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Abstract

We prove a partial fraction decomposition of a quotient of two functions
Eα(itx) and Iα(it) which are defined in terms of the Bessel functions Jα and
Jα+1 of the first kind. This expansion leads naturally to the introduction of

an orthonormal system with respect to the measure |x|2α+1 dx
2α+1Γ(α+1) in [−1, 1], which

we call the Fourier-Dunkl system of the second kind. Euler-Dunkl polynomials
En,α(x) of degree n are defined by considering Eα(tx)/Iα(t) as a generating func-
tion. It is shown that the sum

∑∞
m=1 1/j2k

m,α, where jm,α are the positive zeros
of Jα, is equal (up to an explicit factor) to E2k−1,α(1). For α = 1/2 this leads
to classical results of Euler since the function E1/2(x) is the exponential function
and En,1/2(x) are (essentially) the Euler polynomials. In the second part of the
paper a sampling theorem of Whittaker-Shannon-Kotel’nikov type is established
which is strongly related to the above-mentioned partial decomposition and which
holds for all functions in the Payley-Wiener space defined by the Dunkl transform
in [−1, 1].
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1 Introduction and results

For α ∈ C \ {−1,−2, . . . }, consider the entire functions

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
= Γ(α+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)
, (1.1)

where Jα is the Bessel function of order α, and

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z). (1.2)

A simple computation gives

Eα(z) =
∞∑
n=0

zn

γn,α

with

γn,α =

{
22kk! (α+ 1)k, if n = 2k,

22k+1k! (α+ 1)k+1, if n = 2k + 1,

where (a)n denotes the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

The entire function Eα is invariant under the Dunkl operator

Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
(see [7, 10]).

For any complex value of α (except for the negative integers), we can order the
zeros jm,α, m ∈ Z \ {0}, of the Bessel function Jα(x)/xα so that jm,α = −j−m,α
and 0 < Re jm,α ≤ Re jm+1,α, m ≥ 1 ([11, § 15.41, p. 497]). The case α > −1 is
particularly relevant because then jm,α, m ≥ 1, are positive numbers ([11, § 15.27,
p. 483]).

It is easy to see that {jm,α+1}m are the zeros of ImEα(ix). We associate to the
function Eα the so-called Fourier-Dunkl system ([5, 4, 2])

eα,m(x) =
2α/2Γ(α+ 1)1/2

|Iα(ijm,α+1)|
Eα(ijm,α+1x), m ∈ Z \ {0}, x ∈ [−1, 1], (1.3)

eα,0(x) = 2(α+1)/2Γ(α+ 2)1/2. (1.4)
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The sequence of functions {eα,m}m∈Z was introduced in [5]. It was proved there (The-
orem 1) that, for any α > −1, it is a complete orthonormal system in L2([−1, 1], dµα),
where

dµα(x) =
|x|2α+1

2α+1Γ(α+ 1)
dx.

Note that for α = −1/2, we have E−1/2(x) = ex, Λ−1/2 = d/dx and

e−1/2,m(x) =
(π

2

)1/4
eimπx.

Then (Eα,Λα, {eα,m}m∈Z) can be regarded a generalization of (ex, d/dx, {emπix}m∈Z).
Now, instead of {jm,α+1}, which are the zeros of ImEα(ix), we can start from

{jm,α}, which are the zeros of ReEα(ix), and define a different system, namely

fα,m(x) =
2α/2+1(α+ 1)Γ(α+ 1)1/2

|jm,αIα+1(ijm,α)|
Eα(ijm,αx), m ∈ Z \ {0}, x ∈ [−1, 1]. (1.5)

The system {fα,m}m will be called the Fourier-Dunkl system of the second kind. This
can also be regarded as a generalization of the trigonometric system, for in the case
α = −1/2 we obtain

f−1/2,m(x) =
(π

2

)1/4
eimπxe−iπx/2,

which, except for the common factor e−iπx/2, is the trigonometric system.
The first result of this paper is the following partial fraction decomposition:

Theorem 1.1. Let α ∈ C \ {−1,−2,−3, . . . }. Then

Eα(itx)

Iα(it)
=

∑
m∈Z\{0}

2(α+ 1)Eα(ijm,αx)

jm,αIα+1(ijm,α)(jm,α − t)
(1.6)

for t ∈ C \ {jm,α : m ∈ Z \ {0}} and x ∈ (−1, 1) \ {0}. Moreover, the right-hand side
converges uniformly for t in bounded subsets of C \ {jm,α : m ∈ Z \ {0}} and x in
compact subsets of (−1, 1) \ {0}. If, in addition, Reα < 1/2, then (1.6) holds also for
x = 0, uniformly for t in compact subsets of C \ {jm,α : m ∈ Z \ {0}}.

The content of the paper is as follows. Theorem 1.1 and some other extensions
will be proved in Section 2 using residues as the main tool.

In Section 3, we prove that the Fourier-Dunkl system of the second kind {fα,m}m is
a complete orthonormal system in L2([−1, 1], dµα) for α > −1. In this notation, (1.6)
reads as

Eα(itx)

Iα(it)
=

∑
m∈Z\{0}

(−1)m sgn(m)fα,m(x)

2α/2Γ(α+ 1)1/2(t− jm,α)
, (1.7)
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where t ∈ C\{jm,α : m ∈ Z\{0}}. Thus, besides the convergence of this expansion in
L2([−1, 1], dµα), Theorem 1.1 provides the uniform convergence on compact subsets
of (−1, 1) \ {0} (and in x = 0 for Reα < 1/2).

We introduce in Section 3 the Euler-Dunkl polynomials {En,α}∞n=0, α ∈ C \
{−1,−2, . . . }, by considering the generating function

Eα(xt)

Iα(t)
=
∞∑
n=0

En,α(x)
tn

γn,α
. (1.8)

For the special case α = 1/2 we obtain the classical results of Euler, namely

En,−1/2(2x− 1)

2n
= En(x),

where {En(x)}n are the Euler polynomials defined by the generating function

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!

(for the properties of the Euler polynomials, see [6], for instance). We prove for the
Euler-Dunkl polynomials the following Dunkl counterpart of the Fourier expansion
for the Euler polynomials: for α > −1,

En(x) =
−(−i)nγn

2α/2Γ(α+ 1)1/2

∑
m∈Z\{0}

(−1)m sgn(m)

jn+1
m,α

fα,m(x)

in L2([−1, 1], dµα). We actually prove that the convergence is uniform on compact
subsets of (−1, 1) \ {0} for n = 0 or [−1, 1] \ {0} for n ≥ 1 (the convergence can be
extended to x = 0 assuming that α < n+ 1/2).

In Section 4 we show that the expansion (1.7) provides a nice Whittaker-Shannon-
Kotel’nikov sampling theorem related to the Dunkl transform. In a similar way as
the Fourier transform (which is the particular case α = −1/2), the Dunkl transform
of order α ≥ −1/2 is given by

Fαf(y) =

∫
R
f(t)Eα(−iyt) dµα(t), y ∈ R, (1.9)

for f ∈ L1(R, dµα).
The Dunkl transform can be extended to L2(R, dµα), α > −1, although the inte-

gral expression (1.9) is no longer valid in general (see [9] and [10] for details); however,
and as usual, we will use it in a informal way. Moreover, Fα is an isometric isomor-
phism on L2(R, dµα) and

F−1α f(y) = Fαf(−y). (1.10)
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Associated to the Dunkl transform, the Paley-Wiener type space PWα is formed by
all functions f ∈ L2(R, dµα) such that

f(t) =

∫ 1

−1
u(x)Eα(itx) dµα(x), u ∈ L2([−1, 1], dµα), (1.11)

endowed with the norm of L2(R, dµα).
The sampling theorem is the following:

Theorem 1.2. If f ∈ PWα, α > −1, then

f(t)

Iα(it)
= −2(α+ 1)

∑
m∈Z\{0}

f(jm,α)

jm,αIα+1(ijm,α)(t− jm,α)
, (1.12)

which converges uniformly on compact subsets of C \ {jm,α : m ∈ Z \ {0}}.

The case α = 1/2 is usually known as the Whittaker-Shannon-Kotel’nikov Theo-
rem:

f(t) =
∞∑

k=−∞
f(πk)

sin(t− kπ)

t− kπ
,

where f(t) =
∫ 1
−1 u(x)eixt dx, u ∈ L2([−1, 1], dx).

According to Theorem 12 of [1], for α ≥ −1/2, a function f ∈ PWα if and only if
it is an entire function satisfying

|f(z)| ≤ ce| Im z|, z ∈ C, (1.13)

and f(x) ∈ L2(R, dµα). We prove that if α ∈ C \ {−1,−2, . . . } with Reα < −1/2,
sampling Theorem 1.2 holds for any entire function f satisfying (1.13) (see Theo-
rem 4.1).

In [5] we have established a sampling theorem for the system {eα,m}m∈Z using
different methods. We shall show here that this result is now a simple consequence
of Theorem 1.2 (see Theorem 4.3).

From now on, unless necessary, we omit α and write simply jm instead of jm,α.

2 Proof of Theorem 1.1 and consequences

Proof of Theorem 1.1. Take a large circle D = {z ∈ C : |z| = A} of radius A > |t|
with the only condition, at the moment, that none of the points jm, m ∈ Z \ {0},
must lie on D, and consider

1

2πi

∫
D

Eα(iwx)

(w − t)Iα(iw)
dw.
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The poles of Eα(iwx)
(w−t)Iα(iw) inside D, all of them simple, are t and those jm with |jm| < A.

The residue at t is, obviously,
Eα(itx)

Iα(it)
;

and the residue at each jm is

lim
w→jm

(w − jm)Eα(iwx)

(w − t)Iα(iw)
=

Eα(ijmx)

(jm − t)iI ′α(ijm)
.

From the identity

I ′α(z) =
z

2(α+ 1)
Iα+1(z), (2.1)

which follows immediately from (1.1), we get

Eα(ijmx)

(jm − t)iI ′α(ijm)
= − 2(α+ 1)Eα(ijmx)

jmIα+1(ijm)(jm − t)
. (2.2)

Thus, the calculus of residues gives

1

2πi

∫
D

Eα(iwx)

(w − t)Iα(iw)
dw =

Eα(itx)

Iα(it)
−
∑
|jm|<A

2(α+ 1)Eα(ijmx)

jmIα+1(ijm)(jm − t)
. (2.3)

Using arguments similar to those of [11, § 15.41, p. 498], let us see that the value
of A can be chosen arbitrarily large and such that there exists some constant c > 0
independent of A (but depending on α) satisfying

c
e| Imw|

|w|1/2
≤ |Jα(w)| (2.4)

for w ∈ D. This follows from the equality

2Jα(w) = H(1)
α (w) +H(2)

α (w), (2.5)

where the Bessel functions of the third kind satisfy the estimates

H(1)
α (w) =

(
2

πw

)1/2

ei(w−
1
2
απ− 1

4
π){1 + η1,α(w)}, (2.6)

H(2)
α (w) =

(
2

πw

)1/2

e−i(w−
1
2
απ− 1

4
π){1 + η2,α(w)}, (2.7)

η1,α(w) and η2,α(w) being O(1/w) for large |w| [11, § 15.4, p. 496]. Therefore,

1

2

(
2

π|w|

)1/2

e− Imw+π Imα
2 ≤

∣∣∣H(1)
α (w)

∣∣∣ ≤ 2

(
2

π|w|

)1/2

e− Imw+π Imα
2 ,

1

2

(
2

π|w|

)1/2

eImw−π Imα
2 ≤

∣∣∣H(2)
α (w)

∣∣∣ ≤ 2

(
2

π|w|

)1/2

eImw−π Imα
2 ,
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for |w| large enough. This, together with (2.5), gives

2|Jα(w)| ≥ 1

2

(
2

π|w|

)1/2

e| Imw−π Imα
2
| − 2

(
2

π|w|

)1/2

e−| Imw−π Imα
2
|

=
1

2

(
2

π|w|

)1/2

e| Imw−π Imα
2
|
(

1− 4e−2| Imw−π Imα
2
|
)

for |w| large enough, which proves (2.4) if, say, | Imw − π Imα
2 | ≥ 1. On the two arcs

of D with | Imw− π Imα
2 | ≤ 1, according to (2.5), (2.6) and (2.7), the problem reduces

essentially to get a lower bound for | cos(w− 1
2απ−

1
4π)|, which can be done by simply

choosing A so that to avoid the zeros of the cosine function. This proves (2.4).
Furthermore, (2.5), (2.6) and (2.7) give also

|Jα(z)| ≤ C e| Im z|

|z|1/2
(2.8)

for |z| large enough, with a constant C > 0 depending only on α. Therefore, for
any compact set K ⊂ (−1, 1) \ {0} the radius A can be chosen with the additional
property that there exists C > 0 such that, for any w ∈ D and any x ∈ K,

|Jα(wx)| ≤ C e| Im(wx)|

|wx|1/2
, (2.9)

|Jα+1(wx)| ≤ C e| Im(wx)|

|wx|1/2
. (2.10)

Using (2.4), (2.9) and (2.10), we get, for x ∈ K and w ∈ D,∣∣∣∣Eα(iwx)

Iα(iw)

∣∣∣∣ =

∣∣∣∣Iα(iwx)

Iα(iw)
+

iwxIα+1(iwx)

2(α+ 1)Iα(iw)

∣∣∣∣
=

∣∣∣∣Jα(wx) + iJα+1(wx)

Jα(w)
· wα

(wx)α

∣∣∣∣ ≤ c̃ e(|x|−1)| Imw|

|x|Reα+1/2
,

for some constant c̃ depending only on α and K.
To finish the proof of (1.6), it is enough to prove that the left-hand side of (2.3)

goes to 0 as A goes to infinity, uniformly on x ∈ K and t in a bounded subset of
C \ {j±1, j±2, j±3, . . . }. The obvious parametrization of the circle D and the above
bound give∣∣∣∣ 1

2πi

∫
D

Eα(iwx)

(w − t)Iα(iw)
dw

∣∣∣∣ ≤ 1

2π

∫ π

−π

A

A− |t|
· c̃ e

(|x|−1)A| sin s|

|x|Reα+1/2
ds,

which is easy to see that goes to 0 uniformly on x and t, as A goes to infinity (it is at
this point where the values x = ±1 must be excluded).
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Only the final statement about x = 0 remains to be proved. We can follow a
similar procedure for x = 0, using (2.4) and the bound sin s ≥ 2

πs on [0, π2 ], to get∣∣∣∣ 1

2πi

∫
D

Eα(iwx)

(w − t)Iα(iw)
dw

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
D

dw

(w − t)Iα(iw)

∣∣∣∣ ≤ c̃

2π

AReα+3/2

A− |t|

∫ π

−π
e−A| sin s| ds

≤ c̃

2π

AReα+3/2

A− |t|
4

∫ π/2

0
e−

2A
π
s ds = c̃

AReα+1/2

A− |t|
(1− e−A),

which goes to 0 uniformly on t when A goes to infinity, if Reα < 1/2.

The previous result can be extended to the t-derivatives of Eα(itx)/Iα(it):

Corollary 2.1. Let α ∈ C \ {−1,−2,−3, . . . } and let n be a positive integer. Then,

dn

dtn

(
Eα(itx)

Iα(it)

)
=

∑
m∈Z\{0}

2(α+ 1)n!Eα(ijmx)

jmIα+1(ijm)(jm − t)n+1

for t ∈ C\{j±1, j±2, j±3, . . . } and x ∈ [−1, 1]\{0}, where the right-hand side converges
uniformly for t in bounded subsets of C \ {j±1, j±2, j±3, . . . } and for x in compact
subsets of [−1, 1] \ {0}.

If, in addition, Reα < n + 1/2, then the equality holds also for x = 0, uniformly
for t in bounded subsets of C \ {j±1, j±2, j±3, . . . }.

Proof. The proof of Theorem 1.1 is still valid, with only the following changes: the
starting point is now the integral

1

2πi

∫
D

Eα(iwx)

(w − t)n+1Iα(iw)
dw.

The calculus of residues gives

1

2πi

∫
D

Eα(iwx)

(w − t)n+1Iα(iw)
dw =

1

n!

dn

dtn

(
Eα(itx)

Iα(it)

)
−
∑
|jm|<A

2(α+ 1)Eα(ijmx)

jmIα+1(ijm)(jm − t)n+1
.

Now, ∣∣∣∣ 1

2πi

∫
D

Eα(iwx)

(w − t)n+1Iα(iw)
dw

∣∣∣∣ ≤ 1

2π

∫ π

−π

A

(A− |t|)n+1
· c̃ e

(|x|−1)A| sin s|

|x|Reα+1/2
ds

≤ C A

(A− |t|)n+1|x|Reα+1/2
,

for some C independent of t and x ∈ [−1, 1]. Now there is no need to exclude the
values x = ±1, so we can allow the compact K to be contained in [−1, 1] \ {0}, and
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still conclude that the integral goes to 0 as A goes to infinity, uniformly on x ∈ K
and t in a bounded subset of C \ {j±1, j±2, j±3, . . . }.

For x = 0, we get∣∣∣∣ 1

2πi

∫
D

Eα(iwx)

(w − t)n+1Iα(iw)
dw

∣∣∣∣ ≤ c̃ AReα+1/2

(A− |t|)n+1
(1− e−A),

which goes to 0 uniformly on t when A goes to infinity, if Reα < n+ 1/2.

The pointwise expansion (1.6) fails at x = ±1: the series on the right-hand side
of (1.6) converges for x = ±1, but its sum is not equal to the left-hand side. Indeed,
for x = ±1, it becomes clear from (1.2), (2.1), and (2.2) that the right-hand side
of (1.6) reduces to ∑

m∈Z\{0}

±i
jm − t

,

which, by the partial fraction decomposition of Jα+1(t)/Jα(t) [11, § 15.41, p. 498],
equals

±iJα+1(t)

Jα(t)
= ± itIα+1(it)

2(α+ 1)Iα(it)
= ±(Eα(it)− Eα(−it))/2

Iα(it)
,

showing that the convergence in x = ±1 is to a combination of the side limits Eα(it)
and Eα(−it) of Eα(ixt).

Let us mention that for Reα ≥ 1
2 the expansion (1.6) does not converge at x = 0.

Indeed, for x = 0, we get∑
m∈Z\{0}

2(α+ 1)Eα(0)

jmIα+1(ijm)(jm − t)
=

∑
m∈Z\{0}

2(α+ 1)

jmIα+1(ijm)(jm − t)
.

Then, (2.8) gives ∣∣∣∣ 1

jmIα+1(ijm)(jm − t)

∣∣∣∣ ≥ Cα|jm|Reα−1/2,

which does not go to 0 if Reα ≥ 1
2 .

Using the previous approach and the definitions (1.3) and (1.4), one can prove the
Fourier expansion in Theorem 5.5 of [2] also for any complex number α (except for the
negative integers) with pointwise convergence. The proof is similar to Theorem 1.1
and Corollary 2.1, so we omit it.

Theorem 2.2. Let α ∈ C \ {−1,−2,−3, . . . }. Then,

Eα(itx)

Iα+1(it)
= 1 +

1

2(α+ 1)

∑
m∈Z\{0}

tEα(ijm,α+1x)

Iα(ijm,α+1)(t− jm,α+1)
, (2.11)
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if t ∈ C \ {j±1,α+1, j±2,α+1, . . . } and x ∈ (−1, 1) \ {0}, where the right-hand side
converges uniformly for t in bounded subsets of C \ {j±1,α+1, j±2,α+1, . . . } and x in
compact subsets of (−1, 1) \ {0}.

Moreover, for each positive integer n,

dn

dtn

(
Eα(itx)

Iα+1(it)

)
=

(−1)nn!

2(α+ 1)

∑
m∈Z\{0}

jm,α+1Eα(ijm,α+1x)

Iα(ijm,α+1)(t− jm,α+1)n+1
, (2.12)

if t ∈ C \ {j±1,α+1, j±2,α+1, . . . } and x ∈ [−1, 1] \ {0}, where the right-hand side
converges uniformly for t in bounded subsets of C \ {j±1,α+1, j±2,α+1, . . . } and x in
compact subsets of [−1, 1] \ {0}.

If, in addition, Reα < 1/2 or Reα < n+ 1/2, n ≥ 1, then the expansions (2.11)
or (2.12), respectively, also hold for x = 0, uniformly for t in bounded subsets of
C \ {j±1,α+1, j±2,α+1, . . . }.

3 The Fourier-Dunkl system of the second kind and Euler-
Dunkl polynomials

The orthogonality and completeness of the Fourier-Dunkl system of the second kind
can be proved as that of its relative Fourier-Dunkl system (see Theorem 1 in [5]),
just by using the completeness of the corresponding Bessel and Dini systems (see [11,
Chapter XVIII]).

Since for α > −1 the zeros jm of the Bessel function Jα are real and simple and
separate the zeros of Jα+1, we have

|jmIα+1(ijm)| = (−1)m+1 sgn(m)jmIα+1(ijm). (3.1)

This and (1.5) give the expansion (1.7) as an easy consequence of Theorem 1.1.
For a complex number α (except for the negative integers), we define the Euler-

Dunkl polynomials {En,α}∞n=0 by means of the generating function (1.8). As a con-
sequence, each En,α is a polynomial of degree n. As usual, unless necessary we will
denote them simply by En. From the definition (1.8), it follows easily that the poly-
nomials {En}∞n=0 are an Appell-Dunkl sequence, so they satisfy

Λα(En) = θn,αEn−1

with
θn,α :=

γn,α
γn−1,α

= n+ (α+ 1/2)(1− (−1)n).

Moreover,

10



1. E2n is an even polynomial, n ≥ 0, which vanishes at 1 (and hence at −1) for
n ≥ 1;

2. E2n+1 is an odd polynomial, n ≥ 0.

The first Euler-Dunkl polynomials are

E0(x) = 1, E1(x) = x,

E2(x) = x2 − 1, E3(x) = x3 − α+ 2

α+ 1
x,

E4(x) = x4 − 2
α+ 2

α+ 1
x2 +

α+ 3

α+ 1
, E5(x) = x5 − 2

α+ 3

α+ 1
x3 +

α+ 3

(α+ 1)2
x.

By comparing the Euler-Dunkl polynomials with the Apostol-Euler-Dunkl poly-
nomials {En,α,u}n, u ∈ C\{jm,α+1 : m ∈ Z}, introduced in [2], one can check that the
sequence {En,α}n differs from {En,α,u}n for all values of u. On the other hand, more
properties of both the Bernoulli-Dunkl polynomials and the Euler-Dunkl polynomials
(and some of their generalizations) can be found in [3].

For the Euler-Dunkl polynomials we have this expansion:

Theorem 3.1. For α ∈ C \ {−1,−2, . . . }

En(x) = 2(α+ 1)(−i)nγn
∑

m∈Z\{0}

Eα(ijmx)

jn+2
m Iα+1(ijm)

(3.2)

with uniform convergence on compact subsets of (−1, 1)\{0} for n = 0, and [−1, 1]\{0}
for n ≥ 1. The convergence can be extended to x = 0 assuming that Reα < n+ 1/2.

Proof. From the definition (1.8), we get that

En(x) =
γn
inn!

dn

dtn

(
Eα(itx)

Iα(it)

) ∣∣∣∣
t=0

, n = 0, 1, 2, . . . .

The theorem is then a consequence of Theorem 1.1 and Corollary 2.1.

The Fourier-Dunkl expansion (1.7) for the Euler-Dunkl polynomials is then an
easy consequence of the previous theorem, (3.1), and (1.5).

The Euler-Dunkl polynomials can be used to sum the reciprocal of the zeros of
the Bessel functions. Indeed, by setting n = 2k − 1 and inserting x = 1 in (3.2), and
using (1.2), we get for any α ∈ C \ {−1,−2, . . . } and k ≥ 1,

∞∑
m=1

1

j2km
=

(−1)k+1

22k(k − 1)! (α+ 1)k
E2k−1(1). (3.3)

11



Identities of this type are well known in the literature and we refer to a discussion and
further references in [2]. By inserting x = 0 and assuming in addition Reα < 2k− 3

2 ,
we get

∞∑
m=1

1

Iα+1(ijm)j2km
=

(−1)k+1

22k(k − 1)! (α+ 1)(α+ 1)k−1
E2k−2(0). (3.4)

With the notation of [2, Sect. 4], we have

σk(α) =

∞∑
m=1

1

j2km,α+1

,

%k(α) =

∞∑
m=1

1

Iα(ijm,α+1)j2km,α+1

. (3.5)

Hence, the identity (3.3) provides an explicit expression for σk(α− 1) in terms of the
Euler-Dunkl polynomials (compare with [2, formula (4.7)]).

Although the series in (3.4) and (3.5) seem to be different kinds of “alternate”
series, we show next that they are actually the same. Indeed, since z(Jα−1(z) +
Jα+1(z)) = 2αJα(z), we have

x2Iα+1(ix) = 4α(α+ 1)(Iα(ix)− Iα−1(ix)),

and then
j2m,αIα+1(ijm,α) = −4α(α+ 1)Iα−1(ijm,α). (3.6)

Consequently,

∞∑
m=1

1

Iα+1(ijm,α)j2km,α
=

−1

4α(α+ 1)

∞∑
m=1

1

Iα−1(ijm,α)j2k−2m,α

=
−%k−1(α− 1)

4α(α+ 1)
.

The identity (3.4) provides then an explicit expression for %k−1(α − 1) in terms of
the Euler-Dunkl polynomials (compare with [2, formula (4.8)]). Using the pointwise
convergence at x = 0 of the expansion (3.2), we can improve our results in [2]: the
convergence of (3.5) was proved in [2] for Reα < 2k− 3/2, while in the present paper
we have proved it for Reα < 2k + 1/2.

The Bernoulli-Dunkl polynomials {Bn,α(x)}∞n=0 are defined by the generating
function

Eα(xt)

Iα+1(t)
=

∞∑
n=0

Bn,α(x)

γn,α
tn

(see equation (2.6) of [2]). Hence, using Theorem 2.2 and proceeding as in the proof
of Theorem 3.1, we can prove the expansion

Bn,α(x) =
−(−i)nγn,α

2(α+ 1)

∑
m∈Z\{0}

Eα(ijm,α+1x)

Iα(ijm,α+1)jnm,α+1

,

12



for α ∈ C \ {−1,−2, . . . }, where the convergence is uniform on compact subsets of
(−1, 1) \ {0} for n = 1, or [−1, 1] \ {0} for n ≥ 2. The convergence can be extended
to x = 0 assuming that Reα < n+ 1/2. Notice that for α > −1, and using (1.3), we
recover the expansion (5.8) of [2] but now with pointwise convergence.

4 A Whittaker-Shannon-Kotel’nikov sampling theorem

The expansion (1.7) provides a very simple proof of Whittaker-Shannon-Kotel’nikov
sampling Theorem 1.2.

Proof of Theorem 1.2. For f ∈ PWα, let us consider the corresponding function u ∈
L2([−1, 1], dµα) such that

f(t) =

∫ 1

−1
u(x)Eα(itx) dµα(x). (4.1)

We associate to the function u the continuous operator Tu on L2([−1, 1], dµα) defined
by

Tu(g) =

∫ 1

−1
u(x)g(x) dµα(x).

For each t ∈ C \ {jm : m ∈ Z \ {0}}, consider the function

φt(x) =
Eα(itx)

Iα(it)
∈ L2([−1, 1], dµα).

The identity (4.1), the fact that the Fourier-Dunkl expansion (1.7) converges in
L2([−1, 1], dµα), and formulas (1.5) and (3.1), show that

f(t)

Iα(it)
= Tu(φt(x)) =

∑
m∈Z\{0}

(−1)m sgn(m)

2α/2Γ(α+ 1)1/2(t− jm)
Tu(fα,m(x))

=
∑

m∈Z\{0}

(−1)m sgn(m)2(α+ 1)

|jmIα+1(ijm)|(t− jm)

∫ 1

−1
u(x)Eα(ijmx) dµα(x)

= −2(α+ 1)
∑

m∈Z\{0}

f(jm)

jmIα+1(ijm)(t− jm)
,

which proves the pointwise convergence of (1.12) for t ∈ C \ {jm : m ∈ Z \ {0}}.
The uniform convergence on compact sets can be proved as follows. Using (1.5)

and the fact that (∫ 1

−1
|fα,m(x)|2 dµα(x)

)1/2

= 1,

13



we get

|f(jm)| =
∣∣∣∣∫ 1

−1
u(x)Eα(ijmx) dµα(x)

∣∣∣∣
≤ ‖u‖2

(∫ 1

−1
|Eα(ijmx)|2 dµα(x)

)1/2

= c |jmIα+1(ijm)|,

for certain positive constant c which does not depend on m. This shows that the
series ∑

m∈Z\{0}

f(jm)

jmIα+1(ijm)(t− jm)2

converges uniformly on compact subsets of t ∈ C\{jm : m ∈ Z\{0}}. Since the terms
in this series are the derivatives of the terms in the series (1.12), we can deduce that
the series (1.12) also converges uniformly on compact subsets of t ∈ C \ {jm : m ∈
Z \ {0}}.

According to Theorem 12 of [1], for α ≥ −1/2, a function f ∈ PWα has a double
feature: on the one hand f is an entire function satisfying

|f(z)| ≤ ce| Im z|, z ∈ C, (4.2)

for certain constant c > 0 (the complex feature); on the other hand for x ∈ R,
f(x) ∈ L2(R, dµα) (the harmonic feature). For α ≥ −1/2, both complex and harmonic
features seem to be necessary for f to satisfy sampling Theorem 1.2. Indeed, the
function f(t) = Eα(it) (which satisfies (4.2)) shows that the complex feature is not
enough to guarantee the sampling theorem: for f(t) = Eα(it), the partial fraction

decomposition of Jα+1(t)
Jα(t)

(see [11, § 15.41, (1), p. 498]) gives, for the right-hand side

of (1.12),

−2(α+ 1)
∑

m∈Z\{0}

Eα(ijm)

jmIα+1(ijm)(t− jm)
=

∑
m∈Z\{0}

−i
t− jm

= i
Jα+1(t)

Jα(t)
= i

tIα+1(it)

2(α+ 1)Iα(it)
6= Eα(it)

Iα(it)
.

Conversely, the following result shows (taking N = 0) that for α < −1/2, the complex
feature of a function f alone implies the sampling theorem (and hence, for α < −1/2
the harmonic feature does not seem to play any role there).

Theorem 4.1. Let N be an integer and let f be an entire function satisfying

|f(z)| ≤ C(1 + |z|)Ne| Im z|, z ∈ C, (4.3)

14



for certain positive constant C > 0. If α ∈ C\{−1,−2, . . . } satisfies Reα+N < −1/2
then

f(t)

Iα(it)
= −2(α+ 1)

∑
m∈Z\{0}

f(jm)

jmIα+1(ijm)(t− jm)
, (4.4)

which converges uniformly on bounded subsets of C \ {jm : m ∈ Z \ {0}}.

Proof. Take a large circle D = {z ∈ C : |z| = A} of radius A > |t| with the only
condition, at the moment, that none of the points jm, m ∈ Z \ {0}, must lie in D.
The calculus of residues gives

1

2πi

∫
D

f(w)

(w − t)Iα(iw)
dw =

f(t)

Iα(it)
+
∑
|jm|<A

2(α+ 1)f(jm)

jmIα+1(ijm)(t− jm)
. (4.5)

The estimate

|Jα(w)| ≥ c e
| Imw|

|w|1/2
(4.6)

for w ∈ D and certain constant c > 0 independent of A (but depending on α) was
proved in Theorem 1.1 (see (2.4)). Using (4.6) and (4.3), we get, for w ∈ D,∣∣∣∣ f(w)

Iα(iw)

∣∣∣∣ ≤ c̃ |w|Reα+N+1/2. (4.7)

For Reα+N + 1/2 < 0, it is then easy to prove that the left-hand side of (4.5) goes
uniformly to 0 as A goes to infinity.

We illustrate Theorems 1.2 and 4.1 with some examples. In what follows, when
we use f(x, t) ∈ PWα,t or Fα,t(f(x, t))(y), we are indicating that x plays the role of
a parameter and t is the variable in the integrals which define PWα or Fα.

Proposition 4.2. For real numbers α, β, x and a nonnegative integer n with α > −1,
β > α + 2n and 0 < |x| ≤ 1, we have t2nEβ(ixt) ∈ PWα,t. For α > −1 and
0 < |x| ≤ 1, we also have (Eα(ixt)− Iα(it))/t ∈ PWα,t.

Proof. Using (1.10), the first part of the proposition will follow if we prove that
Fα,t(t2nEβ(ixt))(y) = 0 for |y| > 1, that is∫

R
t2nEβ(ixt)Eα(iyt) dµα(t) = 0.

But, due to

Eν(iz) = 2νΓ(ν + 1)

(
Jν(z)

zν
+
Jν+1(z)

zν+1
zi

)
15



and using the parity of the functions involved in the integrals, this follows easily from
the fact that∫ ∞

0
t−(β−α−1−2n)Jβ(xt)Jα(yt) dt =

∫ ∞
0

t−(β−α−1−2n)Jβ+1(xt)Jα+1(yt) dt = 0

for α > −1−n, β > α+ 2n, and 0 < x < y, which are particular cases of the identity
[8, Ch. 8.11, (9), p. 48].

For the second part of the proposition, take into account that

Eα(ixt)− Iα(it)

t
=
Iα(ixt)− Iα(it)

t
+

ix

2(α+ 1)
Iα+1(ixt).

As in the first part, for n = 0 and β = α + 1, we have Iα+1(ixt) ∈ PWα,t, so it is
enough to prove that

Iα(ixt)− Iα(it)

t
∈ PWα,t.

Proceeding as before this will follow if we prove that

Fα,t
(

(Iα(ixt)− Iα(it))/t
)

(y) = 0

for |y| > 1, that is ∫
R

Iα(ixt)− Iα(it)

t
Eα(iyt) dµα(t) = 0.

But this is an easy consequence of∫ ∞
0

Jα(xt)

xα
Jα+1(yt) dt =

1

yα+1

for α > −1 and 0 < x < y, which is the identity [8, Ch. 8.11, (3), p. 47].

In Figure 1, we illustrate sampling Theorem 1.2 with the particular example of
the function f(t) = t2nEβ(it) ∈ PWα for β = 7.1, n = 1 and α = 2.7. More precisely,
the left and right pictures correspond to the real and imaginary parts of that func-
tion (solid lines) and their approximations (dotted lines) according to Theorem 1.2,
respectively. We have used m up to 6 in (1.12) and to simplify the picture, we have
multiplied the identity (1.12) by the function Iα(it). The red points are the real and
imaginary parts of the evaluation of f(t) at the roots ±jm,α, m = 1, . . . , 6.

In Figure 2, we illustrate sampling Theorem 4.1 with the particular example of
the function f(t) = teit/2 and α = −9/4. More precisely, the left and right pictures
correspond to the real and imaginary parts of that function (solid lines) and their
approximations (dotted lines) according to Theorem 4.1, respectively. We have used
m up to 6 in (1.12) and to simplify the picture, we have multiplied the identity (4.4)
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Figure 1: Real and imaginary parts (left and right, respectively) of f(t) = t2nEβ(it)
(solid line) with β = 7.1 and n = 1, and its approximation (dotted line) according to
Theorem 1.2 with α = 2.7 (using m up to 6).
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Figure 2: Real and imaginary parts (left and right, respectively) of f(t) = teit/2 (solid
line) and its approximation (dotted line) according to Theorem 4.1 with α = −9/4
(using, in (4.4), six pairs of the real roots of J−9/4(t) and its four complex roots).

by the function Iα(it). We have used in (4.4) six pairs of the real roots of J−9/4(t)
and its four complex roots. The red points are the real and imaginary parts of
the evaluation of f(t) at the real roots; the complex roots ±0.906543 + 1.41591i
and ±0.906543 − 1.41591i and its images by f (that is, ±0.0960465 + 0.822684i and
±2.9129− 1.77804i, respectively) cannot be represented in this way.

In Figure 3, we illustrate sampling Theorem 4.1 with the function f(t) = sin(t/2)/t
and α = 1/4. For α ≥ −1/2, it is easy to see that f ∈ PWα if and only if α < 0
(see (1.13)), so the function f does not satisfy the hypothesis of sampling Theorem 1.2
for α = 1/4. However, according to Theorem 4.1 (with N = −1), the sampling can
actually be applied to f under the assumption that α < 1− 1/2 = 1/2 which includes
the case α = 1/4. We have used m up to 10 in (1.12) and to simplify the picture,
we have multiplied the identity (4.4) by the function Iα(it). The imaginary parts
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Figure 3: The function f(t) = sin(t/2)/t (solid line) and its approximation (dotted
line) according to Theorem 4.1 with α = 1/4 (using, in (4.4), ten pairs of the real
roots of J1/4(t)).

of both the function and its approximation are null, so the picture represents the
function (solid lines) and its approximation (dotted lines), and the red points are the
evaluation of f(t) at the roots.

Remark. Notice that sampling Theorem 4.1 can also be applied to the function g(t) =
sin(t)/t and α = 1/4. However, the convergence for this example is extremely slow
(using ten thousand zeros we still get an approximation for g poorer than that of
Figure 3 for the function f(t) = sin(t/2)/t using ten zeros). The reason can be found
in the proof of the Theorem 4.1. Indeed, on the one hand, since

|g(z)| ≤ C e| Im(z)|

1 + |z|
,

the proof of the Theorem 4.1 says that the error between the function g and its
approximants is of the order mα−1+1/2 = m−1/4 (see (4.7)). On the other hand since

|f(z)| ≤ C e| Im(z)|/2

1 + |z|
,

the error between the function f and its approximants is now of the order of mα−3/2 =
m−5/4.

The following sampling theorem for the Paley-Wiener space PWα, α > −1, can
be found in [5].

Theorem 4.3 ([5, Theorem 2]). If α > −1 and f ∈ PWα, then

f(t)

Iα+1(it)
= f(0) +

∑
m∈Z\{0}

f(jm,α+1)
t

2(α+ 1)Iα(ijm,α+1)(t− jm,α+1)
, (4.8)

which converges uniformly on compact subsets of R \ {jm,α+1 : m ∈ Z \ {0}}.
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This result is proved in [5] using standard techniques of Hilbert spaces with re-
producing kernel. We show now that Theorem 4.3 can also be derived from our
Theorem 1.2. We need the following lemma, before.

Lemma 4.4. Let α > −1 and f ∈ PWα, with f(0) = 0. Then f(t)/t ∈ PWα+1.

Proof. Using (2.8), we deduce that, for certain constant c > 0,

|Iα(iz)| ≤

{
c(1 + |z|)e| Im(z)|, z ∈ C, for −1 < α,

ce| Im(z)|, z ∈ C, for −1/2 ≤ α.

And then we also have

|Eα(izw)| ≤ c(1 + |zw|)e| Im(zw)|, z, w ∈ C. (4.9)

Using (4.9) it is straightforward to prove that if f ∈ PWα (i.e., (1.11)), α > −1, then

|f(z)| ≤ cf (1 + |z|)e| Im z|, z ∈ C.

Since f(0) = 0, we also have ∣∣∣∣f(z)

z

∣∣∣∣ ≤ c̃fe| Im z|, z ∈ C.

On the other hand, since f ∈ L2(R, dµα), it follows that f(t)/t ∈ L2(R, dµα+1). It is
now enough to use Theorem 12 of [1] (for k = α+ 3/2 ≥ 1/2).

Proof of Theorem 4.3. Let α > −1, f ∈ PWα, and assume that f(0) = 0. It follows
from the previous lemma that f(t)/t ∈ PWα+1. Then, Theorem 1.2 with α+ 1 gives

f(t)

tIα+1(it)
= −2(α+ 2)

∑
m∈Z\{0}

f(jm,α+1)

j2m,α+1Iα+2(ijm,α+1)(t− jm,α+1)
.

Using (3.6), we get

f(t)

tIα+1(it)
=

∑
m∈Z\{0}

f(jm,α+1)

2(α+ 1)Iα(ijm,α+1)(t− jm,α+1)
, (4.10)

that is, the series (4.8).
Consider finally the case f(0) 6= 0. Then Iα+1(it) = Re(Eα+1(it)) ∈ PWα (be-

cause of Proposition 4.2). Theorem 4.3 follows now by applying (4.10) to the function
g(t) = f(t)− f(0)Iα+1(it).
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