HOW TO COMPUTE MULTIVARIATE BESSEL EXPANSIONS
ANTONIO J. DURAN, MARIO PEREZ, AND JUAN L. VARONA

ABSTRACT. We develop a constructive method for computing explicitly multivariate
Bessel expansions of the type

assuming that for a particular value n a closed expression for the single variable Bessel

expansion
Z C x)
m2>1 m

as a power series of 2/, j € N, is known. Using the method we compute in a closed form
a bunch of examples of multivariate Bessel expansions.

1. INTRODUCTION

In 2022 we commemorate the first centenary of Watson’s celebrated masterpiece A trea-
tise on the theory of Bessel functions [19]; see also [14]. Although one hundred years have
passed since the first edition of this fundamental book was published, there are still some
interesting problems about Bessel functions to be addressed. One of them is related to
Bessel expansions in several variables. Watson displayed just a couple of bivariate expan-
sions: the Kneser-Sommerfeld expansion [19, §15.42, p. 499] (by the way, this expansion
is likely the only mistake in Watson’s book: see [13]), and a particular example of a Neu-
mann series [19, §16.32, p. 531]. And it is enough to take a look at [I6], Sect. 5.7] or [I]
Sect. 6.8] to realize that only a few two variable Bessel series of the form

Z (oY % (mel)Juz (Cm2)

m2>1

have been explicitly computed if we compare to single variable ones (see also [4, 10, 12]).
Even less is known if we consider multivariate Bessel series with an arbitrary number of
variables (see [I7]). That also happens in the more studied case when the sequence (,, is
the sequence of zeros j,,, of other Bessel function J,.

Of course, this is not surprising because the multivariate case is more difficult to handle
than the single variable one.

The purpose of this paper is to improve that situation. To do that, we develop a method
for computing in a closed form multivariate Bessel expansions of the type

" o Tl

m>1 =1
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assuming that for a particular value 7, a closed expression for the single-variable Bessel
expansion

me
(1.2) Zam o)

m>1 m

as a power series of %, j € N, is known.
Using our method, we compute explicitly a bunch of multivariate Bessel expansions,
among which are (for n € Z)
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where in the last two expansions A, are the positive zeros (ordered in increasing size) of
the function

20 (z2)+ HJ,(2), v>-1, v+ H>0.

The method is explained in full detail in Sect. [d} In order to establish our method we
prove in Sect. |3| a theorem on multivariate cosine expansions which has interest by itself
(see Theorem [3.1)); this theorem is the bridge which allows us to move from the single
variable Bessel expansion to the multivariate one .

In Sect. , we consider the case when the particular Bessel series is a polynomial
in certain interval; this includes the expansions and . We show that associated
to this type of Bessel expansions are the so-called Bessel-Appell polynomials, i.e., one-
parameter sequences of polynomials (p, ), defined by a generating function of the form

= Z pnju($)zn,
n=0

where A is a function analytic at z = 0. In particular, they satisfy

p;m,u(x) = _xpn—l,u+1(x), n Z 1.

The multivariate Bessel series ((1.1)) can then be explicitly summed from the Taylor coef-
ficients of the analytic function A. For the benefit of the readers, we display here one of
our results in full detail. Denote

(1.8) C=C\{-1,-2,-3,...}
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and, for w > 0,

k
(1'9) Q[w]:{(xl,...,xk) ERkZ’-ﬁz‘ §w},
=1

k
(1.10) "= {(ml,...,xk) eQ[w]:Hxﬁéo}.
i=1

We then prove that for v > -1, v+ H > 0, u; € C, i=1,...,k with v < 2n+ (k +
1)/2+ Zle Re p; and (xq,...,25) € 2}y, the multivariate Dini-Young expansion (1.6)) is
equal to the polynomial

22 /4)"
Za 2. quzz'ruz+l+ 1)’

i+ +lp=l i=1

where (a), is the sequence defined by the generating function

ZV

2((H — 0)Ju(2) + 2y ( ZCLHV .

In Sect. @ we extend our results to the case when the particular Bessel series is
not a polynomial but still can be expanded in powers of %, j € N (which includes
the expansions , and ) Here is an example in full detail. For Rev <
2n+3F  Repi+(k+5)/2 and (1, ..., 21) € €f;, the multivariate Dini-Young expansion
(1.7) is equal to

1 ZV H J/—Lz ('/L‘ZZ)
22\ 2((H = v)J(2) + 2J,1(2)) o (wiz)
n l k 2
4)t
_ N gl Z H 2/ >
=0 J=0 ’ lit-Hlp=j i=1 20l ‘F (wi +1;i+1)

When the particular Bessel series cannot be expanded in powers of 2%, j € N,
the application of our method is much more complicated. In Appendix (“Multivariate
Sneddon expansion” section), we consider an example of such situation. We can still
obtain some result but not as complete as in the previous scenario. We have considered
the multivariate Sneddon expansion

(1.11) > = Ims H‘E“?(jm’”xi,>.

Jl/+]. (.]m,l/> i=1

m>1

The case k = 2 has been summed in [9] for 2Rev <1+ Reps +Repgand 0 <z +y < 2
(see also [I8, §2.2] and [13]). For k > 3, we consider the sets

(].].2) A;F:{<I1,..., )ERk \V/j$]>0 Z$]<2 Z$J<xz}; i=1,...,k,
J#i
(1.13) A;L:{(ml,...,xk)ERk:ij<2,ViO<xi<ij}
i=1 i

(notice that for k =2, AT = 0).
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Assuming that one of the parameters p; is equal to —1/2, we have explicitly summed
the expansion ([1.11]) in the piece A;". More precisely using the symmetry of (1.11]) we can
take py = —1/2, and then we have

u+1(]m v) iy ]m sz /h 14 Hffl QNZF(MZ —+ ]_)

x(—1+<f);()(V—/ﬂ)zfcl%zj 2 Hl'uz+1>

l2+ +lk ]l 2

2p—2 k 202 2
m,v m,Vv ’L 2 F 1

m_

for v, € C, i =2,...,k, with 2Rev < 2n + k/2 + Zilee/M and (zy,...,z) € Af.
Moreover, we have computational evidence showing that the sum (|1.14]) also holds when
w1 # —1/2, but we have not been able to prove it.

We have also failed summing the expansion (|1.11]) in the piece A (1.13)).

2. PRELIMINARIES
( )

Throughout this paper, by 4= we denote the even entire function

L GO

2= pll(p+n+1)

As usual, (a),, denotes the Pochhammer symbol
(a)p =ala+1)(a+2)---(a+n—-1)=

(with n a nonnegative integer).

The zeros of the even function J,(z)/z", are simple and can be ordered as a double
sequence (jm)mez\foy With j_pm, = —jm, and 0 < Rejmy < Rejpgr, for m > 1
[19, §15.41, p. 497]. The imaginary part of these zeros is bounded and, when m is a
sufficiently large integer, there is exactly one zero in the strip mr + FRev + 5 <Rez <
(m+ 17+ FRev + 7 [19, §15.4, p. 497, so that

lim mel
m—+oo T
For v > —1 and H +v > 0, the zeros \,,, m > 1, of 2.J/(2) + HJ,(2) interlace the zeros of
the Bessel function J, [19] § 15.23, p. 480]. In particular, they are positive and increasing.
We will also use the well-known estimate

0 <c S |Ju+1(jm,u)2jm,y’ S C

for some constants ¢ and C' not depending on m.
Bessel functions satisfy the bound

| Im z|

e

95()] < O,

for |z| large enough, with a constant C' depending only on /3. To be precise, for |z| > & > 0
and £ on a compact set K, there is a constant C' depending only on ¢ and K, as follows
from [15, Eq. 10.4.4 and §10.17(iv)].

We also use the well-known identity

(2.1) a (M) __Jun(@)

dx TH phtl
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For ;v and 7 satisfying Re n > Ren > —1, consider the integral transform 7}, , given by

1 ' 241 2\pu—n—1

(2.2) Tw(f)(x) = 2er(u_n)/o flas)s™H (1 — s ds
(with a small abuse of notation, we will often write 7),,(f(z)) if it does not cause confu-
sion).

Sonin’s formula for the Bessel functions [19, 12.11(1), p. 373] can be written as

J, () 1 Y, (zs) o Jy()

2.3 [ — n 27]+11_2,u,771d T n
( ) h 2#—7]—11—‘(/1/ _ 77) / (xs)n s ( S ) S wn "
valid for Reyu > Ren > —1.

For 2Ren +r + 2 > 0, we also have

I(n+5+1) o

(2.4) Tyn(z") =

Y

2= "P(u+ +1)

where we have used that

/lsa(l—SQ)bds— 5T+ 1) Rea,Reb > —1
0 (L +b+1) ’ '

The identity (2.3) can be extended for Ren < —1 as follows. For u € C, n e C,
n # —3/2,—5/2,..., and a positive integer h satisfying Ren > —h/2—1, Reu > Ren+h,
consider the integral transform 7, , ) given by

_1\ron+l-p 1 gh
@5) T = £ ) Jy =

It is then easy to check that

; Fn+5+1) .

T#m,h(x ) - 2H_7]F<,u + g + 1) )
s (B@) L@
K15k 21 D

3. MULTIVARIATE COSINE EXPANSIONS

We denote by 7, the set of k-tuples € = (e1,...,¢;) of signs ¢; = £1 and by s. the
number of negative signs in € (so that Hle gj = (—1)%).

We define
C,i(a:l,...,xk 5 Z (Zsj.r]) ,

EETY

where [ € N (we often use C}, without the variables ;).
In what follow we will use the multinomial formula

l
ittt =Y (lll%__lk)y?yl; Y

L+lo+-+lp=l

(in the sum, the /; are non negative integers), where

l I
=T ithil, 40+ =1
(ll,lz,...,lk) LV 1) Wi 1+l + +
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are the so-called multinomial coefficients. Of course, these coefficients are invariant under
permutation of the /;; this will be used along the paper without explicit remark. This
gives

Ch(xy,...,5) = o Z (Zijj)

EETE

! L.
X X ()T

eemy I+ +lk !

1 l . |
=5 2 <11,...,zk>H“"?ZH€?'

Lyt +lp=l
If some [; is odd, then

k k k
li Ui li
2 0= =20 Il =- 2 1l =0
eemy i=1 c€mp—1 1=1;i#7j e€mp—1 1=1;i#j

and the corresponding summand in le .41, vanishes; otherwise, if all the [; are even,

Zﬁeﬁi=21:2k.

eemy 1=1 EET
Consequently, Ct = 0 when [ is odd, and
2l 1 21
(3.1) Col(xy,...,ap) = Z (2117”"2lk>w§1- kL
l1+~~+lk=l

Theorem 3.1. Let (am)m>1; (Cm)m>1 be two sequences of real numbers such that the
following sine and cosine expansions converge pointwisely in some interval (—w,w):

= Z Ay €08(Cn ),

m>1

W(r) = Z A SIN(Cn ).

m>1

Then, the series

(3.2) G(zy,...,x Z A, H cos(Gm;)
m2>1

converges pointwisely if Z§=1 |z;| <w, and

(3.3) G(z1,...,x) = Z <Z€J$J>

ECTL

Proof. First of all, we note that
(3.4) Z;?:l |7/ <w <= —w< Z;‘f:l g;jx; < w for all € € my.
Using Euler’s formula cosz = (e + e7®)/2, we get

Hcos Cnj) = H = Z H eEﬂmeg — Z 2_1kezcm Shoies

j=1 eem, j=1 EETY

ZCW’L'/'UJ + e lle’]
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Formally, we get from ([3.2)

G(l’l, R ,Ik) = Z A, Z %eiCm 2?21 €jT; Z 2_1k Z a/meiCm Z?:l €jx;

m>1 EETY g€y m>1

-y LY, (cos (gmz%) +isin (%Z%))

EETE m>1

-y 217 (gb(;ej%) +w(;sj%)> :

ECTE

The pointwise convergence of the series ¢ and 3 and say that each series in the
last sum is convergent and hence we deduce the pointwise convergence of the series .
The identity then follows taking into account that G is a real function because a,,,
m > 1, are real numbers. OJ

4. THE METHOD

Our method for computing a multivariate Bessel expansion like ((1.1)) can be described
in the following three steps.

4.1. First step. We start with a particular expansion

(4.1) =3 an f;?x-

m>1 m

By applying the integral transform 7, ,, . to (4.1)) we get the more general expansion

m)
(42) > an i — 1, () (o)
m2>1
This approach was worked out in [8, Lemma 1] assuming that a closed expression for
as a power series of z is known. In [§], we considered only the case when ((,,),, is the
sequence of zeros (i, )m of the Bessel function J,, but there is not problem in taking any
arbitrary sequence (,,,. We consider here complex parameters p,n € C , removing
the assumption in [8] where we only considered real parameters with p,n > —1. For the
benefit of the readers, we display next the new version of [8, Lemma 1] we will use in this

paper.

Lemma 4.1. Gwen a real number w > 1, a complex number n € C such that Ren #

—%, —g, —%, .., and two sequences (Qm)m>1 and (Gn)m>1, Cm # 0, with liminf |(,| > 1,
assume that

|t Cm-l”
(4.3) Z G [Ren iz <400 and Zam (Coz)7 Zu] , € (0,w).

m>1 m>1 m
Let peC. If
|am|
(4'4) Z ‘C ’Re,u+1/2 < +00,
m>1
then
JulGnt) = _wLln+i+1)

4.5 m———— = : ¥, x e (0,w).
(45) ngl me ; 20T (p+j + 1) (0.0)

In particular, this holds if Re u > Ren.
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Proof. Take a positive integer h and u € C such that Ren > —h/2—1and Re > Ren+h.
The first assumption in implies that the series in the left hand side of the Bessel
expansion in (4.3]) converges uniformly on compacts. The identity can then be proved
by applying the integral transform 7}, , 5 to both sides of the Bessel expansion in (4.3]).
The assumption (4.4) implies that the series in the left hand side of is an analytic
function of p. Since the right hand side of is also an analytic function of u, we can
conclude that holds for complex numbers 1 € C satisfying (&.4). O

4.2. Second step. The second step of our method consists in a bridge which allows us
to move from a single variable Bessel expansion to a multivariate one, and use the result
on multivariate trigonometric expansions proved in Sect. |3, Once we have (4.2)), since

J_1/2(Z)

~—1/2

(4.6) = (2/m)% cos z,

setting p = —1/2in (4.2)) and using Theorem [3.1| we get the multivariate cosine expansion

(4.7) Z Ozchos Cmy) = T Z (;5].3;].),

where ¢(z) = (m/2)"/ 2T—1/2,n(fn)($)~

4.3. Third step. The third step of our method consists in a multivariate version of
Lemma [4.1] which was also established in [§] (see Lemma 2) again by using the integral
transforms T,,.n; (2.2)) in each variable z;. In doing that we get from (4.7]) the more general

multivariate expansion
z : | | uz mez
C x Mz

m>1 =1

(the original version in [§] takes as (,, the zeros of a Bessel function J, and considers only
real parameters, but this is not relevant). Indeed, consider sets Q C (0, +o00)* with the
property that (0,1)* C Q and

k
(x1,T2,...,2) € Q = H(O,xi] C Q.
i=1

The precise statement goes as follows:

Lemma 4.2. Letn; € C,i= k, such that Ren; # —%, —g, —%, ooy and (Qy)m and

(Cm)m be two sequences, (, # 0, wzth liminf || > 1, such that

«
Sl
1L Gufren =172

m>1
Assume that, for (xq,..., ) €Q,
m mez o 2],
C ZE 771 ujla Ik x
m>1 i=1 J1sesJe=1

where the power series on the right hand side converges absolutely. If p; € (@, 1=1,...,k,
and Re p; > Remn; then for (x1,...,xx) € Q,

00 k . 24

(Gmw:) U(n; + ji + Dai”
4.8 T Gmi) = i .
( ) mZ>1 H C x uz B m%:l WUjy,....jx E Qurmf(ui + ji + 1)
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Moreover, if u; € @, 1=1,...,k, satisfy

Sl
Hle ’Cm‘ReuiJrl/Z ’

m>1

then (4.8) also holds.

To sum up, this three-step method works as far as we can explicitly compute the integral
transforms T, , (f,) in in the first and the third steps. This is the case when a closed
expression for the function f, in (4.1)) as an even power series of x is known. Then, step 1
is Lemma , step 2 is Theore, and step 3 is the particular case n; = —1/2 in

Lemma (4.2
In the following lemma we put together all the steps.

Lemma 4.3. Let n, u; € @, 1 =1,...,k, with Ren # — , g,—%,..., a real number

w > 1, and two sequences () and ((m)m, Cm # 0, with hm inf |(,,,| > 1, such that the
series

Ren s e
(4.9) S T amllGnl 20  aml, Y fo] |G| 2R Ren

m2>1 m>1 m>1

all converge. Assume that

(4.10) Z fo'n G QZ:E Z wr?, z € (~w,w).

m>1 m

Then we have, for k € N and ¢ |x;| < w,

(4.11) Y a H Zimi Zznr n+1+ Dy

m>1 =1
k 21,
l ;"
. Z (lh---,lk)H2”"F(Mi+li+1).

Li4+lp=l

Proof. The assumptions in (4.9)) on the sequences (a,, )y, and ((,)m guarantee the uniform
convergence in compact sets of R of the series in the left-hand side of (4.10) and (4.11]).

Taking into account (4.6) and applying Lemma for = —1/2 (this is why we need
(4-9)

the second assumption in ), we get for z € (0,w) that

(4.12) Z iy cos((nr) = \/_Z Ly +1+ ) 2,

= 2-1(1 + 5
Since both sides in (4.12) are even functions we get that (4.12)) also holds for z € (—w,0)

and trivially from (4.10) also for x = 0.

Theorem [3.1| gives, for Zf,l |zi| < w,

Zachos Cnj) = o Z (Zq@)

m>1 eETY
where p is the power series in the right-hand side of - Using (3.1) we get, for
Zle |ml| < W,

k
wl'(n+1+1) 21 21, 2l
N | Y =T M R L3

m>1 7j=1 i+ +l=l
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Taking into account ( , the last identity can be rewritten in the form
J_1/2(Cn;) k2 SN wl(n+1+1 21
>a H e e S D DI (W F L
m>1 1=0 2 qegly=t N 20k
Write A = {(z1,...,2%) : 23 > 0, S8 2 < w}. Lemma gives, for (zq,...,x%) € A,
k/2
,LL’L mel _ 2
(413) Z>1 11 mez ,Uz - 71_@,1)/2

o] k 1
> 2-1T(1 + 1) 2. 2y, .., 2l 11 T (g + L+ 1)

1=0 li+ =l
from where (4.11]) follows easily. Since both sizes of (4.13) are even functions in each

variable x;, we deduce that (4.11]) also holds in Zle |z;| < w, if x1-- 25 # 0, and by
continuity for z; - - -z = 0 as well. ]

We illustrate the method with a simple but significant example.
One of the most interesting examples of a trigonometric expansion is the Hurwitz series
for the Bernoulli polynomials, n > 1,

Bowor(z) = (—1)71 2(2n +1)! Z Sin(27rmx)’ e 0.1,

(277-)2”4-1 m2n+1
(4.1) Bun(o) = (-1 22 S COS%T 2

see [0l 24.8(i)].
For our purpose, it is better to translate the expansion (4.14]) to the interval [—1,1].
Hence, we change = — (2 + 1)/2 to obtain the equivalent cosine series

(4.15) Bon((z +1)/2) = (—1)n*! 2(2222)! 3 “”Z;j;ﬁfmx), zel-1,1]

m=1

Using the binomial expansion of the Bernoulli polynomials,

Bule+ 10/ =" () Bt ()

1=0
the identity B;(1/2) = —(1 — 279)B; (see [5, 24.4.27]), as well as By(z) = x — 1/2 and
Boyy1=0forl=0,1,2..., we get

Bo((z+1)/2) = — zn: <2@) (22”‘%—212;})3%% .

=0 2]

Hence, (4.15)) gives, for z € [—1,1],

-~ (EDMeos(rma) _ (Z1)" g~ (20 gangjn 2
7;::1 (mm)?" ~(2n)! jzz(; (2j)<2 1) Boy,—2;

Taking into account (4.6)), we can apply the Lemma to get (after easy computations)
the Bessel expansion

(4.16) Z (=1)" Ju(wma) — (_1)nz (27 = 1) Bons; 22

(mm)? (mmax)* 22+mgl 2n — 2! D (w+7+1) "

m=1 §=0
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valid for x € [0,1] and 2n + Rep > 1/2 (n > 1). The identity is already known
(although in a more complicated form): it is [16], p. 678, (14)].

Applying Lemma [4.3] we get the following multivariate Bessel expansion which seems
to be new (as far as we know):

a3 CU ]l

Sy B e 5 [
— 291 anl
= (2n — 27)! A 20 D (i + 1+ 1)
valid for Zle |z;] < 1 and 2n + Zle Rep; + k/2 > 1 (n > 1). Actually, this is the
particular case of the expansion (1.3) (which will be computed in the next section: see
(5.38])) for v =1/2.
We can also find the case when n < 0 by differentiating (4.17)). Indeed, for n = 1, we

have
o~ k k k
1y R A 1 1 1 :
S PG NS S R (R DS S I
(mm) (rma;)rs 423 200 (g + 1) 3 24+l

m=1 i=1

Differentiating with respect to x1, using (2.1)), and setting p; + 1 — u1, we get

- ym J(mmag) 1
mZ:1( H ljrmx i __51_[2“2 +1)

=1
valid for Zle |z;] <1 and Zi:l Re p; + k/2 > 1. And then, differentiating again, we get

o) k
Z m)?n m 7T’ITLQTZ _0,
m=1 =1 7me
valid for S2F | |z;| <1 and —2n 4+ 3¢ Rep; +k/2 > 1 (n > 1) (for k = 1 this is [I6,
Identity (10), p. 678]).

Cosine expansions and are equivalent under the linear change of variable
x +— (z+41)/2. However if we apply our method to the expansion (4.14]) we get completely
different results to those found above (expansions and (4.17)). For the one variable
case, producing the Bessel extension is as easy as the previous one, but the scenario
changes dramatically in the multivariate case. This is because in the left hand side
of ([4.14), B,,(z) contains a term z*"~!, which corresponds to the even function f(z) =
|z|*"~1. This even function is not analytic at 0 and in the multivariate case it makes the
computation of the integral transforms rather complicated. In fact, in that case
infinite power series appears in the close expression for the multivariate Bessel expansion.
Indeed, by applying the integral transform T}, /o to both sides of , we can
still produce the following Bessel expansion:

> Ju(mma) _ (=1)"1220 N\ T(( +1)/2)Bonj o0
(4.18) 21 (rm)2n me) - 27 (2n)! J;O (j) 200+ 7/2+ 1) (x/2)7,

valid for = € [0,2] and 2n+ Rep > 1/2 (n > 1). This identity is different to but it
is also known: [16, p. 678, (13)] (the case n < 0 can be obtained by differentiation from
the case n =1 in (4.18))).

As mentioned above, the monomial 22"~ in the cosine expansion makes difficult
to extend it to a multivariate expansion using our method. To illustrate the problem, let
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us take n = 1, then (4.14]) gives
i cos(mmz)  x* |z 1

(m)? _Z_7+6

m=1
for |z| < 1. Using Theorem [3.1] we get

2

=—+

Z Cos(ﬂn”zicr)vzij(ﬂmy) Z

INASS

L ey -
64a:y x—yl).

m=1

Applying the integral transforms 7}, _;/, in the variable  and 7T},, _;/» in the variable y,
respectively, and using (2.3, (2.4)), we find that

(4.19)
1 Ju(mma)y,(mmy) 2 ( @ LY é)
= (mm)? (wmax)(rmy)> Do +DF(pe+1) \pn+1 pp+1 3

O—p1—H2
re + sy|+ |rx — s ml2 g2y 2 g s,
o (sl e = s - - )
It is not necessary to compute the double integral because the Bessel expansion (4.19)) is

the particular case v = 1/2 of the Sneddon-Bessel series we compute in [9], and so using

[9, Sect. 4.1.2], we get

— (mm)? wmx)m(ﬂmy)uz S T T DT )\ 1l
(AU ) fn()
3 \1/2 i+ 1/2 A ,

valid for 0 < 24+ Rep; + Repg, and 0 < y < z, v+ y < 2 (also for x +y = 2 if
0 <14+ Reps + Repus).

Contrary to the multivariate Bessel expansion , is not anymore a polyno-
mial (except when the parameters p; and py are half positive integers).

5. BESSEL EXPANSIONS OF MULTIVARIATE POLYNOMIALS

5.1. Bessel-Appell polynomials. Given a function A(z) analytic at z = 0 with A(0) #
0, we define the associated one-parameter family p, ,(z), n > 0, of Bessel-Appell polyno-
mials by means of the following generating function:

(5.1 A S @)

(z2)r =

It is straightforward from the definition that each p, , is an even polynomial of degree 2n,
n > 0. Moreover, using (2.1]) we have

(5'2) p;#(aj) = _xpnfl,wrl(x)? n =1

Bessel-Appell polynomials have been already considered in the literature ([2]), although
with no special denomination and, as far as we know, with no connection with the explicit
sum of Bessel expansions. Bessel-Appell polynomials also satisfy

> 2u+1d

T(pnu)(®) = pp-1u(z), T = e Bt
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Write T for the linear operator T'(p)(z) = T(p(22))(v/Z) acting on polynomials p. We
then have

T<pn,,u(\/5)) - pn—l,u(ﬁ% n 2 17
and so the polynomials (p, . (v/x)), are of the Appell type studied in [I1, Chap. 10].
The generating function (5.1 also shows that if A(z) = > a,z", then

Qn
5.3 npu(0) = ———m—, > 0.
Moreover, iterating the identity (5.2)), we get
0 (Day,

P
5.4 - > 0.
(5-4) Q) 26 T(ut g+ 1) &

For Repu > Rerv > —1, using the integral transform (2.2)) in (5.1]) we have
(5'5) TMV(pn,V)(x) = pnv#('x)’ n Z O'
The identity ([5.5)) can be extended for Rerv < —1 using the integral transform ([2.5)).

In the opposite direction, assume that we have a one-parameter family p,, ,(z), n > 0,
of polynomials with p, , of degree 2n satisfying ((5.2)) and ({5.3) for certain sequence (ay),
such that A(z) =Y 7, a,2z" defines a function analytic at z = 0, which is equivalent to

1/n

(5.6) lim sup |a,|"/" < +oo.

n—-+4oo

Since (5.2) and (5.3) determine uniquely the whole parametric family of polynomials, it
follows that (py ), also satisfy (5.1]).

Remark 5.1. We can find a connection of Bessel-Appell polynomials and Bessel expan-
sions of the form

(5.7) T am@?"M.

= Cm)H

To this end, assume we have sequences (m)m>1, (Gn)m>1, (m # 0, such that for certain
veC,Rev>—1,and w > 0,

QOm
(5.8) hmmf |G| > 1, Z T "Reu|+1/2 < o0,

m>1

(5.9) > o Cm —aOG(C\{O}, z € (0,w).

m>1

Using the assumption (5.8) we can define for Reu > Rev, n > 0 and 0 < x the functions

(5.10) Pgla) =" =2 JulEm®) w(Gm).

m>1 me)

Notice that the convergence is uniform in compact subsets of (0,400). It is then easy to
see using (2.1]) that they satisfy (5.2]), that is,

p;’b,u<x) = _xpn—l,u—i-l(x), n Z 1.
Moreover, for Re i > Rewv, using (2.3)) we have, from (5.10) that

(5.11) Pru(2) = Ty (P) (),

where T}, , is the integral transform (2.2)): the assumption (5.9) allows changing the order
of the integral transform and the series ([5.10|) which defines the function p,, , ().
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The assumption , the identity for n = 0, and imply that for Rep >
Rev, po,(z) is constant in (0,w), and then p, ,(x), n > 0, is a polynomial of degree 2n
in (0,w). With a small abuse of notation, we also write p, ,(x) for the polynomial in C
that coincides with p, ,(x) in (0,w).

Let us take

(5.12) a, = 2"T'(v + 1)p,,(0).

The sequence (a,), can be used to sum a bunch of Bessel series, including (5.7). This
goes as follows. Since for n big enough

—2n
Pnw(0) = 2'/1“ O ZamC

it follows from (5.8) that (a,), satisfies (5.6) and we can define a function A(z) analytic
at z = 0, with A(0) = ap # 0, by the power series

(5.13) A(z) = z:anz2
n=0
Using (5.11)) for x = 0 and ({2.4)) for r = 0, we get (5.3):

Qp

S >
0= GEg . "2

Hence for Reu > Rev our discussion at the beginning of this section shows that the
polynomials P, 1 > 0, defined by ((5.10)), are also the Bessel-Appell polynomials defined
by (5 where the analytic function A is given by ([5.13)).

Usmg ) and - we get
(5.14) Z am@f"% _ Zn: Cl.n—j(_:vz/'él)j ee(0w)
J

= T )H — 25! T(p+j+1)

Moreover, if for some n < 0, > -, |t |G| 72 Rer=1/2 < 400 (with Rep > Rev),
differentiating —n times in (5.14)) for n = 0, we get

Z mC 2" JulCm) =0, z¢€(0,w).

1 (Cm'%)u

In the next proposition, we include other series that can be summed using the sequence
(an)n given in ((5.12)).

Proposition 5.2. Assume that the sequences (m)m>1, (Cm)m>1, satisfy (5.8]) and (5.9).
We then have for n >0, Rep > Rev and x € (0,w),

O‘mgn_fn Ju me 1
(5.15) Z (2 — 22) (gnt)u) ~ ont2 (

m>1

Z 212 aj(—*/4)’
£ 21T (4§ + 1)
where A is given by (5.13) and (a,), is defined by (5.12]).

Proof. The proof is a matter of computation. Indeed, using the geometric series and the
polynomials (5.10]), we deduce for |z| < inf,, |(| (and then on the whole range by analytic
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continuation) that

Z (?2 _ 22 2 Z Z giélﬂ )9;

m>1 m>1 =0 ™

- 12(; 2 Z C2rzoj-2l+2 (me;

m>1
S 21 1 S 21
= an—&-l—i-l,u(x)z = ntz Z pLu()z
=0 l=n+1
1 J(x2)
~ ont2 <A(Z)

. 2p<>)

It is then enough to use ({5.4). O

Moreover, if for some n < 0, Y < |am|[Gn| 2" Re#75/2 < 400 (with Rep > Rew),
differentiating —n times in ((5.15)) for n = 0 and taking into account the identity (2.1)), we
have, for z € (0,w),

amC2" Ju(Cn A(z) Ju(xz
¥ o Bet) _ A )

208 =) (Gua)p 272 (az)

Our method will allow us to compute explicitly the corresponding multivariate version
of the expansions . They can well be called Kneser-Sommerfeld type expansions,
since for

1
Jl/+1 (jm,l/)2
the corresponding two variable expansion is the well-known Kneser-Sommerfeld expan-
sion ([13]).

Let us develop a couple of illustrative examples. The first one is the Dini-Young series

A=2n J(Amx)
(5.16) = E :
m%:l (A2, =24+ H?)J,(Am) (M)t

Cm = jm,m Oy, =

for 0 < x < 1, where v and H are real parameters satisfying v > —1 and H + v > 0,
p € C with v < 2n+ 14 Rep and A, are the positive zeros (ordered in increasing size)
of the function

(5.17) 2J(2) + HJ,(2).
To sum explicitly (5.16), we define the sequence (a’*"),, by

ZI/

2((H — v)J,(2) + 2Jy-1( ZCLHU .

(5.18)

H,v

Using the power series for the Bessel functions, the sequence (a,’

defined as follows: aj” = 2"'T'(v 4+ 1)/(H + v), and

n

v+2n—j)+H Ho
(5.19) . , a;” =0, n>1.
jgo (=) (n =) (v + 1) 7

)n can be recursively

Define now the one-parameter Bessel-Appell polynomials by the generating function

2¥ Ju(r2) = H () 0
(5:20) T =) T (@) (e~ 2P (D7
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For n > 0 and 0 < 5 < n, define
bj = 2(—4) (n—j+1);(v+n—j+1);(v+2(n—j) +H).

An easy computation using the power series of the Bessel functions, shows that the
polynomials pn v n >0, can also be defined recursively by

1 n
H,v _ n Hyv _2n
(5.21) Pov = 50, H) g_o ip;, () =2, n=>1
Consider next the Bessel-Dini series of 2*" in (0, 1) namely
l/ mx
(5.22) =5 Br G

m>1

The case n = 0 was summed by Young [20], this is why we call Dini-Young series to the
expansion ((5.16)). If we write
Am

S = 8 2 BT,
according to [19, §18.12, (2), p. 581] we have
(5.23) B = 2(v + H)&m,

as follows from [19, §18.12, (2), p. 581] and the trivial fact that the zeros A, of (5.17)
satisfy

(N2 — )T (A)? + X T (A)? = (N2 — v+ HHJ,(\n)?,

)\mJV+1 (/\m)
Amlvillim) o, g
0w T
According to the reduction formula in [19, §18.12, p. 581], we have the recursion
4
B = 2(v+ 2n + H)Ep — ”(Kj Mgt s
This shows that
1
(5.24) B = %Z et
j=0 m

Define finally the functions

Z&m)\ 20 J ) x € (0,1).

m>1 )

The definition of ], (5.22) and the identity (5.24)) show that

(5.25) an o , n>1.

On the one hand, -, -, and - forn =10 irnply that qé{’ = Do, V". On the
other hand, the recursions and show that ¢/7" = pn von > 1.
Hence setting (,, = A\ and Oy = fm, we can apply Remark - to get, for Repu > v

and 0 < x <1,

AL 2n T noaf (—a2/a)
i eyl
(A2, —v2+ H2)J,(Am) (Apx)* = 2051 T+ j + 1)

m>1 m
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The identity (5.26]) also holds for v < 2n 4+ 1 + Rep, because then both sides of the
identity are analytic functions of . The identity is also valid for x = 0 assuming that

v<2n+1/2.
Moreover, for 0 < —2n < —v + Rep + 1,
\v—2n J(Am)
m =0, z¢€/(0,1).
n%% (A2, —v2+ H2)J,(Am) (Apx)*

In the next section, we will consider the expansions provided by Proposition
The second illustrative example are the Bessel expansions
‘v—1—2n Ju(jm,ul‘)

Im,p
5.27 j
( ) = Joi1(mp) (Gmp@)H

?

0 <x<1and Rev < Rep + 2n. The series was explicitly summed in [7, Sect. 5]
using the theory of residues. For the sake of completeness, we compute the sum here
using our method.

The starting point is the sequence (a),, defined by

% 00
D) — § v 2n
(5.28) 2J4,(2) £ Oa ©

This is the case H = v of the previous example with v + 1 instead of v, but since we now
consider complex parameters v, we work it out from the scratch.

Using the power series for the Bessel functions, the sequence (a
defined as follows: af = 2"7'T'(v 4 1), and

& dv+4n—j+1)
5.29 , =0 > 1.
. ; =+, 0 "

Define now the one-parameter Bessel-Appell polynomials by the generating function

2 J(12) & 9
(5.30) — = Zp;fw(x)z "
2J,(2) (w2t =
For 4 = v and p = v — 1 they are the even Euler-Dunkl and Bernoulli-Dunkl polynomials
we introduced in [6] and [3], respectively (up to renormalization). Using [6, Theorem 3.1],
we have

v

¥)n can be recursively

sv—1-2n .
Jm.y Jy IJmupZ v
J ( y) = pn,u(w)a
m>1 V+1(]m,u) (jmJ,SC)

(5.31)

with uniform convergence on compact subsets of (—1,1) \ {0} for n =0 and [—1,1] \ {0}
for n > 1. The convergence extends to x = 0 provided that Rev < n+ 1/2.
We next prove that for Repu +2n > Rev and = € (0, 1),

5.32 : — _ . . |
( ) m>1 Jl’+1(]m,l’) (.]m,zzx)u H = 2#]' P(,U, +35+ 1)

It is interesting to note that the polynomials pn (x) in this formula are Bessel-Appell
polynomials as defined in 1} with A(z) = , see (5.30). In particular, they satisfy

7.0
the general properties ((5.2]) and ( .
v—1
Let us start taking Cm = Jmy and a,, = % Although the second assumption in

(5.8) fails, we can still use the Remark [5.1] due to the uniform convergence in (—1,1)\ {0}
of (5.31)) for n = 0.
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To extend the identity to Re u+2n > Re v, we proceed as follows. For Rev < —1,
v # —3/2,-5/2,..., consider a positive integer h such that Rev > —h/2 — 1, and take u
with Re pr > Rev + h. Using the integral transform 7}, , , together with integration
by parts and , we get from (|5.31))

v—1-2n .
Jmv J (]m I/x>

5.33 plJm,

( ) n; Joi1(Jmw) (JmoT)*

= Tawn (P (@) = Ty () (@) = pr, (), @ € (0,1),

For v = —=3/2,-5/2,..., follows by continuity. It is now enough to take into
account that for fixed v and assuming Re 1 4+ 2n > Re v both sides of are analytic
functions of pu.

For n < 0, Rep 4+ 2n > Rev and z € (0,1), we have, differentiating the case n = 0

n (5:32),
]'rl;bul an Ju(jm,ux) _
m>1 JI/+1 (]m,u) (jm,ux)#

5.2. Getting multivariate Bessel expansions of polynomials We next use Lemma[4.3]
to sum in an explicit form the multlvarlate series ) and .
For the Dini-Young expansmn , We assume v, H to be real parameters with v+ H >

Oandv > —1,and y; € C, i = k: We next prove that for v < 2n+(k’—i—1)/2+zl 1 M
and (z1,...,2x) € Q) (see 1.10)
Av=2n b T )
5.34 o O
(5:34) n; (A2, —v2 4+ H?%)J,(\n) }:[1 (A )P

2/4
_Za 2. Hzmz'rmﬂﬂ)

1+ +lk li=1

where (a), is the sequence defined by (5.18) (or (5.19)).

We proceed in two steps.

5.3. First step. The identity (5.34) holds for v < 2n+1/2, v < 2n+ (k+1)/2+ 325, us.
This is a direct consequence of Lemma (after some easy computations).

5.4. Second step. The identity (5.34) holds for v < 2n + (k+1)/2 + 3.5 | ;.
Fixed v, notice that the series in the left hand side of (5.34) converges uniformly in

), for each n such that v < 2n + (k +1)/2 + Zle p;. Fix then n such that v <
2n 4 (k +1)/2 + 2%, ju;, and take a positive integer n, > n such that v < 2n, + 1/2.
Since we also have v < 2n, + (k+1)/2 + Zle t;, the first step shows that holds
for n, instead of n. Fix j, 1 < j < k, and write H,, (), Hn,,(7;) for the functions
in the left and right hand side of , respectively (there is no need to include in
the notation neither the parameters v, p;, @ # j, nor the variables z;, i # j). We
have that H,, , (7;) = Hn,u(z;). Take now p; real and big enough so as to satisfy
v<2n+(k+1)/2+ Zle i; and to allow the following computations. First of all, we
prove that

0 0

(5.35) %Hnu,uj (25) = —2jHp, 1,41 (75), %Hnu,uj (25) = =2 Hn,—1,;41(T5)-
J J
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Indeed, the first identity above is straightforward from (2.1)). With respect to the second
identity, by differentiation it follows that

o Mo () = 3 H |
05 =1 ot l=t T3 = 20l Fﬂz+l+1)
ny—1 L
” 20T (/)"
(5.36) = Z al” Z 2 | i .
bttt T3 55 20 T (s + 1 +1)

Since the summand in right hand side of (5.36]) vanishes for {; = 0, we get (after simpli-
fication)

9
8:6]-
This means, using (5.35) and H,, ,, (2;) = Hn, u, (x;), that

Hnu—1,uj+1(93j) = /Hnu—l,uﬁl(xj)-

Hny,uj(xj) = —ijnu—l,uﬁl(%‘)-

Iterating, we get
Hn,uj—&-ny—n(xj) = Hn,uj—l—’flu—n(xj)'

This proves the identity (5.34) for p;, i = 1,...,k, real and big enough. Since for p;,
i=1,...,k, such that v < 2n+ (k+ 1)/2+Zf:1 p; the left and right hand sides of ([5.34))
are analytic functions of each y;, we deduce that (5.34)) actually holds in er] under the

assumption v < 2n+ (k+1)/2+ 35 .

Forn <0,v<2n+(k+1)/2+ 3" and (z1,...,25) € o,
Z A2 ﬁ Jus Ami)
= (A2, =2+ H2) (M) 1 (M)t N

Proceeding in the same way, we can explicitly sum the Bessel expansion (1.3]). First of
all, we complete the notation ([1.9)) and ((1.10)) with the following one: for w > 0,

k
Q) = {(wl,...,xk) cR”: Z |z;| < w},
i=1

k
(5.37) ) = {(ml, ) € Quy [ # o}.
=1

Then we get, for Rev < 2n + (k —1)/2 + 3. Re i,

‘v—2n—1

jmu i JZ m,ve /4
(538) > )_H i (Jm %) an > Hle'FZﬂrlJrl)

m>1 Ju—l—l(]m,u im1 (]m V:L"L ’ul el =l i1
where (ay), is the sequence defined by (5.28) (or (5.29)), and (z1, ..., zy) € Q) forn > 1,
or (x1,...,x )GQ1 for n = 0.
For n <0, Rev < 2n+ (k—1)/2+ ¢, Rey; and (z1,...,2;) € €, we have

‘v—2n—1

Z jml/ i Jui(jm,uzi) _

>1 Jy+1(]m,u) i=1 (jm,l/m’i)ui
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6. BESSEL EXPANSIONS OF NON-POLYNOMIAL FUNCTIONS

In this section, some other examples of Bessel expansions which are not polynomials
will be given.
We start from the expansion generated by Proposition applied to the Bessel expan-

sions and ( -

6.1. Kneser-Sommerfeld type expansions. Let us prove the following identity for the
multivariate expansion (|1.4)):

v—1—2n . k
jm v J (jm in) V
61 - . /"‘z s _ )U«z
( ) m221 (]7%1,1/ - Z2)Jl/+1<.7m,l/> 111 (]mﬂjxi)“i z2"+2 111
n l k 2
4)t
B 2 Z v 7/
: i 115 ! )7
=0 j=0 L4 Hlp=j i=1 20 l P Mz + lz + 1)
for Rev < 2n + (k + 3)/2 + Zle Rep; and (zq,...,2%) € 9[1] (see (1.10)), where the

sequence (al), is defined by (5.28) (or (5.29)).
We proceed in two steps.

6.2. First step. The case k = 1.
Applying Proposition to the expansion ([5.32)), we get

v—1—2n

(6.2) Z (32 Im.v - J,u.(jm,ux)

m21 m,v - Z2>JV+1(jm,l/) (jm,l/x)'u
_ 1 Z gzz ay_;(—a*/4)
z2n+2 2J 201 T (w4 j + 1)

with uniform convergence in compact sets of (0, 1] for Rev < 2n 4+ 2 + Rep and in [0, 1]
for Rev < 2n + 3/2, where the sequence (a”) is defined by (5.28)) (or (5.29)).

n

6.3. Second step. The case k > 1.
Write

2j

2 Jal T
6.3 n =4/=) 2 2
(6.3) Fuok2) =2 303 :

Consider the case p = —1/21n ([6.2). Using the identity (4.6]), we get, for Rev < 2n+3/2
and z € [—1,1],

JZWQH ICOS Umpx) 1 [2Y\/2/mcos(zx)
\/72 T p2n42 ( 2J,,(Z) - fn,l/(xa 2))

jmy V+1(jm l/)

The trigonometric identity

k k
Z COoS (z Z eixi> — ok H cos(zx;),
i=1 i=1

EETE
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together with Theorem [3.1] gives

cv—2n—1
Imp H
E COS ]m ,,l‘,
_ 22 ‘

m>1 V+1 jml/ i1
1 \/2/7r
= o ( Hcos 21;) an,,(Zstz, >>
EETY,
Using the identity (4.6} @ and -, this can be rewritten in the form
(6.4) Z T Jnt ﬁ J_1/2(mp i) _ 1 Fad ﬁ J_12(2;)
‘ m>1 (jgm,u o Zz)Jqul(jm,V) i=1 (jm,uxi)il/z z2n+2 2JV(Z> =1 (in)il/z
k/2 n ; . k
2 21 al ] 2] 2[1'
() ST S ()
Jj= li+-+lp=j i=1
where (x1,...,25) € Q[1]

Assuming that Rep; > —1/2 and using the integral transform 7}, _1/5 (2.2)) acting on
the variable z;, we get from (6.4) the identity .

To extend the formula (6.1) from Rev < 2n 4+ 3/2, Rep; > —1/2 to Rev < 2n +
(k+3)/2+ Zle Rep; and (z1,...,2;) € ), we can proceed as in the second step in
Sect. 5.2

For n < 0, we have, by —n times differentiation of the case n = 0 of ,

Z ]71;11/1 n : ‘]/Ji(jm,l/xi) _ 1 puitk=2n=2 . Juz‘ (.’L‘ZZ)
m>1 (j%m,u - Z2)Jl/+1 (jmyll> i=1 (jm7V:EZ)#Z Z2n+2 2JV<Z> i=1 ('Ilz)#z

for Rev < 2n+4 (k+3)/2+ ¢ Rey, and (21, ..., 1) € oy

In the same way, one can prove that
)\V—Qn
m

b T )
2 (A2 — 22Y(02, — 12 + H2)J,(A) H (i )1
1

o o Jlwi2)
g2 (2((H — )y (2) + 2J,1(2)) g (wiz)

! 22
2/4
23t Y M)

: ] 0 ll+ +lk ] =1
for Rev < 2n+ (k+5)/2+ 3.1 Re; and (z1,...,74) € €2};), where the sequence (alv),

is defined by (5.18)) (or (5.19).

6.4. Two more examples. In this section, we sum the Bessel expansion ((1.5)) and other
related expansion.
Let ¢ be the analytic function in C \ {m? : m € N\ {0}} defined by

ot (=n™
(6.5) Plz) = z  /zsin(m/z) 2mz>1 m2—z

Define now the sequence
02n+2¢(n)<_92)

a2:1+
n!
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We next prove that the multivariate Bessel series (1.5)) is equal to

66) 5 (=)™ T (VT + m2]6%;)
' (L4+m2/0%)" L3 (/1 +m? /02, )

i x; /4
ST S S Tt )

=1 I+ +l=l =1

where 1 < 2n +k/2 4+ 325 Rep; for (z1,...,23) € g, (with the notation of (5.37)).
To this end, define the polynomials P*?(z), n > 0, by

P (x) =0,
n—1 ¢ 2 i
- (—x2/4)7
(6.7) P (z) =" a1 (=2 /1) n>1.

— 2\ T(n+j+1)" =

Then, P*Y is an even polynomial of degree 2n — 2. On the one hand, it is easy to check
that

2n, (n—1)(_ p2
(6.8) PrO(0) = M(/L 3 (1 4+ fn_ 1()! ¢ >) L on> 1,
(6.9) (P?Y (x) = e Pyt (x),

Pi(x) =Ty 10 (Py 20 (), p>—1/2+h.

On the other hand, it is plain that the conditions and determine uniquely the
family of polynomials P
A simple computation using (6.5) and (/6.7]) shows that

(6.10) PrO(0) = 2ur(;+ <+2Z m2/02 ) n>1.

Let us note that the polynomials (P*?), are actually quasi Bessel-Appell. Indeed, write
Pl () = Pfl‘fl (z) so that p/? is a even polynomial of degree 2n. It is then easy to check
that the polynomials (p#?), are the Bessel-Appell polynomials defined by from the
generating function

1
A(z) = A(z;0) = 1 + 02p(0*(z — 1)).
The starting point to prove is the series (see [16l, 5.7.22.3, p. 682])
J.(y/1 2 /62
et (/14 m2/0%x)n 2
where Rep > 0, x € (0,67) and 6 # 0. This is the case k = 1, n = 0 of the series (6.5]).
We next prove the case k =1 and n > 0:
1™ J, 1 2/6? 1
61 3 U /TP _(_M i p;;ﬁ@)),
< (L+m?/0%)" (\/1+m2/02x) 2 zh

with z € [0,07) for 1/2 < 2n+ Rep (or x € (0,07) for n = 0). Write

618 Guonl) = X (o i € 0.07)
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which is an analytic function of y for 1/2 < Re pu+ 2n. Let us define the functions Q. 4.,
by the identity

(6.14) Guon(z) = % (— J‘ﬁ) + Qu,e,n(:c)> :

This definition and (6.11)) show that

(6.15) Quoo(z) =0.

Consider now p big enough so as to allow the following computations. Using (2.1)), it
easily follows that G’ . on(T) = —2G19n-1(2), which proves that Q.. satisfies

(6.16) QL,&,n(l’) = —wal,e,nil(l’)-

Thus, (6.15) and (6.16)) imply that @, ¢, are polynomials. The identities (6.13)), (6.14))
and (6.10f) show that

(6.17) Quon(0) = PY(0).

Then, from and we obtain Q,¢n.(z) = P*%(x). This proves the identity
for p big enough, and using a standard argument of analytic continuation, for
1/2 < 2n+ Re p.

The multivariate expansion can be proved proceeding as in the second step in

Sect. [6.11
If we assume n < 0 and 1 < 2n+k/2 + Zle Re p;, differentiating —n times in
for n = 0 proves that

SIS, SAVIETCANN, AT
2 T L (g~ 270

for (z1,...,2r) € Qg

The last example in this section is the Bessel expansion

3 (1) H T (/1 m2]0a;)
m?(1+m?/6%)" L1 (/1 + m2)0%;)m

This can be worked out in a way similar to the previous example using now the analytic
function ¢ in C\ {m?: m € N\ {0}} defined by

#9= (2 Vzmev o) _2Zm2

Define next the sequence

2 242 2
9 T n+l 0 () (—62)
a, = E - 92 + n| 9 n Z Oa
and the polynomials P,ff(’( ), n >0, by
Py (x) =0,

n—1 ~g 2 ]
R a’_ . (—x*/4)
Pri(z) =" RS Y

— 2\ T(u+j+1)" =
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As before, ]5#’9 is an even polynomial of degree 2n — 2 and satisfies
2 M 2 (n—1)(_ p2
(o) = ﬁ(@ gt fn_fye ))’ nzl,
(Bpf) (@) = =2 P (),
PrO(x) = Tyoajon (P 20) (@), = =1/2+ D
Starting from the expansion
S YT (et
=~ (\/1+m2/0%x)H 2021+t
(see |16l 5.7.22.4, p. 682]), we can prove as before that
Z (=)™ Ju(\/HTQ/QQI) _ l(xz‘]FLJrl(a:) _ (7_2 _ ﬁ) M +P”’9(aj))
m2(1 4+ m?/6%)" (\/H-Twm)# 202+l TH " ’

6 62
with z € [0,07) for —3/2 — 2n < Repu (or x € (0,07) for n = 0).
Proceeding as in the previous example, and using the identities

Z (Ze xl) sin (92611’1) 2]"’2331 sin(Ox;) H cos(6z;),

eem,  1=0 j=1;5%#1

’ Ju<w)>

T
6 xM

T,.—12(x sin(z)) = 2¢/ma® ;;+1+(1 )’

we arrive at
ym k
(6.18) > [
= m2(1 + m?/Q2 m Pl (\/HTQ/QQx,)“
k k k
1 X3 Jyl—l-l(«rz) ,u] ;C] w2 n Jm(‘rl)
:§<Z 902 Hit1 H \6 @ H -

i=1 L j= 1]752

2/4
Zan -1 Z HlelI‘m—i—l +1)>

1+ +lp=l i=1

for 0 < 2n+1+k/24+ 3% Rep; and (z,...,24) € 2y, (recall that this set is defined

in (5:37)).
If we assume n < 0 and 0 < 2n+ 1+ k/2 + Zle Re p;, differentiating —n times in
(6.18]) for n = 0, we have, for (z1,...,zx) € Qlory:

Z (=1)m ﬁ Jo, (/1T + m2/02x;)
< m*(L+m?/0%)" 22 (/1+ m2/02xi)ﬂi

k k
1 X Ju H(a:z) ™ n S (1)
25(2 20af 7\ e T )
i=1 '

J=Lj#i

7. APPENDIX: MULTIVARIATE SNEDDON EXPANSION

As we wrote in the introduction, when the particular Bessel series (1.2) cannot be
expanded in powers of 2%, j € N, the application of our method is much more complicated.
We study here the multivariate Sneddon expansion (1.11)) (see [18, §2.2], [13] [@]).



HOW TO COMPUTE MULTIVARIATE BESSEL EXPANSIONS 25

Our starting point is the case k = 1 of the multivariate Sneddon expansion (1.11]) (see

[9, Sect. 4.3])
]Zq,yu2 Ju(jm,V@ 221}_2_”1—‘@ + 1)2 —o (M
. = —1+ [z] :
et S Umw) ()" vI(p+ 1) v

which holds in (—2,2) \ {0} for 2Rev < 1/2 + Re px with v # 0.
Taking pn = —1/2, we obtain

2U—2 2v—2 2
2 22Dy 4 1 o (—1/2
) j—COS(Wmu): wrl <_1+|$| QV( /))
1% 1%

‘]y+1 (]m V)

m2>1

which holds in (—2,2) \ {0} for Rev < 0.
Using Theorem , we get, for (zq,...,21) € 2y,
(7.1)

5 et = 2 (L),

m>1 o1 (Gm) i=1 v 2\ v
where
k —2v
(7.2) o, m) = > | Y e
eeclly =1
In terms of the Bessel functions, ([7.1]) can be rewritten as
(7.3)

j2v—2 k i w+k/2—2 2
Imv J71/2(xz]m,1/) 2 F(V“‘ 1) 1 —]_/2
Z ) H . )_1/2 == 1/7Tk/2 —1+? y 1/)(x1,...,xk) .

mz]_ Jl/—l—l(jm,l/) i=1 (xijm,l/

By applying the integral transform 7T),, _1/ (2.2) in the variable z;, ¢ = 1,..., k, and using
(2.3)), the left hand side of ([7.3)) gives

2y —2 kJ

]mu H Z z.]mu )

V+1 ]my i=1 ( z]mu

m_

On other hand, using (2.4)), we get, for the right hand side of @

22 HR/272D (1 4 1)? 27k/2D(1/2)F 1/2
k)/2 - k< ) @ —1/21‘1 xl??‘rk)) Y
s Hi:l 20T (pas + 1) 2 v

where by OF_, T)., _1/2.,(¥(21, ..., x1)) we denote the successive application of each of
the integral transforms 7),, _1/2,, acting on the variable x; to the function W(xy, ..., xp),
fori=1,... k.

That is,

Z jZfVQ . Jﬂi(xijm,u> o 22”72F(V + 1)2

(7.4) Lidmaw) _
1 (Ii.]m,u)m 14 Hf—l 2“1F( i + 1)

1 /—1/2\ I, 2 ul+1
(e () T O tvta o)

which holds in Q, (see (5.37)) for Rev < 0 and Rep; < —1/2. Since the function in
the left hand side is even, we can assume that z; > 0, 1 < ¢ < k. It is then enough to
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compute the integral transforms

Tui,—1/2,ri<w($17'"7:["]{))7 1= 1,...,k.

We know how to proceed in the set A; (1.12)) assuming that the parameter y; is equal to
—1/2. Indeed, by symmetry, we can assume ¢ = 1. Taking into account that in A the
first coordinate x; dominates the sum of the others, we write

e () 2 2j Cu—
2 QZ:, Iizlz

where we have used that if j is odd then > ( Zf:z eixi)] = 0, and the identity (3.1)).

We next apply the integral transform 7),, _;/» (2.2) in the variable z;, i =2,...,k, and
use . This can be done because for 0 < s; < 1, i = 2,...,k, the set A] is stable
under the map

(21,...,21) = (21, S2T2, . . ., Sk Tg),

(i.e., if (z1,...,2%) € AT, then (z1, 892a, ..., spxs) € AJ, as well), and we can then use
the expansion (7.5)). Hence, we find

k
@T i»—1/2,m; (W(21,. .., 21))
1=2

— ; k 2;

= E 2\ 22 Z 2j Ll +1/2)z;
— 2k 2v—2j i : ‘
=0 < 2J >x1 <2527---725k> H 202 (py + 1; + 1)

e +le=j i=2

Substituting in (7.4]), we get after some easy computations

Jm” T ap(@ijmy) H Jui(Eigmy) _ 222 (v + 1)
>1 J3+1<jm,l/) (xljm,u)il/2 =2 (xijm,u)ui 1/2_1/2F(1/2) Hf:g Q“ir(ﬂi + 1)

—1/9\ & —2u_2j - x%zl

=0 ot tlp=7 i=2
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This proves in A} for gy = —1/2, Rev < 0 and Reu; < —1/2. The extension to
2Rev < (k—1)/2+ ¥, Rep; can be done proceeding as in [, Sect. 4.1], where the case
k = 2 was considered.

As pointed out in the introduction, we have computational evidence showing that
also holds in A] for j; # —1/2. However, we have not been able to prove it, because for
0<s1 < (Z?:z x;)/z;, the set AT is not stable under the map

(x1,...,xk) — (S171, T2y ..., Tk),

and we cannot use to compute the integral transform 7, _,» (2.2)) acting on the
variable z; applied to the function ¢ (z1,...,zx) (7.2).

We have not succeeded in summing in A because this set is not stable with
respect to any of the maps

(1, xp) = (1, T2y o, STy, -+ - T),

for certain values s; with 0 < s; < 1.
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