), if
it exists, is unique.

A possible method to try to find k such that n = k+ pk is to take f(k) = k+ pk − n and
solve the equation f(k) = 0 by means of a bisection method starting at the initial points
k0 = 1 and k1 = n. The function f(k) is increasing and satisfies f(k0) < 0 and f(k1) > 0
so, if the solution exists, the bisection method always finds it. Moreover, the number of
iterations needed to reach the solution is blog2(n− 1)c (of course, this number can be a bit
different due to the rounding of the bisection to an integer in every step). Instead, we propose
another method which is faster, as we can see in the examples, and has a nice dynamics with
its own interest.

The iterative method that we are going is simple and, as far as we know, has not been
proposed before in this context; it is a kind of regula falsi method to solve an equation
f(k) = 0 with f(k) = π(n− k)− k, that is not equivalent to (1), but closely related. Since
pk ≈ k log k, it follows that pk gives the main contribution to the sum k + pk. The idea is
then to approximate the equation (1) by the equation n = pk, and so to take a first guess
k = π(n); then we adjust the initial guess by successive corrections. Let us note that any k
which solves n = k + pk satisfies n − k = pk, a prime number, so π(n − k) = k. Thus, the
procedure for solving (1) is based on the iterative scheme kj+1 = π(n− kj), and the goal is
to look for a fixed point. The following result shows the dynamics of the iterative method:

Theorem 1. Let n ≥ 4 be a given integer, and let us define the iterative process

kj+1 = π(n− kj), k0 = π(n). (2)

After a finite number of steps, one of these cases occurs:

(i) We get a fixed point k∗.
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(ii) We get a cycle {k′, k′′} with k′′ = k′ + 1, n− k′ a prime number, (k2j)j≥0 is a decreas-
ing sequence which converges to k′′, and (k2j+1)j≥0 is an increasing sequence which
converges to k′.

We postpone the proof of this theorem to Section 2. For the moment, let us see the
consequences of this result on the solutions of the equation (1).

Theorem 2. Let n ≥ 4 be a given integer, the equation n = k+ pk, and the iterative process

kj+1 = π(n− kj), k0 = π(n).

Under these circumstances:

(i) If we get a fixed point k∗ (case (i) in Theorem 1), then k∗ is the solution of the equation

n′ = k + pk

where n′ = max{j + pj ≤ n : j ≥ 1}. In particular, the equation n = k + pk has a
solution if and only if n′ = n, and then k∗ is the solution. (In practice it is enough to
check whether k∗ + pk∗ = n or not.)

(ii) If we get a cycle {k′, k′′} (with k′′ = k′ + 1, case (ii) in Theorem 1), the equation
n = k + pk has no solution.

As in the case of Theorem 1, we postpone the proof of Theorem 2 to Section 2.
Both cases (i) and (ii) can really occur, as the following illustrative examples with small

numbers show. The case (i) occurs, for instance, with n = 51 or n = 76. For n = 51, the
successive kj in (2) are

k0 = π(51) = 15, k1 = π(51− 15) = 11,

k2 = π(51− 11) = 12, k3 = π(51− 12) = 12,

so we have reached the fixed point k∗ = 12; but k∗+pk∗ = 12+37 = 49 6= 51, so the equation
51 = k + pk has no solution. For n = 76, the successive kj in (2) are

k0 = π(76) = 21, k1 = π(76− 21) = 16,

k2 = π(76− 16) = 17, k3 = π(76− 17) = 17,

so k∗ = 17 is a fixed point; this time k∗ + pk∗ = 17 + 59 = 76, so we have found the solution
of 76 = k + pk. To illustrate the case (ii), let us take, for instance, n = 41. The successive
kj in (2) are

k0 = π(41) = 13, k1 = π(41− 13) = 9, k2 = π(41− 9) = 11,

k3 = π(41− 11) = 10, k4 = π(41− 10) = 11,

k′ = k5 = k7 = k9 = · · · = 10, k′′ = k6 = k8 = k10 = · · · = 11.
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Fm Iterations k∗ or {k′, k′′} Is k∗ a solution? blog2 Fmc
F12 = 144 3 30 no 7
F13 = 233 3 {42, 43} — 7
F14 = 377 4 {64, 65} — 8
F15 = 610 3 97 no 9

F27 = 196 418 5 {16 347, 16 348} — 17
F42 = 267 914 296 7 13 887 473 yes 27
F50 = 12 586 269 025 8 {543 402 114, 543 402 115} — 33
F53 = 53 316 291 173 7 2 166 313 972 yes 35

F66 = 27 777 890 035 288 9 899 358 426 281 no 44
F67 = 44 945 570 212 853 9 1 432 816 693 546 no 45
F68 = 72 723 460 248 141 9 2 283 240 409 254 no 46
F69 = 117 669 030 460 994 9 3 639 256 692 076 no 46
F70 = 190 392 490 709 135 9 5 801 907 791 391 no 47

Table 1: The iterative method applied to solve Fm = k + pk where Fm are the Fibonacci
numbers with 12 ≤ m ≤ 70. We omit the Fm with 15 < m ≤ 65 whose corresponding
iterative methods converge to a fixed point k∗ which is not a solution of Fm = k+ pk. In the
last column, blog2 Fmc is a rather precise estimation of the number of iterations required to
solve the equation with the bisection method

.

Then, 41 = k + pk has no solution.
Some examples with bigger numbers are given in Table 1. The iterative algorithm is

applied to some Fibonacci numbers (A000045 in the OEIS), showing whether the method
converges to a fixed point k∗ or to a cycle {k′, k′′}, as well as the number of iterations to
reach it. Observe that the number of iterations for n ≤ F70 ≈ 1.9 · 1014 is always less than
ten; for each equation, we also see how our method is faster than the bisection method,
which requires a considerably higher number of iterations.

Instead of (1) we can consider the more general equation

n = ak + bpk,

with b ≥ 1 and a ∈ Z \ {0} (the trivial case a = 0 is excluded).
In this setting we can consider the iterative process which starts with k0 = π(n/b) and

continues with
kj+1 = π((n− akj)/b), j ≥ 0.

Now, the behavior of the iterative method and its relation with the solution of n = ak+ bpk
is a bit more complicated than in the case a = b = 1. We analyze it in Section 3.
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2 Proof of Theorems 1 and 2

Proof of Theorem 1. It is clear that k1 = π(n − k0) ≤ π(n) = k0. From the inequality
k1 ≤ k0, it follows that k2 = π(n − k1) ≥ π(n − k0) = k1. Now, from k2 ≥ k1 we get
k3 = π(n− k2) ≤ π(n− k1) = k2, and so on. That is,

k2j+1 ≤ k2j and k2j+2 ≥ k2j+1, for j = 0, 1, 2, . . . . (3)

Moreover, k2 = π(n − k1) ≤ π(n) = k0, and from the inequality k2 ≤ k0 it follows that
k3 = π(n−k2) ≥ π(n−k0) = k1. Now, from k3 ≥ k1 we get k4 = π(n−k3) ≤ π(n−k1) = k2,
and so on. Thus, (k2j)j≥0 is a decreasing sequence, while (k2j+1)j≥0 is an increasing sequence.
They are both bounded sequences of positive integers, so eventually constant; that is, there
exist k′ and k′′ (with k′ ≤ k′′) and a certain J such that

k2j+1 = k′ and k2j = k′′ for j ≥ J.

If k′ = k′′, then k∗ = k′ = k′′ is the fixed point in (2), the possibility (i) in the theorem.
Otherwise, let us suppose that k′ < k′′, so

k′ = π(n− k′′) < π(n− k′) = k′′.

Then π(n− k′)− π(n− k′′) = k′′ − k′, so there are k′′ − k′ prime numbers qj such that

n− k′′ < q1 < q2 < · · · < qk′′−k′−1 < qk′′−k′ ≤ n− k′. (4)

Except for 2 and 3, prime numbers are not consecutive numbers, so (4) is only possible in
two cases:

• Case k′′ − k′ = 2, with n − k′′ = 1, n − k′ = 3, q1 = 2 and q2 = 3. In this case, we
would have k′ = π(n− k′′) = π(1) = 0, which cannot happen because k′ is the limit of
the increasing sequence (k2j+1)j≥0.

• Case k′′ − k′ = 1, with a unique prime q1 = n− k′ in (4). Then k′′ = k′ + 1 and

π(n− k′) = k′ + 1, π(n− k′ − 1) = k′.

This is the possibility (ii) in the theorem.

Proof of Theorem 2. Let us first analyze the case (i). We have k∗ = π(n − k∗) and pk∗ ≤
pπ(n−k∗) ≤ n− k∗, so k∗ + pk∗ ≤ n. Thus, k∗ ∈ A where A is the set

A = {j ≥ 1 : j + pj ≤ n}.

To conclude the proof of case (i), it is enough to check that maxA = k∗ (in particular,
this implies k∗ + pk∗ = n′). Let us suppose that maxA 6= k∗. In this case, k∗ + 1 ∈ A,
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so pk∗+1 + k∗ + 1 ≤ n, and therefore pk∗+1 ≤ n − k∗ − 1 ≤ n − k∗. This implies that
π(n− k∗) ≥ k∗ + 1, which is false because π(n− k∗) = k∗.

In case (ii), we have
k′ = π(n− k′′) < π(n− k′) = k′′,

with k′′ = k′+1. Using that n−k′ is a prime number, we have pk′+1 = pk′′ = pπ(n−k′) = n−k′,
so k′ + pk′+1 = n and then

k′ + pk′ < n < k′ + 1 + pk′+1.

This clearly implies that n = k + pk has no solution.
Finally, let us check that there cannot exist any solution of (1) which is not detected by

the iterative method (2). Let us suppose on the contrary that k is a solution not detected
by the method; then, n = k+ pk and π(n− k) = k, so k is a fixed point of kj+1 = π(n− kj),
that is, a fixed point of (2) except for the starting step k0 = π(n).

But we have proved that the iterative method (2), starting in k0 = π(n), converges to
k∗ or to the 2-cycle {k′, k′′} with k′′ = k′ + 1. If (2) converges to k∗, this k∗ is the unique
solution of (1), so k = k∗. If (2) converges to {k′, k′′}, then k < k′ or k > k′′. However, both
cases are impossible:

k < k′ ⇒ k = π(n− k) ≥ π(n− k′) = k′′ ⇒ k ≥ k′′, a contradiction;

k > k′′ ⇒ k = π(n− k) ≤ π(n− k′′) = k′ ⇒ k ≤ k′, a contradiction.
(5)

Then, there cannot exist such fixed point k.

3 Generalization to the equation n = ak + bpk

A more general equation than (1) is

n = ak + bpk (6)

with b ∈ Z+ and a ∈ Z \ {0}. Given n, we want to know if there exists some k satisfying (6)
and how to find it by the iterative process

kj+1 = π((n− akj)/b), j ≥ 0, (7)

starting with k0 = π(n/b).
Of course, the reason to choose the iterative process (7) is that, if k is a solution of (6),

then (n− ak)/b = pk, a prime number, so π((n− ak)/b) = π(pk) = k and k is a fixed point
of (7).

Depending on whether a > 0 or a < 0, the beginning of the iterative process (7) varies.
If a > 0 we have k1 ≤ k0; however, if a < 0 we have k1 ≥ k0. Moreover, if a < 0, the
sequence ak + bpk is not always increasing with k, so we cannot ensure that the solution of
n = ak + bpk, if it exists, is unique. These differences motivate to consider both cases a > 0
and a < 0 separately.
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In what follows, we present this study in a more informal way, without stating the
properties as theorems. Actually, the behavior of the iterative method and its relation with
the solutions of (6) is similar to what happens in Theorems 1 and 2 in the case a > 0, but
rather different in the case a < 0.

3.1 Case a > 0

Let us start noticing that we want the kj that arise in the iterative method (7) to be positive
integers (otherwise, pkj does not exist). Due to the equivalence π(x) ∼ x/ log(x) for x→∞
(prime number theorem), we can guarantee that kj > 0 for all j if n is large enough (the
exact required size depends on a and b). Indeed, for n→∞ we have

k0 = π(n/b) ∼ n/b

log(n/b)
∼ n

b log(n)

and

k1 = π((n− ak0)/b) ∼
(n− ak0)/b

log((n− ak0)/b)
∼ n

b log(n)
,

so k0, k1 ≥ 1 if n is big enough. Then, given the equation n = ak + bpk, we can assume that
n satisfies

k1 = π
(
(n− ak0)/b

)
= π

(
(n− aπ(n/b))/b

)
≥ 1 (8)

(this holds except for a finite set of n’s). Note that, for a = b = 1, (8) becomes π(n−π(n)) ≥
1, which holds for every n ≥ 4. After imposing this technical restriction for small values of
n, let us analyze the iterative method.

The assumption a > 0 gives k1 = π((n − ak0)/b) ≤ π(n/b) = k0. From k1 ≤ k0, it
follows that k2 = π((n − ak1)/b) ≥ π((n − ak0)/b) = k1, and from k2 ≥ k1, we get k3 =
π((n−ak2)/b) ≤ π((n−k1)/b) = k2, and so on. Moreover, k2 = π((n−ak1)/b) ≤ π(n/b) = k0
and k3 = π((n− ak2)/b) ≥ π((n− ak0)) = k1, and so on. In particular, if k1 ≥ 1 then kj ≥ 1
for every j, so assuming (8) is enough to ensure that all the kj will be positive integers.

Following as in the proof of Theorem 1 we get that (k2j)j≥0 is a decreasing sequence,
(k2j+1)j≥0 is an increasing sequence, and there exist k′ and k′′ (with k′ ≤ k′′) and a certain
J such that

k2j+1 = k′ and k2j = k′′ for j ≥ J.

If k′ = k′′, then k∗ = k′ = k′′ is the fixed point in (6). Otherwise, if k′ < k′′ we have

k′ = π((n− ak′′)/b) < π((n− ak′)/b) = k′′

so π((n − ak′)/b) − π((n − ak′′)/b) = k′′ − k′, and there are k′′ − k′ prime numbers qj such
that

n− ak′′

b
< q1 < q2 < · · · < qk′′−k′−1 < qk′′−k′ ≤

n− ak′

b
. (9)

From now on, the case k′ < k′′ is somewhat different.
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Let us suppose that two of these primes are q1 = 2 and q2 = 3. Then (n − ak′′)/b = 1
and k′ = π((n− ak′′)/b) = π(1) = 0, which cannot happen. Therefore, we can assume that
qj+1− qj ≥ 2 for all these primes qj. Clearly, any interval (x, y] containing m of these primes
must satisfy y − x > 2(m− 1). In the case (9), this means that

n− ak′

b
− n− ak′′

b
> 2(k′′ − k′)− 2,

that is, a(k′′ − k′)/b > 2(k′′ − k′)− 2, or

(2b− a)(k′′ − k′) < 2b. (10)

Then, two situations can occur:

• If a ≥ 2b, (10) is trivial and does not imply any restriction on k′ and k′′.

• If a < 2b, (10) can be written as

k′′ − k′ < 2b

2b− a
. (11)

In the particular case a ≤ b we have 1 < 2b/(2b − a) ≤ 2, so (11) is equivalent to
k′′ = k′ + 1 (recall that we are analyzing the case k′ < k′′).

In the case a ≤ b, the remaining arguments in the proofs of Theorems 1 and 2 are valid.
In particular (5), which guarantees that the iterative method (7), starting at k0 = π(n/b),
detects as fixed points all the solutions of n = ak + bpk.

If a ≥ 2b or b < a < 2b, we cannot ensure that k′′ = k′ + 1. There might be an integer k
with k′ < k < k′′ which is a fixed point

π((n− ak)/b) = k

and a solution of n = ak + bpk not detected by the iterative method (7) starting in k0 =
π(n/b). That is, the method converges to the 2-cycle {k′, k′′} instead of k. In practice, if
we are looking for a solution of n = ak + bpk, it is enough to check if every k satisfying
k′ < k < k′′ is a solution.

Let us give some examples to illustrate that these situations can occur.
For the case a ≥ 2b, let us see what happens with the equation

n = 7k + 2pk

for several values of n, with convergence to a fixed point k∗ or to cycles {k′, k′′} with different
values of k′′ − k′. For n = 10 040, we have k0 = 672 and the iterative process converges to
k∗ = 474, which is a solution of the equation; instead, for n = 10 041, again k0 = 672 and
the iterative process converges to k∗ = 474, which is not a solution of the equation. For
n = 10 073, we have k0 = 674 and the iterative process converges to the cycle {474, 476}.
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For n = 10 300, we have k0 = 686 and the iterative process converges to the cycle {482, 485}.
For n = 10 325, we have k0 = 687 and the iterative process converges to the cycle {483, 487}.
For n = 10 532, we have k0 = 698 and the iterative process converges to the cycle {491, 497}.
In all these cases, less that 10 iterations are enough to reach k∗ or {k′, k′′}.

For the case b < a < 2b, in the equation 12 660 = 3k + 2pk we have k0 = 824 and the
iterative method converges to the cycle {699, 701}, where k′′ − k′ = 2.

Let us also show some instances of the equation n = ak + bpk with a solution k such
that the iterative method (7) starting with k0 = π(n/b) converges to a cycle {k′, k′′}. For
n = 2 ·33+p33 = 203, where k = 33 is clearly a solution of n = 2k+pk, the iterative method
converges to the cycle {32, 34}, with k′′ − k′ = 2. For n = 6 · 100 + p100 = 1141, where
k = 100 is the solution of n = 6k+ pk, the iterative method converges to the cycle {80, 121},
with k′′ − k′ = 41.

3.2 Case a < 0

Let us start noticing that, in general, ak+bpk is not increasing with k when a < 0. Therefore,
we cannot ensure the unicity of the solution of n = ak+bpk for fixed a, b and n. For instance,
n = 105 has two solutions k in the equation n = −2k + pk:

105 = −2 · 43 + p43 = −2 · 44 + p44.

With n = −3k + pk we can also find two solutions that are not consecutive integers:

100 = −3 · 59 + p59 = −3 · 61 + p61.

There can exist more than two solutions, as is the case of the equation n = −4k + pk:

99 = −4 · 83 + p83 = −4 · 85 + p85 = −4 · 86 + p86.

However, pk always grows faster than k, so the sequence ak + bpk is increasing with k if
0 < −a < b. In this case, again the solution of n = ak + bpk, if it exists, is unique.

Anyway, taking into account that pk ∼ k log k when k → ∞, we have ak + bpk ∼
ak + bk log k = (a + b log k)k. Thus, ak + bpk is increasing with k for k big enough. In
particular, this ensures that, for fixed a, b and n, the number of solutions of n = ak + bpk is
always finite. Precise estimates of the form

C1
x

log x
≤ π(x) ≤ C2

x

log x

with C1, C2 > 0, which yield an upper bound (depending on a, b, n, C1 and C2) of the
number of solutions, can be found in many texts of number theory (see, for instance, [2,
Theorem 8.8.1]).

Now, let us analyze the behavior of the iterative method (7) starting in k0 = π(n/b).
As shown below, nothing similar to (3) appears in the case a < 0; the property (3) is very
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important in the analysis of the case a > 0, and the lack of a suitable alternative is a great
handicap. Although the analysis of the case a < 0 is presented here for completeness, it must
be concluded that the iterative method described in this paper is not so useful to solve (6)
as it is when a > 0.

Since a < 0, we have k1 = π((n − ak0)/b) ≥ π(n/b) = k0; and, if we assume that
kj ≥ kj−1, also

kj+1 = π((n− akj)/b) ≥ π((n− akj−1)/b) = kj.

Then kj is an increasing sequence and it cannot tend to a cycle.
Let s be any number such that

π((n− as)/b) ≤ s; (12)

the existence of such an s follows from the estimate π(x) ∼ x/ log x when x → ∞. Then
(recall that a < 0)

k0 = π(n/b) ≤ π((n− as)/b) ≤ s;

and assuming that kj ≤ s gives

kj+1 = π((n− akj)/b) ≤ π((n− as)/b) ≤ s.

This proves that the increasing sequence of integers kj produced by the iterative method (7)
starting with k0 = π(n/b) is bounded. So there exists some k∗ (and an index J) such that

kj = k∗ for every j ≥ J,

and thus k∗ is a fixed point of (7).
We cannot ensure that the fixed point k∗ is a solution of (6). A solution of (6), if it exists,

satisfies π((n− as)/b) = s; in particular, it also satisfies (12). Then k∗ ≤ s for any possible
solution s of (6) such that s ≥ π(n/b) = k0. In practice, we can continue checking whether
k∗, k∗+ 1, k∗+ 2,. . . are solutions or not of (6) until, when substituting in ak+ bpk, we get a
value greater than n; actually, an additional precaution is necessary: we must continue the
checking until reaching values of k for which the sequence ak + bpk is already increasing.

For an example of this behavior, let us take n = −7 ·2000 +p2000 = 3389 (that is, a = −7
and b = 1), so s = 2000 is a solution of the equation 3389 = −7k+pk. However, the iterative
process kj+1 = π(3389 + 7kj) starting in k0 = π(3389) = 477 converges to k∗ = 1989, which
is not a solution of the equation. Observe that s− k∗ = 11.

Finally, let us observe an extra surprise: in the case a < 0, the fixed point k∗ of the
iterative method is never a solution of n = ak+ bk. If the equation has no solutions, there is
nothing to prove. If the equation has a solution s, let us prove that the fixed point k∗ cannot
be k∗ = s, but k∗ < s. Indeed, it is enough to check that, if kj < s, also kj+1 < s. We have
(n− akj)/b < (n− as)/b = ps, a prime, so π((n− akj)/b) < s. But π((n− akj)/b) = kj+1,
so kj+1 < s, just as we were looking for.
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