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Abstract. We prove that for any convergent Laurent series f(z) =∑∞
n=−k anz

n with k ≥ 0, there is a meromorphic function F (s) on C
whose only possible poles are among the integers n = 1, 2, . . . , k, having
residues Res(F ;n) = a−n/(n− 1)!, and satisfying F (−n) = (−1)nn! an
for n = 0, 1, 2, . . ..

Under certain conditions, F (s) is a Mellin transform. In particular,
this happens when f(z) is of the form H(e−z)e−z with H(z) analytic
on the open unit disk. In this case, if H(z) =

∑∞
n=0 hnz

n, the analytic
continuation of H(z) to z = 1 is related to the analytic continuation of
the Dirichlet series

∑∞
n=1 hn−1n

−s to the complex plane.

1. Introduction

Consider the integral transform of a function f(t) on (0,∞) defined by
the complex-valued integral

(1) Mf(s) =
1

Γ(s)

∫ ∞
0

f(t)ts−1 dt.

Without the Gamma factor in front, this is of course the classical Mellin
transform. Here we normalize so that the exponential f(t) = e−t transforms
to the constant function 1.

When f(t) = 1/(et− 1) = e−t/(1− e−t), we have the well-known classical
formula

ζ(s) = Mf(s) =
1

Γ(s)

∫ ∞
0

ts−1

et − 1
dt,

valid for Re(s) > 1, which is an oft-chosen starting point to obtain both the
analytic continuation of the Riemann zeta function to C\{1} and the values
ζ(−n) = −Bn+1/(n+1) at the negative integers, where {Bn} is the sequence
of Bernoulli numbers. Of the various methods (see for example Titchmarsh’s
book [9]), we are interested in the following procedure, summarized in two
main points:
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A. By adding and subtracting the partial sums of the series representation
at t = 0 of

f(t) = 1/(et − 1) = t−1
∞∑
n=0

Bnt
n/n!

in the integral (1), the Mellin transform, which a priori is only holomor-
phic on Re s > 1, is shown to have an analytic continuation to C \ {1}.
This same method also shows that the values of the analytic continua-
tion at the negative integers are essentially the coefficients of the Taylor
series, in this case, the Bernoulli numbers Bn.

B. On the other hand, noting that

f(t) = e−t/(1− e−t) =

∞∑
n=0

e−(n+1)t

and exchanging this sum with the integral in (1), we find that for Re s >
1, Mf(s) =

∑∞
n=1 n

−s, which is the Dirichlet series defining ζ(s).

The use of the Mellin transform to prove both the analytic continuation
and the formula for its values at the negative integers can be generalized to
the Hurwitz zeta function and the associated Bernoulli polynomials [3], as
well as to the Lerch zeta function and the Apostol-Bernoulli polynomials [2].
In [7], by again using (A) and (B) as motivation, we extended these results
to a very general class of Appell polynomials and entire functions.

These ideas are also related to the technique known as “Ramanujan’s
Master Theorem” (see [1]), used often by him to derive expressions for in-
finite sums and integrals. It is summarized by the following “non-rigorous
formula:”

h(−s) =
1

Γ(s)

∫ ∞
0

( ∞∑
n=0

h(n)

n!
(−t)n

)
ts−1 dt,

the intent of which is to provide an explicit expression for the analytic con-
tinuation of the Mellin transform of a power series, here given in exponential
form, emphasizing that one recovers the coefficients as values at the nega-
tive integers of the Mellin transform. For example, with h(s) = ζ(−s) the
formula gives

ζ(s) =
1

Γ(s)

∫ ∞
0

(
−1

t
− 1

2
+

1

1− e−t

)
ts−1 dt,

which is correct for −1 < σ = Re(s) < 0. Note that the first two terms are
the leading terms in the Laurent series of the third, so that this turns out
to be an instance of (A).

The results presented here are both a generalization and a simplification
of the methods in [7]. We wish to obtain more out of (A) and (B). On one
hand, the idea contained in (A) allows us to start from a Laurent expansion
f(z) =

∑∞
n=−k anz

n and obtain a meromorphic function F (s) with possible
poles only at s = 1, 2, . . . , k and which interpolates at the negative integers
s = −n values related to the coefficients an.

On the other hand, for f(z) = H(e−z)e−z with H(z) =
∑∞

n=0 hnz
n sat-

isfying certain conditions, the analytic continuation F (s) is just the Mellin
transform of f and we can use the ideas in (B) to show that F (s) is given
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in a half-plane by the Dirichlet series
∑∞

n=0 hn(n+ 1)−s. The analytic con-
tinuation of the Taylor series

∑∞
n=0 hnz

n to z = 1 is directly related to the
analytic continuation of this Dirichlet series.

The paper is organized as follows: in the second section, Theorem 1 is
the interpolation result for Laurent series which extends the ideas of (A).
In the third, inspired by (B), we study the connection between the mero-
morphic continuation of Dirichlet series and the continuation of power series
converging in the unit disk to z = 1; this is summarized in Theorem 2. In
the next several sections we discuss various examples, counterexamples to
the converse, and general consequences of Theorem 2. Finally, in the last
section, Theorem 4 extends these results to power series with a non-isolated
singularity at z = 1; such is the case for (z − 1)α with α /∈ Z, for example.

Let us establish some conventions to be used throughout. Notationwise,
we consider the natural numbers to be the set N = {1, 2, 3, . . . }, while
N0 = N ∪ {0}. When we speak of a meromorphic function with a pole of
order k ≥ 0, it is understood that for k = 0 we simply mean a holomorphic
function. The letters z, s, and sometimes t, denote complex variables, with
z used mainly for power series and s for Dirichlet series, in which case we
will denote its real part by σ = Re s. The principal branch of the complex
logarithm is assumed by default.

The various parametric integrals which appear all define analytic func-
tions in their domain of convergence. The justification of this fact is the
generalization to integrals of Weierstrass’ M-test for series. This general cri-
terion is an application of the Dominated Convergence Theorem and Mor-
era’s Theorem. We will omit the details of verifying for each integral that
the conditions of the criterion are satisfied, as this is straightforward in every
case.

2. An interpolation result for power series coefficients

Theorem 1. Let f(z) be a meromorphic function with a pole of order k ≥ 0
at z = 0 and having Laurent series around z = 0 given by

f(z) =
∞∑

n=−k
anz

n (0 < |z| < R).

Then for a fixed r ∈ (0, R), the integral

F (s) =
1

Γ(s)

∫ r

0
f(t)ts−1 dt

defines an analytic function on the half-plane σ > k.

(a) If k ≥ 1, then F (s) can be extended to a meromorphic function on C
whose singularities are a simple pole at s = k and possible simple poles
at s = 1, 2, . . . , k − 1 with residues

(2) Res(F ;n) =
a−n

(n− 1)!
(n = 1, . . . , k)

and satisfying

(3) F (−n) = (−1)nn! an (n ≥ 0).

(b) If k = 0 then F (s) can be extended to an entire function satisfying (3).
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Proof. The integral defining F (s) converges for σ > k since the integrand is
O(ts−1−k) at t = 0. Fixing N ∈ N, we separate it into two parts,

F (s) =
1

Γ(s)

∫ r

0

(
f(t)−

N∑
n=−k

ant
n

)
ts−1 dt+

1

Γ(s)

∫ r

0

N∑
n=−k

ant
nts−1 dt.

Since the integrand in the first part is O(tN+s) at t = 0, the integral is
holomorphic for σ > −N − 1, and the 1/Γ(s) term in front implies this part
has zeros at the negative integers, so as far as (2) and (3) are concerned we
may ignore this part.

Turning to the second part, we find a trivial integral yielding the function

(4)
1

Γ(s)

N∑
n=−k

an
rn+s

n+ s
=

1

Γ(s)

k∑
n=−N

a−n
rs−n

s− n
,

which is meromorphic on C with possible simple poles only at s = 1, 2, . . . , k,
since the other possible poles at s = 0,−1, . . . ,−N are canceled by the zeros
of 1/Γ(s). The residues of F (s) at s = n = 1, 2, . . . , k are the residues of (4),
namely a−n/Γ(n) = a−n/(n− 1)!. In particular, if k ≥ 1 there is an actual
simple pole at s = k. Likewise, the values F (−n) for n = 0, 1, . . . , N are the
values of (4), given by

lim
s→−n

an
rn+s

Γ(s)(s+ n)
= (−1)nn! an,

because Res(Γ;−n) = (−1)n/n!. Since N was arbitrary, the proof is com-
plete. �

Remark. Of course, for a given f(z) there are infinitely many entire or mero-
morphic functions satisfying (2) and (3). The dependence on r notwith-
standing, in general the function

(5) F (s) =
1

Γ(s)

(∫ r

0
f(t)ts−1 dt+ E(s)

)
,

where E(s) in an arbitrary entire function, also satisfies (2) and (3). In view
of this, our interest now turns to the question of whether there are functions
of the form (5) that are easier to deal with.

Towards this end, if f(t) has additional properties which allow the same
integral, extended over (r,∞), to define an entire function, then a “canoni-
cal” choice would be

E(s) =

∫ ∞
r

f(t)ts−1 dt,

which of course leads to

F (s) =
1

Γ(s)

∫ ∞
0

f(t)ts−1 dt,

the Mellin transform of f(t). However, we need to ask more from f in order
to obtain a well-behaved Mellin transform.

In the following section we will see that an interesting special case is
when f(t) = e−tH(e−t) for H(z) an analytic function in the (open) unit
disk having an analytic continuation to the point z = 1.
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3. Dirichlet series and analytic continuation

Given a sequence {hn}∞n=0 of complex coefficients, consider the formal
power series and Dirichlet series with those coefficients, namely

H(z) =
∞∑
n=0

hnz
n, D(s) =

∞∑
n=1

hn−1

ns

(note the displacement in the index in the Dirichlet series, due to beginning
the sequence hn at n = 0). In what follows, we will denote the radius
of convergence of H(z) by R and the abscissas of ordinary and absolute
convergence of D(s) by σc and σa respectively. A priori R ∈ [0,∞] and
σc, σa ∈ [−∞,∞].

Recall that a Dirichlet series D(s) converges in the open half-plane σ > σc
and diverges for σ < σc, and that σc ≤ σa ≤ σc + 1. If σc < ∞, then the
sum of D(s) is analytic in its half-plane of convergence. We will use the
same notation for the series and its sum function, as well as its analytic
continuation, and do the same for power series. In particular if σc = −∞
then D(s) is an entire function.

For a power series H(z) converging inside the unit disk (that is to say, with
R ≥ 1), the main result of this section (Theorem 2) establishes a relationship
between the analytic continuation of H(z) to the boundary point z = 1 and
the analytic continuation of the corresponding Dirichlet series D(s) beyond
its half-plane of convergence.

Needless to say, many important problems, especially in Number Theory,
involve the existence of an analytic continuation of a Dirichlet series. Theo-
rem 2 will allow us to easily deduce a varied number of interesting examples,
both in the positive (existence) and negative (non-existence) sense.

We begin with two simple observations regarding the relationship between
the radius of convergence R and the abscissa of convergence σc.

Lemma 1. If the Dirichlet series
∑∞

n=1 hn−1n
−s converges at some s ∈ C,

then the power series
∑∞

n=0 hnz
n converges inside the unit disk; i.e. σc <∞

implies R ≥ 1.

Proof. SinceD(s) converges for σ > σc, it converges at any real r > σc; hence
hn = O(nr) and the result follows from the Cauchy-Hadamard formula for
the radius of convergence of a power series. �

Lemma 2. If the power series
∑∞

n=0 hnz
n converges at some point outside

the unit disk, then the Dirichlet series
∑∞

n=1 hn−1n
−s converges everywhere

and thus defines an entire function; i.e. R > 1 implies σc = −∞.

Proof. If R > 1 then the power series converges at some real z = r > 1;
hence hn = O(r−n), which implies that for fixed s ∈ C, the general term of
the Dirichlet series decreases exponentially and hence converges.1 �

In light of this, discarding the extreme cases σc = ±∞, where D(s) either
converges or diverges everywhere and hence there is nothing more to say
about its analytic continuation, we can assume −∞ < σc <∞ and R = 1.

1One could also use the analog of Hadamard’s formula for σc but this is unnecessary.
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Remark. Note that a finite abscissa of convergence −∞ < σc < ∞ implies
unit radius R = 1, but R = 1 does not imply anything about σc. For
example, with hn = n±

√
n we have R = 1 and σc = ±∞ respectively, while

with hn = nα−1 with α ∈ R we have R = 1 and σc = α.

We now turn to the main result of this section, beginning with an auxiliary
lemma regarding the relationship between H(z) and f(t) = e−tH(e−t).

Lemma 3. If the power series H(z) =
∑∞

n=0 hnz
n converges inside the

unit disk, then the function f(t) = e−tH(e−t) is holomorphic on the half-
plane Re t > 0 and f(t) = O(e−t) as Re t → ∞. In addition, H(z) has a
meromorphic extension at z = 1 with a pole of order k ≥ 0 if and only if
f(t) has a meromorphic extension at t = 0, with a pole of the same order.

Proof. The first part follows simply by observing that z = e−t maps the right
half-plane Re t > 0 to the punctured unit disk 0 < |z| < 1, with the half-line
(0,∞) mapping to the radius (0, 1) and z → 0 as Re t → ∞. Furthermore,
for 0 < δ < π

2 , the infinite half-strip Rδ = {Re t > −δ, | Im t| < δ} is mapped

biholomorphically to the circular sector Sδ = {0 < |z| < eδ, | arg z| < δ}.
Considering small δ shows that the existence of a meromorphic continuation
of H(z) to z = 1 is equivalent to that of H(e−t) to t = 0, necessarily
with poles of the same order. Clearly this also holds for f(t) = e−tH(e−t),
corresponding to zH(z). �

Theorem 2. If the power series H(z) =
∑∞

n=0 hnz
n converges inside the

unit disk and has a meromorphic extension to a function with a pole of
order k ≥ 0 at z = 1, then the Dirichlet series D(s) =

∑∞
n=1 hn−1n

−s has a
meromorphic extension to C, denoted also by D(s), whose only singularities
are possible simple poles at s = 1, 2, . . . , k with residues

(6) Res(D;n) =
a−n

(n− 1)!
(n = 1, . . . , k),

and values at negative integers given by

(7) D(−n) = (−1)nn! an (n ≥ 0),

where {an}n≥−k is the sequence of coefficients of the Laurent series at t = 0
of

e−tH(e−t) =

∞∑
n=−k

ant
n.

In particular, the poles of D(s) are the negatives of the degrees of the terms
in the principal part of this Laurent series; thus D(s) is entire if H(z) is
analytic at z = 1 and s = k is always a pole if k ≥ 1.

Proof. As we saw in Lemma 3, f(t) = e−tH(e−t) is continuous on (0,∞)
with f(t) = O(e−t) as t → ∞, and can be continued meromorphically to
t = 0 with a pole of order k. Thus, by Theorem 1 and the remark following
it, the Mellin transform

F (s) =
1

Γ(s)

∫ ∞
0

f(t)ts−1 dt
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is defined on a half-plane and has a meromorphic continuation satisfying (6)
and (7). It just remains to show that F (s) = D(s) in some region. In fact,

using that f(t) =
∑∞

n=0 hne
−t(n+1), for σ > max(σa, 0) we have

F (s) =
1

Γ(s)

∫ ∞
0

∞∑
n=0

hne
−t(n+1)ts−1 dt

=
1

Γ(s)

∞∑
n=0

hn

∫ ∞
0

e−t(n+1)ts−1 dt =
∞∑
n=0

hn
(n+ 1)s

= D(s),

noting that λ−s = 1
Γ(s)

∫∞
0 xs−1e−λx dx for σ = Re s > 0 and Reλ > 0. The

exchange of sum and integral is justified since
∑∞

n=1 |hn−1|n−σ <∞. �

3.1. Rescaling. A simple yet useful situation arises when we change vari-
ables in the power series H(z) by a complex nonzero constant λ.

Corollary 1. If the power series H(z) =
∑∞

n=0 hnz
n has positive radius of

convergence R, then for λ ∈ C∗, the Dirichlet series

D(s) =
∞∑
n=0

hnλ
n

(n+ 1)s

can be continued to an entire function for |λ| < R or if |λ| = R and H(z)
can be analytically continued to z = λ.

In general if |λ| = R and H(z) has a meromorphic continuation with a
pole of order k ≥ 0 at z = λ, then D(s) has a meromorphic continuation to
C with simple poles at s = 1, 2, . . . , k.

Proof. Apply Theorem 2 to the rescaled power seriesH(λz) =
∑∞

n=0 hnλ
nzn,

which has radius of convergence equal to R/|λ|, and which can be continued
to z = 1 if and only if H(z) can be continued to z = λ. �

3.2. Translation by a non-negative integer. Under the correspondence
we are considering

H(z) =

∞∑
n=0

hnz
n ←→ D(s) =

∞∑
n=0

hn
(n+ 1)s

between power and Dirichlet series, translation of the Dirichlet series D(s)
by a non-negative integer m to obtain Dm(s) = D(s − m), is obviously
reflected in the new correspondence

Hm(z) =

∞∑
n=0

hn(n+ 1)mzn ←→ Dm(s) =

∞∑
n=0

hn
(n+ 1)s−m

.

It can be easily checked that on power series, this is given by applying the
differential operator d

dz z = 1 + z d
dz ; in other words, Hm(z) = ( ddz z)

mH(z).
Assuming that H(z) converges inside the unit disk and can be meromor-

phically continued to z = 1 with a pole of order k ≥ 0, Theorem 2 asserts
that D(s) has pole set in {1, 2, . . . , k} with a pole at k if k ≥ 1, and hence
Dm(s) has pole set in {m + 1,m + 2, . . . ,m + k} with a pole at m + k if
k ≥ 1. This fact is less obvious when viewed from the power series side,
since it means that the principal part of the Laurent series of e−tHm(e−t)
at t = 0 lacks terms of degree −1,−2, . . . ,−m.
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3.3. Partial summation.

Corollary 2 (Partial summation). If H(z) =
∑∞

n=0 hnz
n converges inside

the unit disk and can be analytically continued to z = 1, then the Dirichlet
series

D1(s) =

∞∑
n=1

∑n−1
k=0 hk
ns

can be analytically continued to an entire function if H(1) = 0 and to a
meromorphic function with a unique and simple pole at s = 1 if H(1) 6= 0.

Proof. Apply Theorem 2 to the power series H(z)
1−z =

∑∞
n=0 (

∑n
k=0 hk) z

n. �

4. Examples

4.1. Zeta functions and polylogarithms (I). The Dirichlet seriesDλ(s) =∑∞
n=1 λ

nn−s corresponds to the power series Hλ(z) =
∑∞

n=0 λ
n+1zn =

λ/(1− λz). Clearly Hλ(z) = λH(λz) where H(z) = H1(z) = (1− z)−1.
Corollary 1 implies that for |λ| < 1 and |λ| = 1 with λ 6= 1, Dλ(s) can

be continued to an entire function, which is in fact the polylogarithm at λ
with varying parameter s 7→ Lis(λ), while for λ = 1 it says that D1(s) has
a meromorphic continuation with a single simple pole at s = 1, which is of
course the Riemann zeta function ζ(s). The latter fact can also be obtained
from Corollary 2 starting from the constant series H(z) ≡ 1.

To obtain the values of the analytic continuations at negative integers,
we need the coefficients of the Laurent series at t = 0 of

e−tH(e−t) = − λe−t

λe−t − 1
.

These can be expressed in terms of the exponential generating function

B(λ;x; t) =
text

λet − 1
=
∞∑
n=0

Bn(λ;x)

n!
tn

considered by Apostol in [2], which defines the Apostol-Bernoulli polyno-
mials Bn(λ;x). For λ = 1 these are the classical Bernoulli polynomials
Bn(x) = Bn(1;x). Similarly one defines the Apostol-Bernoulli numbers as
Bn(λ) = Bn(λ; 0), so that Bn = Bn(1) are the classical Bernoulli numbers.
With these definitions in mind, one easily obtains from (7) the well-known
formulas

ζ(−n) = −Bn+1

n+ 1
, Li−n(λ) = −Bn+1(λ)

n+ 1
.

The first is valid for n ∈ N0 and the second for n ∈ N and 0 < |λ| ≤ 1,
λ 6= 1. For n = 0 one has the discrepancy Li0(λ) = −λB1(λ) = −λ/(λ− 1).

4.2. Zeta functions and polylogarithms (II). By considering linear
combinations of translates ζ(s − m) of the Riemann zeta function for m
a non-negative integer, we obtain examples of Dirichlet series with simple
poles at a given set of positive integers. The discussion in Section 3.2 shows
that the coefficients of these series are polynomials in n and the correspond-
ing power series are rational functions with denominators which are powers
of (1− z).
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Indeed, since the power series corresponding to ζ(s) is H(z) = (1−z)−1 =∑∞
n=0 z

n, the power series corresponding to the translate ζ(s−m) is

Hm(z) =

(
d

dz
z

)m
(1− z)−1 =

∞∑
n=0

(n+ 1)mzn =
∞∑
n=1

nmzn−1 = z−1 Li−m(z).

Euler was the first to find the sum of this series in 1749, in essentially the
way that is presented here, observing that

Hm(z) =
∞∑
n=1

nmzn−1 =
Am(z)

(1− z)m+1
(m ≥ 0),

where Am(z) is a palindromic polynomial of degree m− 1 with integer coef-
ficients. The Am(z) are known as Eulerian polynomials2. Their coefficients
are the Eulerian numbers, which have interesting combinatorial interpreta-
tions.

Recalling the formula Li−m(z) = −Bm+1(z)
m+1 from §4.1, we find immediately

that the Apostol-Bernoulli “numbers” Bm(λ) are related to the functions

described in this section by Bm(λ) = −mλHm−1(λ) = −mλAm−1(λ)
(1−λ)m for

m ≥ 2.

4.3. Rational functions. In the previous examples, the power seriesH(z) =∑∞
n=0 hnz

n represents a rational function. A classical theorem of Kronecker
states that rationality of H(z) is equivalent to the sequence {hn} of coef-
ficients satisfying a homogeneous linear recurrence relation with constant
coefficients, i.e. there is an integer d ≥ 0 and c1, . . . , cd ∈ C such that cd 6= 0
and

hn = c1hn−1 + c2hn−2 + · · ·+ cdhn−d

for n sufficiently large. Writing H(z) = Q(z) +R(z)/S(z) where Q,R, S are
polynomials with S 6= 0 and degR < degS, and noting that a polynomial is
a power series with infinite radius of convergence, corresponding to a finite
combination of powers n−s, we may henceforth assume that in fact Q = 0
and R 6= 0, which means that d ≥ 1 and the recurrence holds for n ≥ d.
The general term is thus determined by h0, . . . , hd−1 and in fact

hn = p1(n)λn1 + · · ·+ pr(n)λnr ,

where λ1, . . . , λr ∈ C∗ are the distinct roots of the characteristic polynomial

B(z) = zd − c1z
d−1 − · · · − cd

and each pj(t) is a polynomial of degree less than the multiplicity mj of

λj in B(z). Then H(z) = A(z)/B∗(z) where B∗(z) = 1 − c1z − · · · − cdzd
is the reciprocal polynomial of B(z), and A(z) has degree less than d. We
can assume that the relation is minimal, so that A(z) and B∗(z) have no
common factors. The poles of H(z) are then the zeros of B∗(z), namely, the
reciprocal roots λ−1

j ; thus the radius of convergence of
∑∞

n=0 hnz
n is

R = min
1≤j≤r

|λ−1
j | =

(
max

1≤j≤r
|λj |
)−1

.

2Not to be confused with the Euler polynomials, which have a different definition.
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The condition R ≥ 1 of Lemma 1, for convergence of the corresponding

Dirichlet series D(s) =
∑∞

n=1
hn−1

ns at some point, corresponds in this case
to B(z) having all its roots inside the closed unit disk. By Lemma 2, if
they are all inside the open unit disk, the corresponding Dirichlet series
converges everywhere to an entire function. This leaves the case R = 1,
where at least one root λj , and hence also its reciprocal λ−1

j , is on the unit

circle. Equivalently, H(z) has at least one pole of unit modulus.
In addition, when R = 1, if the poles ofH(z) on the unit circle avoid 1, i.e.,

none of the roots λj of unit modulus are equal to 1, then Theorem 2 implies
that the corresponding Dirichlet series D(s) has an analytic continuation to
an entire function.

For example, H(z) =
∑∞

n=0(−z)n has R = 1 and sums to (1 + z)−1,
whose unique pole is at z = −1. The corresponding Dirichlet series is
the eponymous eta function η(s) =

∑∞
n=1(−1)n−1n−s, which can indeed be

continued to an entire function. In fact η(s) = (1− 21−s)ζ(s), with the zero
of the extra factor canceling the simple pole of ζ(s) at s = 1.

In general, if we shift the general term of the recurrence by 1 then, in

terms of the coefficients of pj(n − 1) =
∑mj−1

k=0 cj,kn
k, the Dirichlet series

corresponding to H(z) is

D(s) =

∞∑
n=1

hn−1

ns
=

∞∑
n=1

r∑
j=1

pj(n− 1)λn−1
j

ns
=

∞∑
n=1

r∑
j=1

mj−1∑
k=0

cj,kn
kλn−1

j

ns

=
r∑
j=1

mj−1∑
k=0

cj,kλ
−1
j

∞∑
n=1

λnj
ns−k

=
r∑
j=1

mj−1∑
k=0

cj,kλ
−1
j Lis−k(λj)

=
r∑
j=1

mj−1∑
k=0

cj,kΦ(λj , s− k, 1),

where Φ(λ, s, x) is the Lerch transcendent, obtained via analytic continua-
tion of the series

∑∞
n=0

λn

(n+x)s . The latter sum provides the analytic contin-

uation of D(s).
If none of the distinct roots λj are equal to 1, then D(s) has an analytic

continuation to an entire function, while if some λj = 1, then the relation
Lis(1) = Φ(1, s, 1) = ζ(s) implies that the corresponding terms in the above
sum are a finite combination of translates of the Riemann zeta function,
namely

mj−1∑
k=0

cj,kζ(s− k),

which contribute possible simple poles at s = 1, 2, . . . ,mj , in agreement
with Theorem 2. Moreover, since mj is the order of the pole of H(z) at

z = λ−1
j = 1, the analytic continuation of D(s) has an actual simple pole at

s = mj .
The values D(−n) at negative integers may be expressed via the above

formula in terms of the Apostol-Bernoulli polynomials described in §4.1, via
the general relation Φ(λ, 1 − k, x) = −Bk(x;λ)/k for k ∈ N. This formula
was in fact one of the main reasons for the introduction of these polynomials
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in the first place [2]. As mentioned in §4.1, for λ = 1 the Apostol-Bernoulli
polynomials reduce to the classical Bernoulli polynomials.

For recurrences with integer coefficients, the roots of B(t) ∈ Z[t] are
conjugate algebraic integers. In this case another theorem of Kronecker
implies that they all lie inside the closed unit disk if and only if they are
roots of unity.

4.4. Rescaling of the Fibonacci generating function. If the power se-
ries H(z) =

∑∞
n=0 hnz

n has radius of convergence R < 1, then by Lemma 1
the corresponding Dirichlet series D(s) =

∑∞
n=1 hn−1n

−s is everywhere di-
vergent. However, we can rescale by the radius of convergence to go back
to the case of R = 1.

In the case when H(z) represents a rational function, this situation occurs
when it has a pole outside the closed unit disk. For example, the Fibonacci
sequence {Fn} is generated by the power series

∑∞
n=0 Fnz

n = z/(1−z−z2),
which is rational with poles at z = −φ, φ−1 where φ is the golden ratio.
Since φ > 1, we have R = φ−1 and the corresponding Dirichlet series is
nowhere convergent. However, rescaling by φ as in [7] we consider

H(z) =

∞∑
n=0

Fnφ
−nzn =

1√
5

(
1

1− z
− 1

1 + φ−2z

)
,

which has R = 1 and is rational with a simple pole at z = 1. Solving
the recurrence relation yields Binet’s formula Fn = 1√

5
(φn − (−φ)−n), from

which one obtains the following closed form for the corresponding Dirichlet
series D(s) =

∑∞
n=0 Fnφ

−n(n+ 1)−s:

D(s) =
1√
5

(ζ(s) + φ2 Lis(−φ−2)).

In this case (6) and (7) give Res(D; 1) = 1√
5

and

D(−n) = − 1

(n+ 1)
√

5
(Bn+1 + φ2Bn+1(−φ−2)).

5. Counterexamples to the converse

Finding a converse to Theorem 2 is not likely to be a simple matter. That
is to say, starting from the assumption that the Dirichlet series D(s) =∑∞

n=1 hn−1n
−s has a meromorphic continuation to C conclude, with suit-

able additional hypotheses, that the power series H(z) =
∑∞

n=0 hnz
n has a

continuation to z = 1.
Here, we give a list of counterexamples to the converse statement illus-

trating various phenomena that indicate we should not expect too straight-
forward a result. For instance, it can happen that H(z) has the unit circle
as natural boundary (i.e. it cannot be continued to any boundary point),
but D(s) still has the “nice” properties of the Dirichlet series in Theorem 2:
a finite number of poles, all of which are simple.
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5.1. The logarithmic series. The power series

H(z) =

∞∑
n=0

zn

n+ 1
= − log(1− z)

z

cannot be continued to a meromorphic function at z = 1, although the
corresponding Dirichlet series is

D(s) =
∞∑
n=1

1

n · ns
= ζ(s+ 1)

which can bbe continued to C except for a simple pole at s = 0. The
principle at work here is that, as we have commented above, differentiation
of the power series corresponds basically to translation of the Dirichlet series.
Although log(1 − z) cannot be continued meromorphically to z = 1, its
derivative can. This is taken up again later in §6.1.

The next pair of (non)-examples lie somewhat deeper.

5.2. Lacunary sequences. Consider the lacunary sequence hn = 1 if n =
2k−1 for some k ∈ N0 and hn = 0 otherwise. It is well-known that the func-
tion in the open unit disk defined by the power series H(z) =

∑∞
n=0 hnz

n =

z−1
∑∞

k=0 z
2k has the unit circle as its natural boundary, that is to say, it

cannot be analytically continued to any point on this boundary (see, for
instance [8, Chapter XVI]). Neither can it be meromorphically continued to
any boundary point, since it would then have an analytic continuation to
nearby arcs. Nevertheless,

D(s) =

∞∑
n=1

hn−1

ns
=

∞∑
k=0

1

2ks
=

1

1− 2−s
(σ > 0),

can be continued to C except for simple poles at s = −2mπi
log 2 , m ∈ Z.

A similar yet more sophisticated example of this phenomenon is the se-
ries H(z) =

∑∞
n=1 z

Fn , where Fn is the sequence of Fibonacci numbers.
{Fn} is also a lacunary sequence and hence H(z) has the unit circle as
natural boundary. Nonetheless it is shown in [6] that the Dirichlet series
D(s) =

∑∞
n=1 F

−s
n has a meromorphic continuation to the complex plane,

with simple poles.

5.3. Dirichlet series with quasiperiodic coefficients. For α ∈ R, let-
ting λ = e2πiα in the example of §4.1 we have the power series Hα(z) =∑∞

n=0 e
2πi(n+1)αzn = e2πiα(1 − e2πiαz)−1 and the Dirichlet series Dα(s) =∑∞

n=1 e
2πinαn−s = Lis(e

2πiα). The sequence hn = e2πi(n+1)α = g((n + 1)α)
for g(x) = e2πix can be generalized to hn = g((n + 1)α), where g(x) is a
trigonometric polynomial with unit period,

g(x) =
N∑

k=−N
cke

2πikx.

The corresponding power series and Dirichlet series are

Hg,α(z) =
N∑

k=−N

cke
2πikα

1− e2πikαz
, Dg,α(s) =

∞∑
n=1

g(nα)

ns
=

N∑
k=−N

ck Lis(e
2πikα).
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It is straightforward to check that for irrational α, Dg,α(s) has a simple
pole at s = 1 or is entire depending on whether c0 is nonzero, whereas for a
reduced rational α = p/q, it has a simple pole at s = 1 depending on whether
or not the sum

∑
|kq|≤N ckq is nonzero (α = 0 corresponds to (p, q) = (0, 1)).

If g(x) is piecewise continuous with unit period and its Fourier series has
an infinite number of terms, then for irrational α ∈ R the series Dg,α(s) are
called Dirichlet series with quasiperiodic coefficients. They are studied in [5]
along with the corresponding power series Hg,α(z). It is shown that under
certain Diophantine approximation conditions on α, the power series Hg,α(z)
has the unit circle as natural boundary yet the Dirichlet series Dg,α(s) can
be analytically continued to an entire function. This result shows that the
converse of Theorem 2 is far from true in general, even under the best of
conditions, namely that D(s) have no poles.

6. Power series that cannot be continued to z = 1

We may interpret Theorem 2 in the contrapositive sense, i.e. as providing
a method for showing that a power series H(z) =

∑∞
n=0 hnz

n converging
inside the unit disk, cannot be continued meromorphically to z = 1, by
checking that the corresponding Dirichlet series D(s) =

∑∞
n=1 hn−1n

−s fails
to have one or more of the characteristics stated in the theorem, namely:

• The poles of D(s) lie in a set of the form {1, 2, . . . , k} for k ∈ N.
• D(s) has no poles of order greater than 1.
• D(s) has a finite number of poles.

In a number of interesting cases, these criteria can be used to easily con-
clude that many types of power series converging inside the unit disk cannot
be continued meromorphically to z = 1. Of course, the criteria can overlap.

In the theory of Dirichlet series, an arithmetical function is a complex
sequence α : N→ C. The corresponding Dirichlet series will be denoted by
Dα(s) =

∑∞
n=1 α(n)n−s. For convenience, we also define the shift operators

h	(n) = h(n − 1) taking sequences h : N0 → C to h	 : N → C and
α⊕(n) = α(n + 1) taking α : N → C to α⊕ : N0 → C. Thus, a sequence
h : N0 → C has generating power series H(z) =

∑∞
n=0 h(n)zn and generating

Dirichlet series Dh	(s) =
∑∞

n=1 h(n− 1)n−s.
The set of arithmetical functions is a commutative algebra with respect to

pointwise sum and Dirichlet convolution (α ∗ β)(n) =
∑

ab=n α(a)β(b), with
the delta function at 1 as the multiplicative identity. We have the following
well-known and easily verifiable facts about the correspondence α 7→ Dα(s):

• Addition corresponds to addition: Dα+β(s) = Dα(s) + Dβ(s).
• Multiplication corresponds to convolution: Dα(s) ·Dβ(s) = Dα∗β(s).
• Translation by τ corresponds to multiplication by nτ : Dα(s−τ) = Dα·nτ (s).
• Differentiation corresponds to multiplication by− log(n): D′α(s) = D−α·log(s).

In general these are formal operations on Dirichlet series, but they become
analytic under suitable growth conditions on arithmetical functions which
ensure convergence of the series in C, such as the ones we have been using
throughout.

With this in mind, we list some criteria that prevent the meromorphic
continuation of a power series converging inside the unit disk to z = 1.



14 L. M. NAVAS, F. J. RUIZ, AND J. L. VARONA

6.1. Poles in the wrong places. Translation by τ ∈ C of a Dirichlet series
D(s) =

∑∞
n=1 hn−1n

−s is reflected in the corresponding power series by

Hτ (z) =

∞∑
n=0

hn(n+ 1)τzn ←→ Dτ (s) = D(s− τ) =

∞∑
n=1

hn−1

ns−τ
.

The radius of convergence stays the same, by the Cauchy-Hadamard for-
mula.

Remark. Recall (§3.2) that for τ = m ∈ N0, translation by 1 corresponds to
the action of the differential operator d

dz z = 1 + z d
dz on power series. The

general case can be interpreted as fractional differentiation: Hτ =
(
d
dz z
)τ
H.

Lemma 4. If H(z) =
∑∞

n=0 hnz
n converges inside the unit disk and can be

continued meromorphically to z = 1, then for a fixed τ ∈ C \ N0, the series
Hτ (z) =

∑∞
n=0 hn(n+ 1)τzn cannot be so continued.

Proof. By Theorem 2, D(s) =
∑∞

n=1 hn−1n
−s has a meromorphic contin-

uation to C with (simple) poles in {1, 2, . . . , k}, but Dτ (s) has poles in
{τ + 1, τ + 2, . . . , τ + k}, which is not a consecutive set of natural numbers
unless τ ∈ N0, as it should be if Hτ (z) could be continued meromorphically
to z = 1. �

For example, if
∑∞

n=0 hnz
n can be continued meromorphically to z = 1

then the series

∞∑
n=0

hn
n+ 1

zn,
∞∑
n=0

hn
√
n+ 1 zn,

∞∑
n=0

hn(n+ 1)πzn

cannot. However, it may still happen that Hτ (z) converges at z = 1 to
some η ∈ C, in which case by Abel’s Theorem the non-tangential limit
] limz→1− Hτ (z) = η exists.

In particular, continuation already fails if τ is a negative integer, e.g. for
τ = −1. In this case the power series of D(s + 1) is obtained by dividing
hn by n + 1 and corresponds to the action of the inverse operator ( ddz z)

−1.
The example in §5.1 is of this form:

H(z) = (1− z)−1 =
∞∑
n=0

zn ←→ ζ(s),

H−1(z) = − log(1− z)
z

=
∞∑
n=0

zn

n+ 1
←→ ζ(s+ 1),

and of course ζ(s+ 1) has its pole at 0, which is not where it should be for
a meromorphic continuation arising from Theorem 2.

This example generalizes to the polylogarithms: Lis(z) =
∑∞

n=1 n
−szn

cannot be meromorphically continued to z = 1 unless s = 0,−1,−2, . . . , in
which case we get the Apostol-Bernoulli numbers. However, for Re s > 1,
the non-tangential limit ] limz→1− Lis(z) = ζ(s) exists.
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6.2. Poles of higher order. Differentiation and taking positive powers
increase the order of a pole. For example, the Dirichlet series

ζ ′(s) = −
∞∑
n=1

log n

ns
, ζ(s)2 =

∞∑
n=1

d(n)

ns
,

where d(n) is the divisor function, have analytic continuations with double
poles at s = 1. Hence, we can conclude that the corresponding power series

∞∑
n=1

log(n)zn,
∞∑
n=1

d(n)zn,

cannot be meromorphically continued to z = 1.
The general result summarizing these various observations is as follows.

Theorem 3. Assume the power series H(z) =
∑∞

n=0 h(n)zn converges in-
side the unit disk and can be continued to a meromorphic function with a
pole at z = 1. Consider the shift h	(n) = h(n− 1) for n ≥ 1. Given τ ∈ C,
k ∈ N, and m ∈ N0, the power series

(8)
∞∑
n=1

(−1)m logm(n) · (h	 ∗ · · · ∗ h	︸ ︷︷ ︸
k

)(n) · nτzn

cannot be meromorphically continued to z = 1 unless k = 1, m = 0 and

τ ∈ N0, corresponding to
(
d
dz z
)l
H(z) for a non-negative integer l.

Proof. This follows immediately from Theorem 2 and the properties of the
correspondence α 7→ Dα(s) between arithmetical functions and Dirichlet
series mentioned above, applied to the Dirichlet series D(s) = Dh	(s) =∑∞

n=1 h(n−1)n−s corresponding to H(z). The power series Hτ,k,m(z) in (8),
up to an irrelevant factor of z, corresponds to the Dirichlet series

dm

dsm
(
D(s)k

)
(s− τ).

If τ /∈ N0, its poles are in the wrong places. If k ≥ 2 or m ≥ 1, they are not
simple. �

6.3. An infinite number of poles. Any Dirichlet series which has a mero-
morphic continuation to C with infinitely many poles cannot arise from the
correspondence in Theorem 2. To give some examples, let µ(n) and Λ(n) be
respectively the Möbius function and the von Mangoldt function defined as

µ(n) =


1, if n = 1 has a squared factor,

(−1)k, if n is the product or k distinct primes,

0, if n has a squared factor,

and

Λ(n) =

{
log(p), if n = pk for some prime p and integer k ≥ 1,

0, otherwise.

Then
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
,

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)



16 L. M. NAVAS, F. J. RUIZ, AND J. L. VARONA

have infinitely many poles since ζ(s) has infinitely many zeros. Hence the
power series

∑∞
n=1 µ(n)zn and

∑∞
n=1 Λ(n)zn cannot be meromorphically

continued to z = 1.
If H(z) =

∑∞
n=0 hnz

n converges inside the unit disk and can be mero-
morphically continued to z = 1, then by (3), the meromorphic continuation
D(s) =

∑∞
n=1 hn−1n

−s has zeros at any negative integer −n where the co-
efficient of degree n in the Laurent series of e−tH(e−t) at t = 0 is null.
This could happen infinitely often, for example because of parity, as with
the Riemann zeta function. If this is the case, and if we use α−1 to de-
note the inverse of an arithmetical function α with respect to the Dirichlet
convolution (it is well known that α−1 exists if and only if α(1) 6= 0), the
formulas

Dα(s)−1 = Dα−1(s), D′α(s)/Dα(s) = D−α−1∗log(s)

for the reciprocal and the logarithmic derivative imply that the power se-
ries

∑∞
n=0(h	)−1(n+ 1)zn and

∑∞
n=0(h	)−1(n+ 1) log(n+ 1)zn cannot be

meromorphically continued to z = 1.

Remark. Much more is known for the classical arithmetical functions such as
those in the examples above. Theorems of Fatou and Carlson from the early
part of the twentieth century state that a power series H(z) =

∑∞
n=1 hnz

n

with integer coefficients which converges inside the unit disk is either rational
or is transcendental over Q(z) and has the unit circle as natural boundary.
This applies in particular if hn has polynomial growth, as is the case for the
above functions. The irrationality of H(z) for many of these arithmetical
functions has now been proven (much more recently, it should be noted),
especially if they are multiplicative, so that typically we may expect H(z)
to have the unit circle as natural boundary. For a survey and extension of
these results, see [4].

7. Functions in the disk with a non-isolated singularity at 1

As we observed in §5.1, the function H(z) = − log(1 − z)/z has a non-
isolated singularity at z = 1 and yet the corresponding Dirichlet series has
a meromorphic continuation. Here we will see that there is a whole class of
such functions whose corresponding Dirichlet series D(s) also has a mero-
morphic continuation to C, in general with countably infinitely many poles.

The key requirement is that there be some number α ∈ R such that
H(e−t)t−α can be analytically continued to t = 0. The prototype is H(z) =
(1− z)α for non-integer α, studied below. All complex powers are assumed
to refer to the principal branch.

Theorem 4. Suppose H(z) =
∑∞

n=0 hnz
n converges inside the unit disk and

α ∈ R is such that H(e−t)t−α can be analytically continued to a neighborhood
of 0. Then there is an entire function F (s) such that the Dirichlet series
D(s) =

∑∞
n=1 hn−1n

−s has the meromorphic continuation

D(s) = F (s+ α)
Γ(s+ α)

Γ(s)
.

In particular, D(s) has at most simple poles at the points of the set {−α,
−α− 1,−α− 2, . . .}.
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Proof. Consider the integral

F (s) =
1

Γ(s)

∫ ∞
0

H(e−t)t−αe−tts−1 dt.

The function f(t) = H(e−t)t−αe−t is analytic at t = 0 with f(t) = O(t−αe−t)
as t → ∞, so the integral converges for σ = Re s > 0. The same reasoning
as in the proof of Theorem 2 shows that it has an analytic continuation to
an entire function and that for σ > α + max(σa, 0), we can exchange the
integral with the power series expansion, yielding

F (s) =
1

Γ(s)

∫ ∞
0

∞∑
n=0

hne
−t(n+1)ts−α−1 dt =

Γ(s− α)

Γ(s)

∞∑
n=0

hn
(n+ 1)s−α

,

or equivalently, for σ > max(σa, 0) we have

D(s) =
∞∑
n=0

hn
(n+ 1)s

= F (s+ α)
Γ(s+ α)

Γ(s)
,

and the latter expression provides the meromorphic continuation of D(s),
whose only possible poles are seen to be those contributed by Γ(s+ α) and
not canceled by zeros of the other two factors. �

Consider H(z) = (1 − z)α. If α is a non-negative integer then D(s) is a
finite sum and hence entire. The case when α is a negative integer is taken
care of by Theorem 2. For non-integer α, define(

α

n

)
=

Γ(α+ 1)

Γ(n+ 1)Γ(α− n+ 1)
=

(α− n+ 1)n
n!

(n ≥ 0)

where (a)n = a(a + 1) · · · (a + n− 1) is the Pochhammer symbol. Then we
have the following result:

Corollary 3. For α ∈ C \ Z, the Dirichlet series

B∗α(s) =

∞∑
n=0

(−1)n
(
α

n

)
1

(n+ 1)s

can be analytically continued to a meromorphic function on C with countably
infinitely many simple poles lying in the set {−α,−α− 1,−α− 2, . . .}.

Proof. Apply Theorem 4 to

H(z) = (1− z)α =
∞∑
n=0

(−1)n
(
α

n

)
zn,

noting that, at least for t > 0, we have

H(e−t)t−α =

(
1− e−t

t

)α
and the right hand side is holomorphic in a neighborhood of t = 0. A number
s in the set {−α,−α− 1,−α− 2, . . .} is a (simple) pole if F (s+ α) 6= 0, i.e.
if F (−n) 6= 0 for n = 0, 1, 2, . . .. Now, as in the proof of Theorem 2, if(

1− e−t

t

)α
e−t =

∞∑
n=0

bnt
n,
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then F (−n) = (−1)nn! bn (the coefficients bn are the values bn = B
(−α)
n (−1−

α)/n! where B
(ν)
n (x) are the Nørlund or “generalized Bernoulli” polynomials

of order ν). Since the above function is not a polynomial, bn 6= 0 for infinitely
many n and hence D(s) has infinitely many poles. �

Remark. Note that by Theorem 2, the series

Bα(s) =

∞∑
n=0

(
α

n

)
1

(n+ 1)s

without the alternating signs, has an analytic continuation to an entire func-
tion, since the corresponding function H(z) = (1 + z)α can be analytically
continued to z = 1. Thus we have an example where introducing alternating
signs causes the Dirichlet series to acquire infinitely many poles. Compare
this with Corollary 1.

At positive integers k we have the following expressions in terms of gen-
eralized hypergeometric functions

Bα(k) = k+1Fk
(

1, . . . , 1︸ ︷︷ ︸
k

,−α; 2, . . . , 2︸ ︷︷ ︸
k

;−1
)
,

B∗α(k) = k+1Fk
(

1, . . . , 1︸ ︷︷ ︸
k

,−α; 2, . . . , 2︸ ︷︷ ︸
k

; 1
)
,

which is not so remarkable, except to note that in the alternating case, apart
from the easy to prove Bα(1) = (α+ 1)−1, we may use the formula

ψ(α+ 1) = −γ +

∞∑
n=1

(−1)n−1

n

(
α

n

)
for the digamma function ψ(z) = Γ′(z)/Γ(z), where γ is Euler’s constant,
along with various identities, to simplify Bα(2) = (α+ 1)−1(γ + ψ(α+ 2)),
and in general Bα(k) can be expressed in terms of polygamma functions. For
complex s these series are therefore a kind of “continuous iterate” version
of these generalized hypergeometric functions.
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