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Abstract. We develop a constructive method for computing explicitly multivariate
Bessel expansions of the type ∑

m≥1

αm

k∏
i=1

Jµi
(ζmxi)

(ζmxi)µi
,

assuming that for a particular value η a closed expression for the single variable Bessel
expansion ∑

m≥1

αm
Jη(ζmx)

(ζmx)η

as a power series of x2j , j ∈ N, is known. Using the method we compute in a closed form
a bunch of examples of multivariate Bessel expansions.

1. Introduction

In 2022 we commemorate the first centenary of Watson’s celebrated masterpiece A trea-
tise on the theory of Bessel functions [19]; see also [14]. Although one hundred years have
passed since the first edition of this fundamental book was published, there are still some
interesting problems about Bessel functions to be addressed. One of them is related to
Bessel expansions in several variables. Watson displayed just a couple of bivariate expan-
sions: the Kneser-Sommerfeld expansion [19, § 15.42, p. 499] (by the way, this expansion
is likely the only mistake in Watson’s book: see [13]), and a particular example of a Neu-
mann series [19, § 16.32, p. 531]. And it is enough to take a look at [16, Sect. 5.7] or [1,
Sect. 6.8] to realize that only a few two variable Bessel series of the form∑

m≥1

αmJµ1(ζmx1)Jµ2(ζmx2)

have been explicitly computed if we compare to single variable ones (see also [4, 10, 12]).
Even less is known if we consider multivariate Bessel series with an arbitrary number of
variables (see [17]). That also happens in the more studied case when the sequence ζm is
the sequence of zeros jm,ν of other Bessel function Jν .

Of course, this is not surprising because the multivariate case is more difficult to handle
than the single variable one.

The purpose of this paper is to improve that situation. To do that, we develop a method
for computing in a closed form multivariate Bessel expansions of the type

(1.1)
∑
m≥1

αm

k∏
i=1

Jµi
(ζmxi)

(ζmxi)µi
,
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assuming that for a particular value η, a closed expression for the single-variable Bessel
expansion

(1.2)
∑
m≥1

αm
Jη(ζmx)

(ζmx)η

as a power series of x2j, j ∈ N, is known.
Using our method, we compute explicitly a bunch of multivariate Bessel expansions,

among which are (for n ∈ Z)

∑
m≥1

jν−2n−1
m,ν

Jν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νxi)µi
,(1.3)

∑
m≥1

jν−2n−1
m,ν

(j2m,ν − z2)Jν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νx)µi
,(1.4)

∑
m≥1

(−1)m

(1 +m2/θ2)n

k∏
i=1

Jµi
(
√
1 +m2/θ2xi)

(
√

1 +m2/θ2xi)µi

,(1.5)

∑
m≥1

λν−2n
m

(λ2m − ν2 +H2)Jν(λm)

k∏
i=1

Jµi
(λmxi)

(λmxi)µi
,(1.6)

∑
m≥1

λν−2n
m

(λ2m − z2)(λ2m − ν2 +H2)Jν(λm)

k∏
i=1

Jµi
(λmxi)

(λmxi)µi
,(1.7)

where in the last two expansions λm are the positive zeros (ordered in increasing size) of
the function

zJ ′
ν(z) +HJν(z), ν > −1, ν +H > 0.

The method is explained in full detail in Sect. 4. In order to establish our method we
prove in Sect. 3 a theorem on multivariate cosine expansions which has interest by itself
(see Theorem 3.1); this theorem is the bridge which allows us to move from the single
variable Bessel expansion (1.2) to the multivariate one (1.1).

In Sect. 5, we consider the case when the particular Bessel series (1.2) is a polynomial
in certain interval; this includes the expansions (1.3) and (1.6). We show that associated
to this type of Bessel expansions are the so-called Bessel-Appell polynomials, i.e., one-
parameter sequences of polynomials (pn,µ)n defined by a generating function of the form

A(z)
Jµ(xz)

(xz)µ
=

∞∑
n=0

pn,µ(x)z
n,

where A is a function analytic at z = 0. In particular, they satisfy

p′n,µ(x) = −xpn−1,µ+1(x), n ≥ 1.

The multivariate Bessel series (1.1) can then be explicitly summed from the Taylor coef-
ficients of the analytic function A. For the benefit of the readers, we display here one of
our results in full detail. Denote

(1.8) Ĉ = C \ {−1,−2,−3, . . . }
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and, for ω > 0,

Ω[ω] =
{
(x1, . . . , xk) ∈ Rk :

k∑
i=1

|xi| ≤ ω
}
,(1.9)

Ω∗
[ω] =

{
(x1, . . . , xk) ∈ Ω[ω] :

k∏
i=1

xi ̸= 0
}
.(1.10)

We then prove that for ν > −1, ν +H > 0, µi ∈ Ĉ, i = 1, . . . , k, with ν < 2n + (k +

1)/2 +
∑k

i=1Reµi and (x1, . . . , xk) ∈ Ω∗
[1], the multivariate Dini-Young expansion (1.6) is

equal to the polynomial

n∑
l=0

aH,ν
n−l

∑
l1+···+lk=l

k∏
i=1

(−x2i /4)
li

2µili! Γ(µi + li + 1)
,

where (aH,ν
n )n is the sequence defined by the generating function

zν

2
(
(H − ν)Jν(z) + zJν−1(z)

) =
∞∑
n=0

aH,ν
n z2n.

In Sect. 6 we extend our results to the case when the particular Bessel series (1.2) is
not a polynomial but still can be expanded in powers of x2j, j ∈ N (which includes
the expansions (1.4), (1.5) and (1.7)). Here is an example in full detail. For Re ν <

2n+
∑k

i=1Reµi+(k+5)/2 and (x1, . . . , xk) ∈ Ω∗
[1], the multivariate Dini-Young expansion

(1.7) is equal to

1

z2n+2

(
zν

2
(
(H − ν)Jν(z) + zJν−1(z)

) k∏
i=1

Jµi
(xiz)

(xiz)µi

−
n∑

l=0

z2l
l∑

j=0

aH,ν
l−j

∑
l1+···+lk=j

k∏
i=1

(−x2i /4)li
2µili! Γ(µi + li + 1)

)
.

When the particular Bessel series (1.2) cannot be expanded in powers of x2j, j ∈ N,
the application of our method is much more complicated. In Appendix (“Multivariate
Sneddon expansion” section), we consider an example of such situation. We can still
obtain some result but not as complete as in the previous scenario. We have considered
the multivariate Sneddon expansion

(1.11)
∑
m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νxi)µi
.

The case k = 2 has been summed in [9] for 2Re ν < 1 + Reµ1 +Reµ2 and 0 < x+ y < 2
(see also [18, § 2.2] and [13]). For k ≥ 3, we consider the sets

Λ+
i =

{
(x1, . . . , xk) ∈ Rk : ∀j xj > 0,

k∑
j=1

xj < 2,
∑
j ̸=i

xj < xi

}
, i = 1, . . . , k,(1.12)

Λ+
r =

{
(x1, . . . , xk) ∈ Rk :

k∑
j=1

xj < 2, ∀i 0 < xi <
∑
j ̸=i

xj

}
(1.13)

(notice that for k = 2, Λ+
r = ∅).
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Assuming that one of the parameters µi is equal to −1/2, we have explicitly summed
the expansion (1.11) in the piece Λ+

i . More precisely using the symmetry of (1.11) we can
take µ1 = −1/2, and then we have∑

m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νxi)µi
=

22ν−2Γ(ν + 1)2

ν
∏k

i=1 2
µiΓ(µi + 1)

(1.14)

×

(
−1 +

(
µ1

ν

) ∞∑
j=0

(ν)j(ν − µ1)jx
−2ν−2j
1

∑
l2+···+lk=j

k∏
i=2

x2lii

li! (µi + 1)li

)

for ν, µi ∈ Ĉ, i = 2, . . . , k, with 2Re ν < 2n + k/2 +
∑k

i=1Reµi and (x1, . . . , xk) ∈ Λ+
1 .

Moreover, we have computational evidence showing that the sum (1.14) also holds when
µ1 ̸= −1/2, but we have not been able to prove it.

We have also failed summing the expansion (1.11) in the piece Λ+
r (1.13).

2. Preliminaries

Throughout this paper, by Jµ(z)

zµ
we denote the even entire function

1

2µ

∞∑
n=0

(−1)n(z/2)2n

n! Γ(µ+ n+ 1)
, z ∈ C.

As usual, (a)n denotes the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)

(with n a nonnegative integer).
The zeros of the even function Jν(z)/z

ν , are simple and can be ordered as a double
sequence (jm,ν)m∈Z\{0} with j−m,ν = −jm,ν and 0 ≤ Re jm,ν ≤ Re jm+1,ν for m ≥ 1
[19, § 15.41, p. 497]. The imaginary part of these zeros is bounded and, when m is a
sufficiently large integer, there is exactly one zero in the strip mπ + π

2
Re ν + π

4
< Re z <

(m+ 1)π + π
2
Re ν + π

4
[19, § 15.4, p. 497], so that

lim
m→+∞

|jm,ν |
πm

= 1.

For ν > −1 and H+ν > 0, the zeros λm, m ≥ 1, of zJ ′
ν(z)+HJν(z) interlace the zeros of

the Bessel function Jν [19, § 15.23, p. 480]. In particular, they are positive and increasing.
We will also use the well-known estimate

0 < c ≤ |Jν+1(jm,ν)
2jm,ν | ≤ C

for some constants c and C not depending on m.
Bessel functions satisfy the bound

|Jβ(z)| ≤ C
e| Im z|

|z|1/2
,

for |z| large enough, with a constant C depending only on β. To be precise, for |z| > ε > 0
and β on a compact set K, there is a constant C depending only on ε and K, as follows
from [15, Eq. 10.4.4 and § 10.17(iv)].

We also use the well-known identity

(2.1)
d

dx

(
Jµ(x)

xµ

)
= −xJµ+1(x)

xµ+1
.
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For µ and η satisfying Reµ > Re η > −1, consider the integral transform Tµ,η given by

(2.2) Tµ,η(f)(x) =
1

2µ−η−1Γ(µ− η)

∫ 1

0

f(xs)s2η+1(1− s2)µ−η−1 ds

(with a small abuse of notation, we will often write Tµ,η(f(x)) if it does not cause confu-
sion).

Sonin’s formula for the Bessel functions [19, 12.11(1), p. 373] can be written as

(2.3)
Jµ(x)

xµ
=

1

2µ−η−1Γ(µ− η)

∫ 1

0

Jη(xs)

(xs)η
s2η+1(1− s2)µ−η−1 ds = Tµ,η

(
Jη(x)

xη

)
valid for Reµ > Re η > −1.

For 2Re η + r + 2 > 0, we also have

(2.4) Tµ,η(x
r) =

Γ(η + r
2
+ 1)

2µ−ηΓ(µ+ r
2
+ 1)

xr,

where we have used that∫ 1

0

sa(1− s2)b ds =
Γ(a+1

2
)Γ(b+ 1)

2Γ(a+1
2

+ b+ 1)
, Re a,Re b > −1.

The identity (2.3) can be extended for Re η < −1 as follows. For µ ∈ Ĉ, η ∈ Ĉ,
η ̸= −3/2,−5/2, . . . , and a positive integer h satisfying Re η > −h/2−1, Reµ > Re η+h,
consider the integral transform Tµ,η,h given by

(2.5) Tµ,η,h(f)(x) =
(−1)h2η+1−µΓ(2η + 2)

Γ(µ− η)Γ(2η + 2 + h)

∫ 1

0

dh

dsh
(
f(xs)(1− s2)µ−η−1

)
s2η+h+1 ds.

It is then easy to check that

Tµ,η,h(x
r) =

Γ(η + r
2
+ 1)

2µ−ηΓ(µ+ r
2
+ 1)

xr,

Tµ,η,h

(
Jη(x)

xη

)
=
Jµ(x)

xµ
.

3. Multivariate cosine expansions

We denote by πk the set of k-tuples ε = (ε1, . . . , εk) of signs εj = ±1 and by sε the

number of negative signs in ε (so that
∏k

j=1 εj = (−1)sε).
We define

Cl
k(x1, . . . , xk) =

1

2k

∑
ε∈πk

( k∑
j=1

εjxj

)l
,

where l ∈ N (we often use Cl
k without the variables xj).

In what follow we will use the multinomial formula

(y1 + y2 + · · ·+ yk)
l =

∑
l1+l2+···+lk=l

(
l

l1, l2, . . . , lk

)
yl11 y

l2
2 · · · ylkk

(in the sum, the lj are non negative integers), where(
l

l1, l2, . . . , lk

)
=

l!

l1! l2! · · · lk!
, with l1 + l2 + · · ·+ lk = l
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are the so-called multinomial coefficients. Of course, these coefficients are invariant under
permutation of the lj; this will be used along the paper without explicit remark. This
gives

Cl
k(x1, . . . , xk) =

1

2k

∑
ε∈πk

( k∑
j=1

εjxj

)l
=

1

2k

∑
ε∈πk

∑
l1+···+lk=l

(
l

l1, . . . , lk

) k∏
i=1

εlii x
li
i

=
1

2k

∑
l1+···+lk=l

(
l

l1, . . . , lk

) k∏
i=1

xlii
∑
ε∈πk

k∏
i=1

εlii .

If some lj is odd, then∑
ε∈πk

k∏
i=1

εlii =
∑

ε∈πk−1

k∏
i=1;i ̸=j

εlii −
∑

ε∈πk−1

k∏
i=1;i ̸=j

εlii = 0,

and the corresponding summand in
∑

l1+···+lk=l vanishes; otherwise, if all the lj are even,∑
ε∈πk

k∏
i=1

εlii =
∑
ε∈πk

1 = 2k.

Consequently, Cl
k = 0 when l is odd, and

(3.1) C2l
k (x1, . . . , xk) =

∑
l1+···+lk=l

(
2l

2l1, . . . , 2lk

)
x2l11 · · · x2lkk .

Theorem 3.1. Let (am)m≥1, (ζm)m≥1 be two sequences of real numbers such that the
following sine and cosine expansions converge pointwisely in some interval (−w,w):

ϕ(x) =
∑
m≥1

am cos(ζmx),

ψ(x) =
∑
m≥1

am sin(ζmx).

Then, the series

(3.2) G(x1, . . . , xk) =
∑
m≥1

am

k∏
j=1

cos(ζmxj)

converges pointwisely if
∑k

j=1 |xj| < ω, and

(3.3) G(x1, . . . , xk) =
1

2k

∑
ε∈πk

ϕ
( k∑

j=1

εjxj

)
.

Proof. First of all, we note that

(3.4)
∑k

j=1 |xj| < ω ⇐⇒ −ω <
∑k

j=1 εjxj < ω for all ε ∈ πk.

Using Euler’s formula cosx = (eix + e−ix)/2, we get

k∏
j=1

cos(ζmxj) =
k∏

j=1

eiζmxj + e−iζmxj

2
=
∑
ε∈πk

k∏
j=1

1

2
eεjiζmxj =

∑
ε∈πk

1

2k
eiζm

∑k
j=1 εjxj .
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Formally, we get from (3.2)

G(x1, . . . , xk) =
∑
m≥1

am
∑
ε∈πk

1

2k
eiζm

∑k
j=1 εjxj =

∑
ε∈πk

1

2k

∑
m≥1

ame
iζm

∑k
j=1 εjxj

=
∑
ε∈πk

1

2k

∑
m≥1

am

(
cos
(
ζm

k∑
j=1

εjxj

)
+ i sin

(
ζm

k∑
j=1

εjxj

))

=
∑
ε∈πk

1

2k

(
ϕ
( k∑

j=1

εjxj

)
+ iψ

( k∑
j=1

εjxj

))
.

The pointwise convergence of the series ϕ and ψ and (3.4) say that each series in the
last sum is convergent and hence we deduce the pointwise convergence of the series (3.2).
The identity (3.3) then follows taking into account that G is a real function because am,
m ≥ 1, are real numbers. □

4. The method

Our method for computing a multivariate Bessel expansion like (1.1) can be described
in the following three steps.

4.1. First step. We start with a particular expansion

(4.1) fη(x) =
∑
m≥1

αm
Jη(ζmx)

(ζmx)η
.

By applying the integral transform Tµ,η (2.2) to (4.1) we get the more general expansion

(4.2)
∑
m≥1

αm
Jµ(ζmx)

(ζmx)µ
= Tµ,η(fη)(x).

This approach was worked out in [8, Lemma 1] assuming that a closed expression for (1.2)
as a power series of x is known. In [8], we considered only the case when (ζm)m is the
sequence of zeros (jm,ν)m of the Bessel function Jν , but there is not problem in taking any

arbitrary sequence ζm. We consider here complex parameters µ, η ∈ Ĉ (1.8), removing
the assumption in [8] where we only considered real parameters with µ, η > −1. For the
benefit of the readers, we display next the new version of [8, Lemma 1] we will use in this
paper.

Lemma 4.1. Given a real number ω ≥ 1, a complex number η ∈ Ĉ such that Re η ̸=
−3

2
,−5

2
,−7

2
, . . . , and two sequences (αm)m≥1 and (ζm)m≥1, ζm ̸= 0, with lim inf |ζm| ≥ 1,

assume that

(4.3)
∑
m≥1

|αm|
|ζm|Re η+1/2

< +∞ and
∑
m≥1

αm
Jη(ζmx)

(ζmx)η
=

+∞∑
j=0

ujx
2j, x ∈ (0, ω).

Let µ ∈ Ĉ. If

(4.4)
∑
m≥1

|αm|
|ζm|Reµ+1/2

< +∞,

then

(4.5)
∑
m≥1

αm
Jµ(ζmx)

(ζmx)µ
=

+∞∑
j=0

ujΓ(η + j + 1)

2µ−ηΓ(µ+ j + 1)
x2j, x ∈ (0, ω).

In particular, this holds if Reµ ≥ Re η.
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Proof. Take a positive integer h and µ ∈ Ĉ such that Re η > −h/2−1 and Reµ > Re η+h.
The first assumption in (4.3) implies that the series in the left hand side of the Bessel
expansion in (4.3) converges uniformly on compacts. The identity (4.5) can then be proved
by applying the integral transform Tµ,η,h (2.2) to both sides of the Bessel expansion in (4.3).
The assumption (4.4) implies that the series in the left hand side of (4.5) is an analytic
function of µ. Since the right hand side of (4.5) is also an analytic function of µ, we can

conclude that (4.5) holds for complex numbers µ ∈ Ĉ satisfying (4.4). □

4.2. Second step. The second step of our method consists in a bridge which allows us
to move from a single variable Bessel expansion to a multivariate one, and use the result
on multivariate trigonometric expansions proved in Sect. 3. Once we have (4.2), since

(4.6)
J−1/2(z)

z−1/2
= (2/π)1/2 cos z,

setting µ = −1/2 in (4.2) and using Theorem 3.1 we get the multivariate cosine expansion

(4.7)
∑
m≥1

αm

k∏
j=1

cos(ζmxj) =
1

2k

∑
ε∈πk

ϕ
( k∑

j=1

εjxj

)
,

where ϕ(x) = (π/2)1/2T−1/2,η(fη)(x).

4.3. Third step. The third step of our method consists in a multivariate version of
Lemma 4.1, which was also established in [8] (see Lemma 2) again by using the integral
transforms Tµi,ηi (2.2) in each variable xi. In doing that we get from (4.7) the more general
multivariate expansion ∑

m≥1

αm

k∏
i=1

Jµi
(ζmxi)

(ζmxi)µi

(the original version in [8] takes as ζm the zeros of a Bessel function Jη and considers only
real parameters, but this is not relevant). Indeed, consider sets Ω ⊆ (0,+∞)k with the
property that (0, 1)k ⊂ Ω and

(x1, x2, . . . , xk) ∈ Ω =⇒
k∏

i=1

(0, xi] ⊆ Ω.

The precise statement goes as follows:

Lemma 4.2. Let ηi ∈ Ĉ, i = 1, . . . , k, such that Re ηi ̸= −3
2
,−5

2
,−7

2
, . . . , and (αm)m and

(ζm)m be two sequences, ζm ̸= 0, with lim inf |ζm| ≥ 1, such that∑
m≥1

|αm|∏k
i=1 |ζm|Re ηi+1/2

< +∞.

Assume that, for (x1, . . . , xk) ∈ Ω,∑
m≥1

αm

k∏
i=1

Jηi(ζmxi)

(ζmxi)ηi
=

∞∑
j1,...,jk=1

uj1,...,jk

k∏
i=1

x2jii ,

where the power series on the right hand side converges absolutely. If µi ∈ Ĉ, i = 1, . . . , k,
and Reµi > Re ηi then for (x1, . . . , xk) ∈ Ω,

(4.8)
∑
m≥1

αm

k∏
i=1

Jµi
(ζmxi)

(ζmxi)µi
=

∞∑
j1,...,jk=1

uj1,...,jk

k∏
i=1

Γ(ηi + ji + 1)x2jii

2µi−ηiΓ(µi + ji + 1)
.
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Moreover, if µi ∈ Ĉ, i = 1, . . . , k, satisfy∑
m≥1

|αm|∏k
i=1 |ζm|Reµi+1/2

< +∞,

then (4.8) also holds.

To sum up, this three-step method works as far as we can explicitly compute the integral
transforms Tµ,η(fη) in (4.2) in the first and the third steps. This is the case when a closed
expression for the function fη in (4.1) as an even power series of x is known. Then, step 1
is Lemma 4.1, step 2 is Theorem 3.1, and step 3 is the particular case ηi = −1/2 in
Lemma 4.2.

In the following lemma we put together all the steps.

Lemma 4.3. Let η, µi ∈ Ĉ, i = 1, . . . , k, with Re η ̸= −3
2
,−5

2
,−7

2
, . . . , a real number

ω ≥ 1, and two sequences (αm)m and (ζm)m, ζm ̸= 0, with lim inf |ζm| ≥ 1, such that the
series

(4.9)
∑
m≥1

|αm||ζm|−Re η−1/2,
∑
m≥1

|αm|,
∑
m≥1

|αm||ζm|−k/2−
∑k

i=1 Reµi

all converge. Assume that

(4.10)
∑
m≥1

αm
Jη(ζmx)

(ζmx)η
=

∞∑
l=0

ulx
2l, x ∈ (−ω, ω).

Then we have, for k ∈ N and
∑k

i=1 |xi| < ω,∑
m≥1

αm

k∏
i=1

Jµi
(ζmxi)

(ζmxi)µi
=

∞∑
l=0

2ηΓ(η + l + 1)ul(4.11)

×
∑

l1+···+lk=l

(
l

l1, . . . , lk

) k∏
i=1

x2lii

2µiΓ(µi + li + 1)
.

Proof. The assumptions in (4.9) on the sequences (αm)m and (ζm)m guarantee the uniform
convergence in compact sets of R of the series in the left-hand side of (4.10) and (4.11).
Taking into account (4.6) and applying Lemma 4.1 for µ = −1/2 (this is why we need

the second assumption in (4.9)), we get for x ∈ (0, ω) that

(4.12)
∑
m≥1

αm cos(ζmx) =
√
π

∞∑
l=0

ulΓ(η + l + 1)

2−ηΓ(l + 1
2
)
x2l.

Since both sides in (4.12) are even functions we get that (4.12) also holds for x ∈ (−ω, 0)
and trivially from (4.10) also for x = 0.

Theorem 3.1 gives, for
∑k

i=1 |xi| < ω,∑
m≥1

αm

k∏
j=1

cos(ζmxj) =
1

2k

∑
ε∈πk

p
( k∑

j=1

εjxj

)
,

where p is the power series in the right-hand side of (4.12). Using (3.1) we get, for∑k
i=1 |xi| < ω,∑

m≥1

αm

k∏
j=1

cos(ζmxj) =
√
π

∞∑
l=0

ulΓ(η + l + 1)

2−ηΓ(l + 1
2
)

∑
l1+···+lk=l

(
2l

2l1, . . . , 2lk

)
x2l11 · · · x2lkk .
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Taking into account (4.6), the last identity can be rewritten in the form∑
m≥1

αm

k∏
j=1

J−1/2(ζmxj)

(ζmxj)−1/2
=

2k/2

π(k−1)/2

∞∑
l=0

ulΓ(η + l + 1)

2−ηΓ(l + 1
2
)

∑
l1+···+lk=l

(
2l

2l1, . . . , 2lk

)
x2l11 · · ·x2lkk .

Write Λ = {(x1, . . . , xk) : xi > 0,
∑k

i=1 xi < ω}. Lemma 4.2 gives, for (x1, . . . , xk) ∈ Λ,∑
m≥1

αm

k∏
i=1

Jµi
(ζmxi)

(ζmxi)µi
=

2k/2

π(k−1)/2
(4.13)

×
∞∑
l=0

ulΓ(η + l + 1)

2−ηΓ(l + 1
2
)

∑
l1+···+lk=l

(
2l

2l1, . . . , 2lk

) k∏
i=1

Γ(li +
1
2
)

2µi+1/2Γ(µi + li + 1)
x2lii ,

from where (4.11) follows easily. Since both sizes of (4.13) are even functions in each

variable xi, we deduce that (4.11) also holds in
∑k

i=1 |xi| < ω, if x1 · · ·xk ̸= 0, and by
continuity for x1 · · ·xk = 0 as well. □

We illustrate the method with a simple but significant example.
One of the most interesting examples of a trigonometric expansion is the Hurwitz series

for the Bernoulli polynomials, n ≥ 1,

B2n+1(x) = (−1)n+1 2(2n+ 1)!

(2π)2n+1

∞∑
m=1

sin(2πmx)

m2n+1
, x ∈ [0, 1],

B2n(x) = (−1)n+1 2(2n)!

(2π)2n

∞∑
m=1

cos(2πmx)

m2n
, x ∈ [0, 1],(4.14)

see [5, 24.8(i)].
For our purpose, it is better to translate the expansion (4.14) to the interval [−1, 1].

Hence, we change x 7→ (x+ 1)/2 to obtain the equivalent cosine series

(4.15) B2n((x+ 1)/2) = (−1)n+1 2(2n)!

22n

∞∑
m=1

(−1)m cos(πmx)

(πm)2n
, x ∈ [−1, 1].

Using the binomial expansion of the Bernoulli polynomials,

B2n((x+ 1)/2) =
2n∑
l=0

(
2n

l

)
B2n−l(1/2)

(x
2

)l
,

the identity Bj(1/2) = −(1 − 21−j)Bj (see [5, 24.4.27]), as well as B1(x) = x − 1/2 and
B2l+1 = 0 for l = 0, 1, 2 . . . , we get

B2n((x+ 1)/2) = −
n∑

j=0

(
2n

2j

)
(22n−2j−1 − 1)B2n−2j

22n−1
x2j.

Hence, (4.15) gives, for x ∈ [−1, 1],
∞∑

m=1

(−1)m cos(πmx)

(πm)2n
=

(−1)n

(2n)!

n∑
j=0

(
2n

2j

)
(22n−2j−1 − 1)B2n−2jx

2j.

Taking into account (4.6), we can apply the Lemma 4.1 to get (after easy computations)
the Bessel expansion

(4.16)
∞∑

m=1

(−1)m

(πm)2n
Jµ(πmx)

(πmx)µ
= (−1)n

n∑
j=0

(22n−2j−1 − 1)B2n−2j

22j+µj! (2n− 2j)! Γ(µ+ j + 1)
x2j,
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valid for x ∈ [0, 1] and 2n + Reµ > 1/2 (n ≥ 1). The identity (4.16) is already known
(although in a more complicated form): it is [16, p. 678, (14)].

Applying Lemma 4.3, we get the following multivariate Bessel expansion which seems
to be new (as far as we know):

∞∑
m=1

(−1)m

(πm)2n

k∏
i=1

Jµi
(πmxi)

(πmxi)µi
(4.17)

= (−1)n
n∑

j=0

(22n−2j−1 − 1)B2n−2j

(2n− 2j)!

∑
l1+···+lk=j

k∏
i=1

(xi/2)
2li

2µili! Γ(µi + li + 1)
,

valid for
∑k

i=1 |xi| ≤ 1 and 2n +
∑k

i=1Reµi + k/2 > 1 (n ≥ 1). Actually, this is the
particular case of the expansion (1.3) (which will be computed in the next section: see
(5.38)) for ν = 1/2.
We can also find the case when n ≤ 0 by differentiating (4.17). Indeed, for n = 1, we

have
∞∑

m=1

(−1)m

(πm)2

k∏
i=1

Jµi
(πmxi)

(πmxi)µi
=

1

4

k∏
i=1

1

2µiΓ(µi + 1)

(
−1

3
+

1

2

k∑
i=1

x2i
µi + 1

)
.

Differentiating with respect to x1, using (2.1), and setting µ1 + 1 7→ µ1, we get

∞∑
m=1

(−1)m
k∏

i=1

Jµi
(πmxi)

(πmxi)µi
= −1

2

k∏
i=1

1

2µiΓ(µi + 1)
,

valid for
∑k

i=1 |xi| ≤ 1 and
∑k

i=1 Reµi + k/2 > 1. And then, differentiating again, we get

∞∑
m=1

(−1)m(πm)2n
k∏

i=1

Jµi
(πmxi)

(πmxi)µi
= 0,

valid for
∑k

i=1 |xi| ≤ 1 and −2n +
∑k

i=1 Reµi + k/2 > 1 (n ≥ 1) (for k = 1 this is [16,
Identity (10), p. 678]).

Cosine expansions (4.14) and (4.15) are equivalent under the linear change of variable
x 7→ (x+1)/2. However if we apply our method to the expansion (4.14) we get completely
different results to those found above (expansions (4.16) and (4.17)). For the one variable
case, producing the Bessel extension is as easy as the previous one, but the scenario
changes dramatically in the multivariate case. This is because in the left hand side
of (4.14), B2n(x) contains a term x2n−1, which corresponds to the even function f(x) =
|x|2n−1. This even function is not analytic at 0 and in the multivariate case it makes the
computation of the integral transforms (2.2) rather complicated. In fact, in that case
infinite power series appears in the close expression for the multivariate Bessel expansion.
Indeed, by applying the integral transform Tµ,−1/2 (2.2) to both sides of (4.14), we can
still produce the following Bessel expansion:

(4.18)
∞∑

m=1

1

(πm)2n
Jµ(πmx)

(πmx)µ
=

(−1)n+122n

2
√
π(2n)!

2n∑
j=0

(
2n

j

)
Γ((j + 1)/2)B2n−j

2µΓ(µ+ j/2 + 1)
(x/2)j,

valid for x ∈ [0, 2] and 2n+Reµ > 1/2 (n ≥ 1). This identity is different to (4.16) but it
is also known: [16, p. 678, (13)] (the case n ≤ 0 can be obtained by differentiation from
the case n = 1 in (4.18)).

As mentioned above, the monomial x2n−1 in the cosine expansion (4.14) makes difficult
to extend it to a multivariate expansion using our method. To illustrate the problem, let
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us take n = 1, then (4.14) gives

∞∑
m=1

cos(πmx)

(πm)2
=
x2

4
− |x|

2
+

1

6

for |x| ≤ 1. Using Theorem 3.1, we get

∞∑
m=1

cos(πmx) cos(πmy)

(πm)2
=
x2

4
+
y2

4
+

1

6
− 1

4
(|x+ y|+ |x− y|).

Applying the integral transforms Tµ1,−1/2 in the variable x and Tµ2,−1/2 in the variable y,
respectively, and using (2.3), (2.4), we find that

∞∑
m=1

1

(πm)2
Jµ1(πmx)Jµ2(πmy)

(πmx)µ1(πmy)µ2
=

2−µ1−µ2−3

Γ(µ1 + 1)Γ(µ2 + 1)

(
x2

µ1 + 1
+

y2

µ2 + 1
+

4

3

)(4.19)

− 2−µ1−µ2

πΓ(µ1 + 1/2)Γ(µ2 + 1/2)

∫ 1

0

∫ 1

0

(|rx+ sy|+ |rx− sy|)(1− r2)µ1−1/2(1− s2)µ2−1/2 dr ds.

It is not necessary to compute the double integral because the Bessel expansion (4.19) is
the particular case ν = 1/2 of the Sneddon-Bessel series we compute in [9], and so using
[9, Sect. 4.1.2], we get

∞∑
m=1

1

(πm)2
Jµ1(πmx)Jµ2(πmy)

(πmx)µ1(πmy)µ2
=

1

2µ1+µ2+3Γ(µ1 + 1)Γ(µ2 + 1)

(
x2

µ1 + 1
+

y2

µ2 + 1
(4.20)

+
4

3
− 2

(
µ1

1/2

)
x

(
2F1

(
−1/2−µ1,1/2

µ2+1
; y2

x2

)
µ1 + 1/2

+

y2

x2 2F1

(
1/2−µ1,1/2

µ2+2
; y2

x2

)
µ2 + 1

))
,

valid for 0 < 2 + Reµ1 + Reµ2, and 0 < y ≤ x, x + y < 2 (also for x + y = 2 if
0 < 1 + Reµ1 +Reµ2).

Contrary to the multivariate Bessel expansion (4.17), (4.20) is not anymore a polyno-
mial (except when the parameters µ1 and µ2 are half positive integers).

5. Bessel expansions of multivariate polynomials

5.1. Bessel-Appell polynomials. Given a function A(z) analytic at z = 0 with A(0) ̸=
0, we define the associated one-parameter family pn,µ(x), n ≥ 0, of Bessel-Appell polyno-
mials by means of the following generating function:

(5.1) A(z)
Jµ(xz)

(xz)µ
=

∞∑
n=0

pn,µ(x)z
n.

It is straightforward from the definition that each pn,µ is an even polynomial of degree 2n,
n ≥ 0. Moreover, using (2.1) we have

(5.2) p′n,µ(x) = −xpn−1,µ+1(x), n ≥ 1.

Bessel-Appell polynomials have been already considered in the literature ([2]), although
with no special denomination and, as far as we know, with no connection with the explicit
sum of Bessel expansions. Bessel-Appell polynomials also satisfy

T (pn,µ)(x) = pn−1,µ(x), T = − d2

dx2
− 2µ+ 1

x

d

dx
.



HOW TO COMPUTE MULTIVARIATE BESSEL EXPANSIONS 13

Write T̂ for the linear operator T̂ (p)(x) = T (p(x2))(
√
x) acting on polynomials p. We

then have

T̂ (pn,µ(
√
x)) = pn−1,µ(

√
x), n ≥ 1,

and so the polynomials (pn,µ(
√
x))n are of the Appell type studied in [11, Chap. 10].

The generating function (5.1) also shows that if A(z) =
∑∞

n=0 anz
n, then

(5.3) pn,µ(0) =
an

2µΓ(µ+ 1)
, n ≥ 0.

Moreover, iterating the identity (5.2), we get

(5.4)
p
(2j)
n,µ (0)

(2j)!
=

(−1)jan−j

2µ+2jj! Γ(µ+ j + 1)
, n ≥ 0.

For Reµ > Re ν > −1, using the integral transform (2.2) in (5.1) we have

(5.5) Tµ,ν(pn,ν)(x) = pn,µ(x), n ≥ 0.

The identity (5.5) can be extended for Re ν < −1 using the integral transform (2.5).
In the opposite direction, assume that we have a one-parameter family pn,µ(x), n ≥ 0,

of polynomials with pn,µ of degree 2n satisfying (5.2) and (5.3) for certain sequence (an)n
such that A(z) =

∑∞
n=0 anz

n defines a function analytic at z = 0, which is equivalent to

(5.6) lim sup
n→+∞

|an|1/n < +∞.

Since (5.2) and (5.3) determine uniquely the whole parametric family of polynomials, it
follows that (pn,µ)n also satisfy (5.1).

Remark 5.1. We can find a connection of Bessel-Appell polynomials and Bessel expan-
sions of the form

(5.7)
∑
m≥1

αmζ
−2n
m

Jµ(ζmx)

(ζmx)µ
.

To this end, assume we have sequences (αm)m≥1, (ζm)m≥1, ζm ̸= 0, such that for certain
ν ∈ C, Re ν > −1, and ω > 0,

lim inf
m

|ζm| ≥ 1,
∑
m≥1

|αm|
|ζm|Re ν+1/2

< +∞,(5.8)

∑
m≥1

αm
Jν(ζmx)

(ζmx)ν
= a0 ∈ C \ {0}, x ∈ (0, ω).(5.9)

Using the assumption (5.8) we can define for Reµ ≥ Re ν, n ≥ 0 and 0 < x the functions

(5.10) pn,µ(x) =
∑
m≥1

αmζ
−2n
m

Jµ(ζmx)

(ζmx)µ
.

Notice that the convergence is uniform in compact subsets of (0,+∞). It is then easy to
see using (2.1) that they satisfy (5.2), that is,

p′n,µ(x) = −xpn−1,µ+1(x), n ≥ 1.

Moreover, for Reµ > Re ν, using (2.3) we have, from (5.10) that

(5.11) pn,µ(x) = Tµ,ν(pn,ν)(x),

where Tµ,ν is the integral transform (2.2): the assumption (5.9) allows changing the order
of the integral transform and the series (5.10) which defines the function pn,ν(x).
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The assumption (5.9), the identity (5.11) for n = 0, and (2.4) imply that for Reµ ≥
Re ν, p0,µ(x) is constant in (0, ω), and then pn,µ(x), n ≥ 0, is a polynomial of degree 2n
in (0, ω). With a small abuse of notation, we also write pn,µ(x) for the polynomial in C
that coincides with pn,µ(x) in (0, ω).

Let us take

(5.12) an = 2νΓ(ν + 1)pn,ν(0).

The sequence (an)n can be used to sum a bunch of Bessel series, including (5.7). This
goes as follows. Since for n big enough

pn,ν(0) =
1

2νΓ(ν + 1)

∑
m≥1

αmζ
−2n
m ,

it follows from (5.8) that (an)n satisfies (5.6) and we can define a function A(z) analytic
at z = 0, with A(0) = a0 ̸= 0, by the power series

(5.13) A(z) =
∞∑
n=0

anz
2n.

Using (5.11) for x = 0 and (2.4) for r = 0, we get (5.3):

pn,µ(0) =
an

2µΓ(µ+ 1)
, n ≥ 0.

Hence for Reµ > Re ν our discussion at the beginning of this section shows that the
polynomials pn,µ, n ≥ 0, defined by (5.10), are also the Bessel-Appell polynomials defined
by (5.1) where the analytic function A is given by (5.13).

Using (5.4) and (5.10), we get

(5.14)
∑
m≥1

αmζ
−2n
m

Jµ(ζmx)

(ζmx)µ
=

n∑
j=0

an−j(−x2/4)j

2µj! Γ(µ+ j + 1)
, x ∈ (0, ω).

Moreover, if for some n < 0,
∑

m≥1 |αm||ζm|−2n−Reµ−1/2 < +∞ (with Reµ > Re ν),
differentiating −n times in (5.14) for n = 0, we get∑

m≥1

αmζ
−2n
m

Jµ(ζmx)

(ζmx)µ
= 0, x ∈ (0, ω).

In the next proposition, we include other series that can be summed using the sequence
(an)n given in (5.12).

Proposition 5.2. Assume that the sequences (αm)m≥1, (ζm)m≥1, satisfy (5.8) and (5.9).
We then have for n ≥ 0, Reµ ≥ Re ν and x ∈ (0, ω),

(5.15)
∑
m≥1

αmζ
−2n
m

(ζ2m − z2)

Jµ(ζmx)

(ζmx)µ
=

1

z2n+2

(
A(z)

Jµ(xz)

(xz)µ
−

n∑
l=0

z2l
l∑

j=0

al−j(−x2/4)j

2µj! Γ(µ+ j + 1)

)
,

where A is given by (5.13) and (an)n is defined by (5.12).

Proof. The proof is a matter of computation. Indeed, using the geometric series and the
polynomials (5.10), we deduce for |z| < infm |ζm| (and then on the whole range by analytic
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continuation) that∑
m≥1

αmζ
−2n
m

(ζ2m − z2)

Jµ(ζmx)

(ζmx)µ
=
∑
m≥1

∞∑
l=0

αmz
2l

ζ2n+2l+2
m

Jµ(ζmx)

(ζmx)µ

=
∞∑
l=0

z2l
∑
m≥1

αm

ζ2n+2l+2
m

Jµ(ζmx)

(ζmx)µ

=
∞∑
l=0

pn+l+1,µ(x)z
2l =

1

z2n+2

∞∑
l=n+1

pl,µ(x)z
2l

=
1

z2n+2

(
A(z)

Jµ(xz)

(xz)µ
−

n∑
l=0

pl,µ(x)z
2l

)
.

It is then enough to use (5.4). □

Moreover, if for some n < 0,
∑

m≥1 |αm||ζm|−2n−Reµ−5/2 < +∞ (with Reµ > Re ν),
differentiating −n times in (5.15) for n = 0 and taking into account the identity (2.1), we
have, for x ∈ (0, ω), ∑

m≥1

αmζ
−2n
m

(ζ2m − z2)

Jµ(ζmx)

(ζmx)µ
=
A(z)

z2n+2

Jµ(xz)

(xz)µ
.

Our method will allow us to compute explicitly the corresponding multivariate version
of the expansions (5.15). They can well be called Kneser-Sommerfeld type expansions,
since for

ζm = jm,ν , αm =
1

Jν+1(jm,ν)2

the corresponding two variable expansion is the well-known Kneser-Sommerfeld expan-
sion ([13]).

Let us develop a couple of illustrative examples. The first one is the Dini-Young series

(5.16)
∑
m≥1

λν−2n
m

(λ2m − ν2 +H2)Jν(λm)

Jµ(λmx)

(λmx)µ
,

for 0 < x ≤ 1, where ν and H are real parameters satisfying ν > −1 and H + ν > 0,
µ ∈ Ĉ with ν < 2n + 1 + Reµ and λm are the positive zeros (ordered in increasing size)
of the function

(5.17) zJ ′
ν(z) +HJν(z).

To sum explicitly (5.16), we define the sequence (aH,ν
n )n by

(5.18)
zν

2
(
(H − ν)Jν(z) + zJν−1(z)

) =
∞∑
n=0

aH,ν
n z2n.

Using the power series for the Bessel functions, the sequence (aH,ν
n )n can be recursively

defined as follows: aH,ν
0 = 2ν−1Γ(ν + 1)/(H + ν), and

(5.19)
n∑

j=0

ν + 2(n− j) +H

(−4)n−j(n− j)! (ν + 1)n−j

aH,ν
j = 0, n ≥ 1.

Define now the one-parameter Bessel-Appell polynomials by the generating function

(5.20)
zν

2
(
(H − ν)Jν(z) + zJν−1(z)

) Jµ(xz)
(xz)µ

=
∞∑
n=0

pH,ν
n,µ (x)z

n.
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For n ≥ 0 and 0 ≤ j ≤ n, define

bnj = 2(−4)j(n− j + 1)j(ν + n− j + 1)j(ν + 2(n− j) +H).

An easy computation, using the power series of the Bessel functions, shows that the
polynomials pH,ν

n,ν , n ≥ 0, can also be defined recursively by

(5.21) pH,ν
0,ν =

1

2(ν +H)
,

n∑
j=0

bnj p
H,ν
j,ν (x) = x2n, n ≥ 1.

Consider next the Bessel-Dini series of x2n in (0, 1), namely

(5.22) x2n =
∑
m≥1

βn
m

Jν(λmx)

(λmx)ν
.

The case n = 0 was summed by Young [20], this is why we call Dini-Young series to the
expansion (5.16). If we write

ξm =
λνm

(λ2m − ν2 +H2)Jν(λm)
,

according to [19, § 18.12, (2), p. 581] we have

(5.23) β0
m = 2(ν +H)ξm,

as follows from [19, § 18.12, (2), p. 581] and the trivial fact that the zeros λm of (5.17)
satisfy

(λ2m − ν2)Jν(λm)
2 + λ2mJ

′
ν(λm)

2 = (λ2m − ν2 +H2)Jν(λm)
2,

λmJν+1(λm)

Jν(λm)
= ν +H.

According to the reduction formula in [19, § 18.12, p. 581], we have the recursion

βn
m = 2(ν + 2n+H)ξm − 4n(ν + n)

λ2m
βn−1
m , n ≥ 1.

This shows that

(5.24) βn
m = ξm

n∑
j=0

bnj
1

λ2jm
.

Define finally the functions

qH,ν
n (x) =

∑
m≥1

ξmλ
−2n
m

Jν(λmx)

(λmx)ν
, x ∈ (0, 1).

The definition of βn
m (5.22) and the identity (5.24) show that

(5.25)
n∑

j=0

bnj q
H,ν
j (x) = x2n, n ≥ 1.

On the one hand, (5.21), (5.22), and (5.23) for n = 0 imply that qH,ν
0 = pH,ν

0,ν . On the

other hand, the recursions (5.20) and (5.25) show that qH,ν
n = pH,ν

n,ν , n ≥ 1.
Hence setting ζm = λm and αm = ξm, we can apply Remark 5.1 to get, for Reµ > ν

and 0 < x ≤ 1,

(5.26)
∑
m≥1

λν−2n
m

(λ2m − ν2 +H2)Jν(λm)

Jµ(λmx)

(λmx)µ
=

n∑
j=0

aH,ν
n−j (−x2/4)

j

2µj! Γ(µ+ j + 1)
.
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The identity (5.26) also holds for ν < 2n + 1 + Reµ, because then both sides of the
identity are analytic functions of µ. The identity is also valid for x = 0 assuming that
ν < 2n+ 1/2.
Moreover, for 0 < −2n < −ν +Reµ+ 1,∑

m≥1

λν−2n
m

(λ2m − ν2 +H2)Jν(λm)

Jµ(λmx)

(λmx)µ
= 0, x ∈ (0, 1).

In the next section, we will consider the expansions provided by Proposition 5.2.
The second illustrative example are the Bessel expansions

(5.27)
∑
m≥1

jν−1−2n
m,ν

Jν+1(jm,ν)

Jµ(jm,νx)

(jm,νx)µ
,

0 < x < 1 and Re ν < Reµ + 2n. The series (5.27) was explicitly summed in [7, Sect. 5]
using the theory of residues. For the sake of completeness, we compute the sum here
using our method.

The starting point is the sequence (aνn)n defined by

(5.28)
zν

2Jν(z)
=

∞∑
n=0

aνnz
2n.

This is the case H = ν of the previous example with ν +1 instead of ν, but since we now
consider complex parameters ν, we work it out from the scratch.

Using the power series for the Bessel functions, the sequence (aνn)n can be recursively
defined as follows: aν0 = 2ν−1Γ(ν + 1), and

(5.29)
n∑

j=0

4ν + 4(n− j + 1)

(−4)n−j(n− j)! (ν + 2)n−j

aνj = 0, n ≥ 1.

Define now the one-parameter Bessel-Appell polynomials by the generating function

(5.30)
zν

2Jν(z)

Jµ(xz)

(xz)µ
=

∞∑
n=0

pνn,µ(x)z
2n.

For µ = ν and µ = ν− 1 they are the even Euler-Dunkl and Bernoulli-Dunkl polynomials
we introduced in [6] and [3], respectively (up to renormalization). Using [6, Theorem 3.1],
we have

(5.31)
∑
m≥1

jν−1−2n
m,ν

Jν+1(jm,ν)

Jν(jm,νx)

(jm,νx)ν
= pνn,ν(x),

with uniform convergence on compact subsets of (−1, 1) \ {0} for n = 0 and [−1, 1] \ {0}
for n ≥ 1. The convergence extends to x = 0 provided that Re ν < n+ 1/2.
We next prove that for Reµ+ 2n > Re ν and x ∈ (0, 1),

(5.32)
∑
m≥1

jν−1−2n
m,ν

Jν+1(jm,ν)

Jµ(jm,νx)

(jm,νx)µ
= pνn,µ(x) =

n∑
j=0

aνn−j(−x2/4)j

2µj! Γ(µ+ j + 1)
.

It is interesting to note that the polynomials pνn,µ(x) in this formula are Bessel-Appell

polynomials as defined in (5.1), with A(z) = zν

2Jν(z)
, see (5.30). In particular, they satisfy

the general properties (5.2) and (5.5).

Let us start taking ζm = jm,ν and αm =
jν−1
m,ν

Jν+1(jm,ν)
. Although the second assumption in

(5.8) fails, we can still use the Remark 5.1 due to the uniform convergence in (−1, 1)\{0}
of (5.31) for n = 0.
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To extend the identity (5.32) to Reµ+2n > Re ν, we proceed as follows. For Re ν < −1,
ν ̸= −3/2,−5/2, . . . , consider a positive integer h such that Re ν > −h/2− 1, and take µ
with Reµ > Re ν + h. Using the integral transform Tµ,ν,h (2.5), together with integration
by parts and (5.11), we get from (5.31)

(5.33)
∑
m≥1

jν−1−2n
m,ν

Jν+1(jm,ν)

Jµ(jm,νx)

(jm,νx)µ
= Tµ,ν,h(p

ν
n,ν)(x) = Tµ,ν(p

ν
n,ν)(x) = pνn,µ(x), x ∈ (0, 1).

For ν = −3/2,−5/2, . . . , (5.33) follows by continuity. It is now enough to take into
account that for fixed ν and assuming Reµ+ 2n ≥ Re ν both sides of (5.32) are analytic
functions of µ.

For n < 0, Reµ + 2n > Re ν and x ∈ (0, 1), we have, differentiating the case n = 0
in (5.32), ∑

m≥1

jν−1−2n
m,ν

Jν+1(jm,ν)

Jµ(jm,νx)

(jm,νx)µ
= 0.

5.2. Getting multivariate Bessel expansions of polynomials. We next use Lemma 4.3
to sum in an explicit form the multivariate series (1.6) and (1.3).

For the Dini-Young expansion (1.6), we assume ν, H to be real parameters with ν+H >

0 and ν > −1, and µi ∈ Ĉ, i = 1, . . . , k. We next prove that for ν < 2n+(k+1)/2+
∑k

i=1 µi

and (x1, . . . , xk) ∈ Ω∗
[1] (see (1.10))

∑
m≥1

λν−2n
m

(λ2m − ν2 +H2)Jν(λm)

k∏
i=1

Jµi
(λmxi)

(λmxi)µi
(5.34)

=
n∑

l=0

aH,ν
n−l

∑
l1+···+lk=l

k∏
i=1

(−x2i /4)
li

2µili! Γ(µi + li + 1)
,

where (aH,ν
n )n is the sequence defined by (5.18) (or (5.19)).

We proceed in two steps.

5.3. First step. The identity (5.34) holds for ν < 2n+1/2, ν < 2n+(k+1)/2+
∑k

i=1 µi.
This is a direct consequence of Lemma 4.3 (after some easy computations).

5.4. Second step. The identity (5.34) holds for ν < 2n+ (k + 1)/2 +
∑k

i=1 µi.
Fixed ν, notice that the series in the left hand side of (5.34) converges uniformly in

Ω∗
[1] for each n such that ν < 2n + (k + 1)/2 +

∑k
i=1 µi. Fix then n such that ν <

2n + (k + 1)/2 +
∑k

i=1 µi, and take a positive integer nν ≥ n such that ν < 2nν + 1/2.

Since we also have ν < 2nν + (k + 1)/2 +
∑k

i=1 µi, the first step shows that (5.34) holds
for nν instead of n. Fix j, 1 ≤ j ≤ k, and write Hn,µj

(xj), Hn,µj
(xj) for the functions

in the left and right hand side of (5.34), respectively (there is no need to include in
the notation neither the parameters ν, µi, i ̸= j, nor the variables xi, i ̸= j). We
have that Hnν ,µj

(xj) = Hnν ,µj
(xj). Take now µi real and big enough so as to satisfy

ν < 2n + (k + 1)/2 +
∑k

i=1 µi and to allow the following computations. First of all, we
prove that

(5.35)
∂

∂xj
Hnν ,µj

(xj) = −xjHnν−1,µj+1(xj),
∂

∂xj
Hnν ,µj

(xj) = −xjHnν−1,µj+1(xj).
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Indeed, the first identity above is straightforward from (2.1). With respect to the second
identity, by differentiation it follows that

∂

∂xj
Hnν ,µj

(xj) =
nν∑
l=1

aH,ν
nν−l

∑
l1+···+lk=l

2lj
xj

k∏
i=1

(−x2i /4)
li

2µili! Γ(µi + li + 1)

=
nν−1∑
l=0

aH,ν
nν−1−l

∑
l1+···+lk=l+1

2lj
xj

k∏
i=1

(−x2i /4)
li

2µili! Γ(µi + li + 1)
.(5.36)

Since the summand in right hand side of (5.36) vanishes for lj = 0, we get (after simpli-
fication)

∂

∂xj
Hnν ,µj

(xj) = −xjHnν−1,µj+1(xj).

This means, using (5.35) and Hnν ,µj
(xj) = Hnν ,µj

(xj), that

Hnν−1,µj+1(xj) = Hnν−1,µj+1(xj).

Iterating, we get

Hn,µj+nν−n(xj) = Hn,µj+nν−n(xj).

This proves the identity (5.34) for µi, i = 1, . . . , k, real and big enough. Since for µi,

i = 1, . . . , k, such that ν < 2n+(k+1)/2+
∑k

i=1 µi the left and right hand sides of (5.34)
are analytic functions of each µi, we deduce that (5.34) actually holds in Ω∗

[1] under the

assumption ν < 2n+ (k + 1)/2 +
∑k

i=1 µi.

For n < 0, ν < 2n+ (k + 1)/2 +
∑k

i=1 µi and (x1, . . . , xk) ∈ Ω∗
[1],∑

m≥1

λν−2n
m

(λ2m − ν2 +H2)Jν(λm)

k∏
i=1

Jµi
(λmxi)

(λmxi)µi
= 0.

Proceeding in the same way, we can explicitly sum the Bessel expansion (1.3). First of
all, we complete the notation (1.9) and (1.10) with the following one: for ω > 0,

Ω(ω) =
{
(x1, . . . , xk) ∈ Rk :

k∑
i=1

|xi| < ω
}
,

Ω∗
(ω) =

{
(x1, . . . , xk) ∈ Ω(ω) :

k∏
i=1

xi ̸= 0
}
.(5.37)

Then we get, for Re ν < 2n+ (k − 1)/2 +
∑k

i=1Reµi,

(5.38)
∑
m≥1

jν−2n−1
m,ν

Jν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νxi)µi
=

n∑
l=0

aνn−l

∑
l1+···+lk=l

k∏
i=1

(−x2i /4)
li

2µili! Γ(µi + li + 1)
,

where (aνn)n is the sequence defined by (5.28) (or (5.29)), and (x1, . . . , xk) ∈ Ω∗
[1] for n ≥ 1,

or (x1, . . . , xk) ∈ Ω∗
(1) for n = 0.

For n < 0, Re ν < 2n+ (k − 1)/2 +
∑k

i=1 Reµi and (x1, . . . , xk) ∈ Ω∗
(1), we have

∑
m≥1

jν−2n−1
m,ν

Jν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νxi)µi
= 0.
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6. Bessel expansions of non-polynomial functions

In this section, some other examples of Bessel expansions which are not polynomials
will be given.

We start from the expansion generated by Proposition 5.2 applied to the Bessel expan-
sions (5.32) and (5.26).

6.1. Kneser-Sommerfeld type expansions. Let us prove the following identity for the
multivariate expansion (1.4):

∑
m≥1

jν−1−2n
m,ν

(j2m,ν − z2)Jν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νxi)µi
=

1

z2n+2

(
zν

2Jν(z)

k∏
i=1

Jµi
(xiz)

(xiz)µi
(6.1)

−
n∑

l=0

z2l
l∑

j=0

aνl−j

∑
l1+···+lk=j

k∏
i=1

(−x2i /4)li
2µili! Γ(µi + li + 1)

)
,

for Re ν < 2n + (k + 3)/2 +
∑k

i=1Reµi and (x1, . . . , xk) ∈ Ω∗
[1] (see (1.10)), where the

sequence (aνn)n is defined by (5.28) (or (5.29)).
We proceed in two steps.

6.2. First step. The case k = 1.
Applying Proposition 5.2 to the expansion (5.32), we get

∑
m≥1

jν−1−2n
m,ν

(j2m,ν − z2)Jν+1(jm,ν)

Jµ(jm,νx)

(jm,νx)µ
(6.2)

=
1

z2n+2

(
zν

2Jν(z)

Jµ(xz)

(xz)µ
−

n∑
l=0

z2l
l∑

j=0

aνl−j(−x2/4)j

2µj! Γ(µ+ j + 1)

)
,

with uniform convergence in compact sets of (0, 1] for Re ν < 2n + 2 + Reµ and in [0, 1]
for Re ν < 2n+ 3/2, where the sequence (aνn) is defined by (5.28) (or (5.29)).

6.3. Second step. The case k ≥ 1.
Write

(6.3) fn,ν(x, z) =

√
2

π

n∑
l=0

z2l
l∑

j=0

(−1)jaνl−jx
2j

(2j)!
.

Consider the case µ = −1/2 in (6.2). Using the identity (4.6), we get, for Re ν < 2n+3/2
and x ∈ [−1, 1],√

2

π

∑
m≥1

jν−2n−1
m,ν cos(jm,νx)

(j2m,ν − z2)Jν+1(jm,ν)
=

1

z2n+2

(
zν
√
2/π cos(zx)

2Jν(z)
− fn,ν(x, z)

)
.

The trigonometric identity

∑
ε∈πk

cos
(
z

k∑
i=1

εixi

)
= 2k

k∏
i=1

cos(zxi),



HOW TO COMPUTE MULTIVARIATE BESSEL EXPANSIONS 21

together with Theorem 3.1 gives√
2

π

∑
m≥1

jν−2n−1
m,ν

(j2m,ν − z2)Jν+1(jm,ν)

k∏
i=1

cos(jm,νxi)

=
1

z2n+2

(
zν
√

2/π

2Jν(z)

k∏
i=1

cos(zxi)−
1

2k

∑
ε∈πk

fn,ν

( k∑
i=1

εixi, z
))

.

Using the identity (4.6), (6.3) and (3.1), this can be rewritten in the form∑
m≥1

jν−2n−1
m,ν

(j2m,ν − z2)Jν+1(jm,ν)

k∏
i=1

J−1/2(jm,νxi)

(jm,νxi)−1/2
=

1

z2n+2

(
zν

2Jν(z)

k∏
i=1

J−1/2(zxi)

(zxi)−1/2
(6.4)

−
(
2

π

)k/2 n∑
l=0

z2l
l∑

j=0

(−1)jaνl−jx
2j

(2j)!

∑
l1+···+lk=j

(
2j

2l1, . . . , 2lk

) k∏
i=1

x2lii

)
,

where (x1, . . . , xk) ∈ Ω∗
[1].

Assuming that Reµi ≥ −1/2 and using the integral transform Tµi,−1/2 (2.2) acting on
the variable xi, we get from (6.4) the identity (6.1).
To extend the formula (6.1) from Re ν ≤ 2n + 3/2, Reµi ≥ −1/2 to Re ν < 2n +

(k + 3)/2 +
∑k

i=1 Reµi and (x1, . . . , xk) ∈ Ω∗
[1], we can proceed as in the second step in

Sect. 5.2.
For n < 0, we have, by −n times differentiation of the case n = 0 of (6.1),∑

m≥1

jν−1−2n
m,ν

(j2m,ν − z2)Jν+1(jm,ν)

k∏
i=1

Jµi
(jm,νxi)

(jm,νxi)µi
=

1

z2n+2

zν+k−2n−2

2Jν(z)

k∏
i=1

Jµi
(xiz)

(xiz)µi

for Re ν < 2n+ (k + 3)/2 +
∑k

i=1Reµi and (x1, . . . , xk) ∈ Ω∗
[1].

In the same way, one can prove that∑
m≥1

λν−2n
m

(λ2m − z2)(λ2m − ν2 +H2)Jν(λm)

k∏
i=1

Jµi
(λmxi)

(λmxi)µi

=
1

z2n+2

(
zν

2
(
(H − ν)Jν(z) + zJν−1(z)

) k∏
i=1

Jµi
(xiz)

(xiz)µi

−
n∑

l=0

z2l
l∑

j=0

aH,ν
l−j

∑
l1+···+lk=j

k∏
i=1

(−x2i /4)li
2µili! Γ(µi + li + 1)

)
,

for Re ν < 2n+(k+5)/2+
∑k

i=1Reµi and (x1, . . . , xk) ∈ Ω∗
[1], where the sequence (a

H,ν
n )n

is defined by (5.18) (or (5.19)).

6.4. Two more examples. In this section, we sum the Bessel expansion (1.5) and other
related expansion.

Let φ be the analytic function in C \ {m2 : m ∈ N \ {0}} defined by

(6.5) φ(z) =
1

z
− π√

z sin(π
√
z)

= 2
∑
m≥1

(−1)m

m2 − z
.

Define now the sequence

aθn = 1 +
θ2n+2φ(n)(−θ2)

n!
, n ≥ 0.
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We next prove that the multivariate Bessel series (1.5) is equal to∑
m≥1

(−1)m

(1 +m2/θ2)n

k∏
i=1

Jµi
(
√

1 +m2/θ2xi)

(
√

1 +m2/θ2xi)µi

(6.6)

=
1

2

(
−

k∏
i=1

Jµi
(xi)

xµi

i

+
n−1∑
l=0

aθn−l−1

∑
l1+···+lk=l

k∏
i=1

(−x2i /4)li
2µili! Γ(µi + li + 1)

)
,

where 1 < 2n+ k/2 +
∑k

i=1 Reµi for (x1, . . . , xk) ∈ Ω∗
(θπ) (with the notation of (5.37)).

To this end, define the polynomials P µ,θ
n (x), n ≥ 0, by

P µ,θ
0 (x) = 0,

P µ,θ
n (x) =

n−1∑
j=0

aθn−j−1(−x2/4)j

2µj! Γ(µ+ j + 1)
, n ≥ 1.(6.7)

Then, P µ,θ
n is an even polynomial of degree 2n− 2. On the one hand, it is easy to check

that

P µ,θ
n (0) =

1

2µΓ(µ+ 1)

(
1 +

θ2nφ(n−1)(−θ2)
(n− 1)!

)
, n ≥ 1,(6.8)

(P µ,θ
n )′(x) = −xP µ+1,θ

n−1 (x),(6.9)

P µ,θ
n (x) = Tµ,−1/2,h(P

−1/2,θ
n )(x), µ ≥ −1/2 + h.

On the other hand, it is plain that the conditions (6.8) and (6.9) determine uniquely the
family of polynomials P µ,θ

n .
A simple computation using (6.5) and (6.7) shows that

(6.10) P µ,θ
n (0) =

1

2µΓ(µ+ 1)

(
1 + 2

∑
m≥1

(−1)m

(1 +m2/θ2)n

)
, n ≥ 1.

Let us note that the polynomials (P µ,θ
n )n are actually quasi Bessel-Appell. Indeed, write

pµ,θn (x) = P µ,θ
n+1(x) so that pµ,θn is a even polynomial of degree 2n. It is then easy to check

that the polynomials (pµ,θn )n are the Bessel-Appell polynomials defined by (5.1) from the
generating function

A(z) = A(z; θ) =
1

1− z
+ θ2φ(θ2(z − 1)).

The starting point to prove (6.6) is the series (see [16, 5.7.22.3, p. 682])

(6.11)
∑
m≥1

(−1)m
Jµ(
√

1 +m2/θ2x)

(
√

1 +m2/θ2x)µ
= −Jµ(x)

2xµ
,

where Reµ ≥ 0, x ∈ (0, θπ) and θ ̸= 0. This is the case k = 1, n = 0 of the series (6.5).
We next prove the case k = 1 and n ≥ 0:

(6.12)
∑
m≥1

(−1)m

(1 +m2/θ2)n
Jµ(
√

1 +m2/θ2x)

(
√

1 +m2/θ2x)µ
=

1

2

(
−Jµ(x)

xµ
+ P µ,θ

n (x)

)
,

with x ∈ [0, θπ) for 1/2 < 2n+Reµ (or x ∈ (0, θπ) for n = 0). Write

(6.13) Gµ,θ,n(x) =
∑
m≥1

(−1)m

(1 +m2/θ2)n
Jµ(
√

1 +m2/θ2x)

(
√

1 +m2/θ2x)µ
, x ∈ (0, θπ),
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which is an analytic function of µ for 1/2 < Reµ+ 2n. Let us define the functions Qµ,θ,n

by the identity

(6.14) Gµ,θ,n(x) =
1

2

(
−Jµ(x)

xµ
+Qµ,θ,n(x)

)
.

This definition and (6.11) show that

(6.15) Qµ,θ,0(x) = 0.

Consider now µ big enough so as to allow the following computations. Using (2.1), it
easily follows that G′

µ,θ,n(x) = −xGµ+1,θ,n−1(x), which proves that Qµ,θ,n satisfies

(6.16) Q′
µ,θ,n(x) = −xQµ+1,θ,n−1(x).

Thus, (6.15) and (6.16) imply that Qµ,θ,n are polynomials. The identities (6.13), (6.14)
and (6.10) show that

(6.17) Qµ,θ,n(0) = P µ,θ
n (0).

Then, from (6.16) and (6.17) we obtain Qµ,θ,n(x) = P µ,θ
n (x). This proves the identity

(6.12) for µ big enough, and using a standard argument of analytic continuation, for
1/2 < 2n+Reµ.

The multivariate expansion (6.6) can be proved proceeding as in the second step in
Sect. 6.1.

If we assume n < 0 and 1 < 2n + k/2 +
∑k

i=1 Reµi, differentiating −n times in (6.6)
for n = 0 proves that∑

m≥1

(−1)m

(1 +m2/θ2)n

k∏
i=1

Jµi
(
√

1 +m2/θ2xi)

(
√
1 +m2/θ2xi)µi

= −1

2

k∏
i=1

Jµi
(xi)

xµi

i

for (x1, . . . , xk) ∈ Ω∗
(θπ).

The last example in this section is the Bessel expansion∑
m≥1

(−1)m

m2(1 +m2/θ2)n

k∏
i=1

Jµi
(
√
1 +m2/θ2xi)

(
√
1 +m2/θ2xi)µi

.

This can be worked out in a way similar to the previous example using now the analytic
function φ̂ in C \ {m2 : m ∈ N \ {0}} defined by

φ̂(z) =
1

z

(
1

z
− π√

z sin(π
√
z)

+
π2

6

)
= 2

∑
m≥1

(−1)m

m2(m2 − z)
.

Define next the sequence

âθn =
π2

6
− n+ 1

θ2
+
θ2n+2φ̂(n)(−θ2)

n!
, n ≥ 0,

and the polynomials P̂ µ,θ
n (x), n ≥ 0, by

P̂ µ,θ
0 (x) = 0,

P̂ µ,θ
n (x) =

n−1∑
j=0

âθn−j−1(−x2/4)j

2µj! Γ(µ+ j + 1)
, n ≥ 1.
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As before, P̂ µ,θ
n is an even polynomial of degree 2n− 2 and satisfies

P̂ µ,θ
n (0) =

1

2µΓ(µ+ 1)

(
π2

6
− n

θ2
+
θ2nφ̂(n−1)(−θ2)

(n− 1)!

)
, n ≥ 1,

(P̂ µ,θ
n )′(x) = −xP̂ µ+1,θ

n−1 (x),

P̂ µ,θ
n (x) = Tµ,−1/2,h(P̂

−1/2,θ
n )(x), µ ≥ −1/2 + h.

Starting from the expansion∑
m≥1

(−1)m
Jµ(
√

1 +m2/θ2x)

(
√
1 +m2/θ2x)µ

=
1

2

(
x2Jµ+1(x)

2θ2xµ+1
− π2

6

Jµ(x)

xµ

)
(see [16, 5.7.22.4, p. 682]), we can prove as before that∑
m≥1

(−1)m

m2(1 +m2/θ2)n
Jµ(
√

1 +m2/θ2x)

(
√

1 +m2/θ2x)µ
=

1

2

(
x2Jµ+1(x)

2θ2xµ+1
−
(
π2

6
− n

θ2

)
Jµ(x)

xµ
+ P µ,θ

n (x)

)
,

with x ∈ [0, θπ) for −3/2− 2n < Reµ (or x ∈ (0, θπ) for n = 0).
Proceeding as in the previous example, and using the identities∑

ε∈πk

( k∑
i=0

εixi

)
sin
(
θ

k∑
i=0

εixi

)
= 2k

k∑
i=1

xi sin(θxi)
∏

j=1;j ̸=i

cos(θxj),

Tµ,−1/2(x sin(x)) = 2
√
πx2

Jµ+1(x)

xµ+1
,

we arrive at ∑
m≥1

(−1)m

m2(1 +m2/θ2)n

k∏
i=1

Jµi
(
√

1 +m2/θ2xi)

(
√
1 +m2/θ2xi)µi

(6.18)

=
1

2

(
k∑

i=1

x2iJµi+1(xi)

2θ2xµi+1
i

k∏
j=1;j ̸=i

Jµj
(xj)

x
µj

j

−
(
π2

6
− n

θ2

) k∏
i=1

Jµi
(xi)

xµi

i

+
n−1∑
l=0

âθn−l−1

∑
l1+···+lk=l

k∏
i=1

(−x2i /4)li
2µili! Γ(µi + li + 1)

)
,

for 0 < 2n+ 1 + k/2 +
∑k

i=1Reµi and (x1, . . . , xk) ∈ Ω∗
(θπ) (recall that this set is defined

in (5.37)).

If we assume n < 0 and 0 < 2n + 1 + k/2 +
∑k

i=1 Reµi, differentiating −n times in
(6.18) for n = 0, we have, for (x1, . . . , xk) ∈ Ω∗

(θπ),∑
m≥1

(−1)m

m2(1 +m2/θ2)n

k∏
i=1

Jµi
(
√

1 +m2/θ2xi)

(
√

1 +m2/θ2xi)µi

=
1

2

(
k∑

i=1

x2iJµi+1(xi)

2θ2xµi+1
i

k∏
j=1;j ̸=i

Jµj
(xj)

x
µj

j

−
(
π2

6
− n

θ2

) k∏
i=1

Jµi
(xi)

xµi

i

)
.

7. Appendix: multivariate Sneddon expansion

As we wrote in the introduction, when the particular Bessel series (1.2) cannot be
expanded in powers of x2j, j ∈ N, the application of our method is much more complicated.
We study here the multivariate Sneddon expansion (1.11) (see [18, § 2.2], [13, 9]).
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Our starting point is the case k = 1 of the multivariate Sneddon expansion (1.11) (see
[9, Sect. 4.3])∑

m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

Jµ(jm,νx)

(jm,νx)µ
=

22ν−2−µΓ(ν + 1)2

νΓ(µ+ 1)

(
−1 + |x|−2ν

(
µ

ν

))
,

which holds in (−2, 2) \ {0} for 2Re ν < 1/2 + Reµ with ν ̸= 0.
Taking µ = −1/2, we obtain∑

m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

cos(xjm,ν) =
22ν−2Γ(ν + 1)2

ν

(
−1 + |x|−2ν

(
−1/2

ν

))
,

which holds in (−2, 2) \ {0} for Re ν < 0.
Using Theorem 3.1, we get, for (x1, . . . , xk) ∈ Ω∗

(2),

(7.1)∑
m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

k∏
i=1

cos(xijm,ν) =
22ν−2Γ(ν + 1)2

ν

(
−1 +

1

2k

(
−1/2

ν

)
ψ(x1, . . . , xk)

)
,

where

(7.2) ψ(x1, . . . , xk) =
∑
ε∈Πk

∣∣∣ k∑
i=1

εixi

∣∣∣−2ν

.

In terms of the Bessel functions, (7.1) can be rewritten as
(7.3)∑
m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

k∏
i=1

J−1/2(xijm,ν)

(xijm,ν)−1/2
=

22ν+k/2−2Γ(ν + 1)2

νπk/2

(
−1 +

1

2k

(
−1/2

ν

)
ψ(x1, . . . , xk)

)
.

By applying the integral transform Tµi,−1/2 (2.2) in the variable xi, i = 1, . . . , k, and using
(2.3), the left hand side of (7.3) gives∑

m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

k∏
i=1

Jµi
(xijm,ν)

(xijm,ν)µi
.

On other hand, using (2.4), we get, for the right hand side of (7.3),

22ν+k/2−2Γ(ν + 1)2

νπk/2

(
− 2−k/2Γ(1/2)k∏k

i=1 2
µiΓ(µi + 1)

+
1

2k

(
−1/2

ν

) k⊙
i=1

Tµi,−1/2,xi
(ψ(x1, . . . , xk))

)
,

where by
⊙k

i=1 Tµi,−1/2,xi
(ψ(x1, . . . , xk)) we denote the successive application of each of

the integral transforms Tµi,−1/2,xi
acting on the variable xi to the function ψ(x1, . . . , xk),

for i = 1, . . . , k.
That is,∑

m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

k∏
i=1

Jµi
(xijm,ν)

(xijm,ν)µi
=

22ν−2Γ(ν + 1)2

ν
∏k

i=1 2
µiΓ(µi + 1)

(7.4)

×

(
−1 +

1

2k

(
−1/2

ν

)∏k
i=1 2

µiΓ(µi + 1)

2−k/2Γ(1/2)k

k⊙
i=1

Tµi,−1/2,xi
(ψ(x1, . . . , xk))

)
,

which holds in Ω∗
(2) (see (5.37)) for Re ν < 0 and Reµi ≤ −1/2. Since the function in

the left hand side is even, we can assume that xi > 0, 1 ≤ i ≤ k. It is then enough to
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compute the integral transforms

Tµi,−1/2,xi
(ψ(x1, . . . , xk)), i = 1, . . . , k.

We know how to proceed in the set Λ+
i (1.12) assuming that the parameter µi is equal to

−1/2. Indeed, by symmetry, we can assume i = 1. Taking into account that in Λ+
1 the

first coordinate x1 dominates the sum of the others, we write

ψ(xi, . . . , xk) =
∑

ε∈Πk−1

((
x1 +

k∑
i=2

εixi

)−2ν

+
(
x1 −

k∑
i=2

εixi

)−2ν
)
,

and then

ψ(x1, . . . , xk) =
∑

ε∈Πk−1

x−2ν
1

((
1 +

∑k
i=2 εixi
x1

)−2ν

+

(
1−

∑k
i=2 εixi
x1

)−2ν
)

= 2
∑

ε∈Πk−1

x−2ν
1

∞∑
j=0

(
−2ν

j

)(∑k
i=2 εixi

)j
xj1

= 2x−2ν
1

∞∑
j=0

(
−2ν

j

)
1

xj1

∑
ε∈Πk−1

( k∑
i=2

εixi

)j
= 2x−2ν

1

∞∑
j=0

(
−2ν

2j

)
1

x2j1

∑
ε∈Πk−1

( k∑
i=2

εixi

)2j
= 2x−2ν

1

∞∑
j=0

(
−2ν

2j

)
2k−1

x2j1

∑
l2+···+lk=j

(
2j

2l2, . . . , 2lk

) k∏
i=2

x2lii ,(7.5)

where we have used that if j is odd then
∑

ε∈Πk−1

(∑k
i=2 εixi

)j
= 0, and the identity (3.1).

We next apply the integral transform Tµi,−1/2 (2.2) in the variable xi, i = 2, . . . , k, and
use (2.4). This can be done because for 0 < si < 1, i = 2, . . . , k, the set Λ+

1 is stable
under the map

(x1, . . . , xk) 7→ (x1, s2x2, . . . , skxk),

(i.e., if (x1, . . . , xk) ∈ Λ+
1 , then (x1, s2x2, . . . , skxk) ∈ Λ+

1 , as well), and we can then use
the expansion (7.5). Hence, we find

k⊙
i=2

Tµi,−1/2,xi
(ψ(x1, . . . , xk))

= 2k
∞∑
j=0

(
−2ν

2j

)
x−2ν−2j
1

∑
l1+···+lk=j

(
2j

2l2, . . . , 2lk

) k∏
i=2

Γ(li + 1/2)x2lii

2µi+1/2Γ(µi + li + 1)
.

Substituting in (7.4), we get after some easy computations

∑
m≥1

j2ν−2
m,ν

J2
ν+1(jm,ν)

J−1/2(x1jm,ν)

(x1jm,ν)−1/2

k∏
i=2

Jµi
(xijm,ν)

(xijm,ν)µi
=

22ν−2Γ(ν + 1)2

ν2−1/2Γ(1/2)
∏k

i=2 2
µiΓ(µi + 1)

×

(
−1 +

(
−1/2

ν

) ∞∑
j=0

(ν)j(ν + 1/2)jx
−2ν−2j
1

∑
l2+···+lk=j

k∏
i=2

x2lii

li! (µi + 1)li

)
.
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This proves (1.14) in Λ+
1 for µ1 = −1/2, Re ν < 0 and Reµi ≤ −1/2. The extension to

2Re ν < (k−1)/2+
∑k

i=2Reµi can be done proceeding as in [9, Sect. 4.1], where the case
k = 2 was considered.
As pointed out in the introduction, we have computational evidence showing that (1.14)

also holds in Λ+
1 for µ1 ̸= −1/2. However, we have not been able to prove it, because for

0 < s1 < (
∑k

j=2 xj)/xi, the set Λ+
1 is not stable under the map

(x1, . . . , xk) 7→ (s1x1, x2, . . . , xk),

and we cannot use (7.5) to compute the integral transform Tµ1,−1/2 (2.2) acting on the
variable x1 applied to the function ψ(x1, . . . , xk) (7.2).

We have not succeeded in summing (1.11) in Λ+
r because this set is not stable with

respect to any of the maps

(x1, . . . , xk) 7→ (x1, x2, . . . , sixi, . . . xk),

for certain values si with 0 < si < 1.
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41080 Sevilla, Spain

Email address: duran@us.es
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