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Abstract. Let Hα be the modified Hankel transform

Hα(f, x) =

Z ∞

0

Jα(xt)

(xt)α
f(t)t2α+1 dt,

defined for suitable functions and extended to some Lp((0,∞), x2α+1) spaces.

Given δ > 0, let Mδ
α be the Bochner-Riesz operator for the Hankel transform.

Also, we take the following generalization

Hk
α(f, x) =

Z ∞

0

Jα+k(xt)

(xt)α
f(t)t2α+1 dt, k = 0, 1, 2, . . .

for the Hankel transform, and define Mδ
α,k as

Mδ
α,kf = Hk

α

“
(1− x2)δ

+Hk
αf

”
, k = 0, 1, 2, . . .

(thus, in particular, Mδ
α = Mδ

α,0). In the paper, we study the uniform bound-

edness of {Mδ
α,k}k∈N in Lp((0,∞), x2α+1) spaces when α ≥ 0. We found that,

for δ > (2α+1)/2 (the critical index), the uniform boundedness of {Mδ
α,k}

∞
k=0

is satisfied for every p in the range 1 ≤ p ≤ ∞. And, for 0 < δ ≤ (2α + 1)/2,
the uniform boundedness happens if and only if

4(α + 1)

2α + 3 + 2δ
< p <

4(α + 1)

2α + 1− 2δ
.

In the paper, the case δ = 0 (the corresponding generalization of the χ[0,1]-

multiplier for the Hankel transform) is previously analyzed; here, for α > −1.
For this value of δ, the uniform boundedness of {M0

α,k}
∞
k=0 is related to the

convergence of Fourier-Neumann series.

1. Introduction

Let α ≥ −1/2. For a function f(t) on the interval (0,∞), the so-called modified
Hankel transform Hα(f, x), x > 0, of order α is given by

(1) Hα(f, x) =
∫ ∞

0

Jα(xt)
(xt)α

f(t)t2α+1 dt,

where Jα(x) is the Bessel function of the first kind of order α. Well-known bounds
for Bessel function and Hölder’s inequality show that (1) is well defined for every
f ∈ Lp((0,∞), x2α+1 dx) (Lp(x2α+1), from now on) with 1 ≤ p < 4(α+1)

(2α+3) .
Furthermore, it is easy to see that Hα is a bounded operator from L1(x2α+1) into

L∞(x2α+1). Also, as usual, the expression (1) is extended by continuity to different
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Lp(x2α+1) spaces. For instance, it is well known that Hα is an isomorphism from
L2(x2α+1) into itself and Hα ◦ Hα = Id (for α > −1, the extension of Hα to
L2(x2α+1) can also be done; see [7, 8, 23, 2]). As a consequence, of course, we can
get the corresponding interpolation result that we do not detail here.

Associated with Hα, we can define the ball multiplier Mα as the operator that
verifies the relation Hα(Mαf) = χ[0,1]Hαf ; or, in other words,

Mαf = Hα(χ[0,1]Hαf).

This operator is bounded from Lp(x2α+1) into itself if and only if 4(α+1)
2α+3 < p <

4(α+1)
2α+1 . The first proof of this fact can be found in [11]. For this and related

properties on Hankel multipliers see also [14, 9, 23, 20, 10, 4, 5].
Now, let us take the following generalization for the Hankel transform. We

consider

(2) Hk
α(f, x) =

∫ ∞

0

Jα+k(xt)
(xt)α

f(t)t2α+1 dt, k = 0, 1, 2, . . . .

In this way, the operator Mα can be also generalized by taking

(3) Mα,kf = Hk
α(χ[0,1]Hk

αf), k = 0, 1, 2, . . . .

The study of the uniform boundedness of these operators in Lp(x2α+1) spaces is
very useful. As we can see in [23, 10, 4], to prove the mean convergence of Fourier-
Neumann series is reduced to prove the uniform boundedness of the operators
{Mα,kf}k∈N. There, it is proved that the uniform boundedness in Lp(x2α+1) is
equivalent to max{ 4

3 ,
4(α+1)
2α+3 } < p < min{4, 4(α+1)

2α+1 }. Actually, in this article, we
will explicitly show the uniform boundedness of {Mα,kf}k∈N only because it plays
an important role in the proof of some other results of the paper. Moreover, the
boundedness for Mα,k is shown not only for α ≥ −1/2, but also for α > −1.

Another multiplier for the Hankel transform is the Bochner-Riesz multiplier; of
course, it is similar to the well known Bochner-Riesz multiplier for the Fourier
transform (see, for instance, [25, 16] or [18, Ch. IX, § 2.2]). Taking δ > 0, the
operator M δ

α is the one that makes Hα(M δ
αf) = (1− x2)δ

+Hαf , being (1− x2)+ =
max{0, 1 − x2} (of course, M δ

α for δ = 0 would be Mα). Also, it can be described
as

(4) M δ
αf = Hα

(
(1− x2)δ

+Hαf
)
.

Again, Bochner-Riesz multiplier can be generalized by using (2). Thus, we take

(5) M δ
α,kf = Hk

α

(
(1− x2)δ

+Hk
αf

)
, k = 0, 1, 2, . . . .

Similarly to the ball multiplier generalization, we can wonder if these operators are
uniformly bounded in Lp(x2α+1). This paper is devoted to the study of this fact.
We will only deal with the case α ≥ 0.

We found that there exists an index δ0 = (2α + 1)/2 such that, for δ > δ0, the
uniform boundedness is true for every p in the range 1 ≤ p ≤ ∞; however, for
0 < δ ≤ δ0, the uniform boundedness only happens in a finite range of p. Moreover,
as we will see, the proofs for both facts are different. This value δ0 is called the
critical index. The existence of a critical index is also a common fact in the study
of the boundedness of the Bochner-Riesz operator for the Fourier transform (see,
for instance, [19])
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The paper is organized as follows. In Section 2, we give the main results of
the paper. First, the uniform boundedness for {Mα,k}k∈N (Theorem 1); then, the
uniform boundedness for {M δ

α,k}k∈N, both for δ > δ0 (Theorem 2) and for 0 < δ ≤
δ0 (Theorem 3). In Section 3, we give the proof of Theorem 1, which is reduced to
known results that already appear in papers related with the uniform boundedness
of Fourier-Neumann series. In Section 4 we give the proof of Theorem 2. To obtain
it, we will use some results about the translation for the Hankel transform and
the corresponding convolution product. Finally, in Section 5, we give the proof of
Theorem 3. In this case, we will apply an interpolation result for families of analytic
operators from Stein [17], and the uniform boundedness of {Mα,k}k∈N that appears
in Theorem 1.

Throughout this paper, we will use C (or C ′) to denote a positive constant
independent of f and k (and of any other variable, if it is the case), which can
assume different values in different occurrences. When C has a subindex, it depends
only on the parameters that appear in the subindex.

Some of the operators defined in this paper have an integral expression only for
suitable functions, and then they are extended by density and continuity. Usually,
a class S+ of smooth functions in (0,∞), related with Schwartz class S, is used
(S+ are the even functions of S restricted to (0,∞)); see, for instance, [8, 6] for
details (and [9, 20] for related density results). Moreover, with these functions,
Fubini’s Theorem can be applied when necessary. This is a standard technique; we
will implicitly use this kind of arguments sometimes without notice it again.

Remark 1. Note that, although we have referred to some results that appeared
in [23, 10, 4, 5], the Hankel transform used in these papers (as well as by other
authors such as [7, 8]) was somewhat different. In these papers, instead of (1), it
was used

(6) Hα(f, x) =
x−α/2

2

∫ ∞

0

Jα(
√
xt) g(t)tα dt,

defined in Lp(xα). And the ball multiplier Mα (and Mα,k) was also defined for this
Hankel transform. It is clear that, by the changes of variables t 7→ t2 and x 7→ x2,
the Hankel transform (6) in Lp(xα) becomes (1) in Lp(x2α+1). Of course, the range
of p for which there exists boundedness is preserved.

Nowadays, it seems that the notation in (1) is more used (see, for instance [13,
14, 9, 20, 15, 6, 1, 2], although it is sometimes called Fourier-Bessel transform), so
we have adopted it in this paper.

When studying the boundedness of Mα and Mα,k, the notation in (6) was more
handy than (1): the operators that appear are, directly, Hilbert transforms with
weights (with (1), in the denominator, an x2 − t2 arises instead of a x− t, and this
requires extra work). However, in this paper, is more suitable to use (1) and its
corresponding M δ

α and M δ
α,k.

2. Main results

Let us begin to show an expression for the χ[0,1]-multiplier generalization Mα,kf

described in (3); or, in other words, M δ
α,kf for δ = 0. We will study {Mα,k}k∈N

not only for α ≥ −1/2, but also for α > −1. By using (3) and Fubini’s Theorem
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we obtain

(7) Mα,k(f, x) = x−α

∫ ∞

0

(∫ 1

0

Jα+k(ts)Jα+k(xs)s ds
)
tα+1f(t) dt.

The result that shows the uniform boundedness of this family of operators is the
following:

Theorem 1. Let α > −1, 1 < p < ∞, and the family of operators {Mα,k}k∈N
defined as in (3). Then,

‖Mα,kf‖Lp(x2α+1) ≤ C‖f‖Lp(x2α+1), k ∈ N,

if and only if {
4/3 < p < 4, if −1 < α < 0,
4(α+1)
2α+3 < p < 4(α+1)

2α+1 , if 0 ≤ α.

Now, let us consider the generalized Bochner-Riesz multiplier M δ
α,k described

in (5). Let us take δ > 0. An expression that allows us to show M δ
α,k as an

operator with a kernel Kδ
α+k is the following:

M δ
α,k(f, x) = x−α

∫ ∞

0

f(t)Kδ
α+k(x, t)tα+1 dt

with

(8) Kδ
α+k(x, t) =

∫ 1

0

s(1− s2)δJα+k(xs)Jα+k(ts) ds.

Again, it can be easily deduced by applying Fubini’s Theorem to the definition
for M δ

α,k given in (5).
The main results in the paper are the ones that show uniform boundedness for

{M δ
α,k}k∈N. When δ exceeds the critical index, we have

Theorem 2. Let α ≥ 0, δ > δ0 = (2α + 1)/2 and 1 ≤ p ≤ ∞, and the family of
operators {M δ

α,k}k∈N defined as in (5). Then,

‖M δ
α,kf‖Lp(x2α+1) ≤ C‖f‖Lp(x2α+1), k ∈ N.

And, for δ below the critical index, we have

Theorem 3. Let α ≥ 0, 0 < δ ≤ δ0 = (2α + 1)/2 and 1 ≤ p ≤ ∞, and the family
of operators {M δ

α,k}k∈N defined as in (5). Then,

‖M δ
α,kf‖Lp(x2α+1) ≤ C‖f‖Lp(x2α+1), k ∈ N,

if and only if

(9)
4(α+ 1)

2α+ 3 + 2δ
< p <

4(α+ 1)
2α+ 1− 2δ

.



BOCHNER-RIESZ OPERATORS 5

3. Proof of Theorem 1 (i.e., uniform boundedness for δ = 0)

First, we are going to establish some new expressions for (7) that will be more
useful to study the uniform boundedness of the operators.

We will use von Lommel’s formula∫ 1

0

Jν(ts)Jν(xs)s ds =
1

x2 − t2
(Jν(x)tJ ′ν(t)− Jν(t)xJ ′ν(x))

=
1

x2 − t2
(xJν(t)Jν+1(x)− tJν+1(t)Jν(x))

(for the last equality, use zJ ′ν(z) = νJν(z) − zJν+1(z)). By applying it to (7) we
get

Mα,k(f, x) = x−α+1Jα+k+1(x)
∫ ∞

0

t−αJα+k(t)
x2 − t2

f(t)t2α+1 dt(10)

− x−αJα+k(x)
∫ ∞

0

t−α+1Jα+k+1(t)
x2 − t2

f(t)t2α+1 dt

= W1,k(f, x)−W2,k(f, x)

or, also,

Mα,k(f, x) = x−αJα+k(x)
∫ ∞

0

t−α+1J ′α+k(t)
x2 − t2

f(t)t2α+1 dt(11)

− x−α+1J ′α+k(x)
∫ ∞

0

t−αJα+k(t)
x2 − t2

f(t)t2α+1 dt

= W̃1,k(f, x)− W̃2,k(f, x).

Now, we have all the necessary for

Proof of Theorem 1. These are the operators that appear in the decomposition of
the partial sums of Fourier-Neumann series to prove their uniform boundedness in
Lp(x2α+1) spaces, such as it is studied in [23, 10, 4]. Actually, with this notation, the
partial sums are Snf = W1,0f −W2,0f + W̃2,2n+2f − W̃1,2n+2f (take into account
that the notation in these papers is a little different and, also, that a change of
variable for x and t is being used, as described in Remark 1).

In this way, a sketch of the proof for the uniform boundedness of Mα,k is as
follows:

For k = 0, the decomposition (10) is used. Then, well-known bounds for |Jα|
and |Jα+1| are applied, and so the proof of the boundedness of W2,0 and W1,0

is reduced to the boundedness of the Hilbert transform with weights. We get
that this boundedness is true for 1 < p < ∞ when −1 < α < −1/2; and for
4(α+1)
2α+3 < p < 4(α+1)

2α+1 when α ≥ −1/2. (The case α < −1/2 is studied only in [10].)
For k > 0, the decomposition (11) is used. Now, suitable bounds for |Jα+k| and

|J ′α+k| are applied. Then, W̃1,k and W̃2,k are bounded by Hilbert transforms with
weights (that depend of k). Finally, uniform Ap weights theory is used to find the
uniform boundedness of these Hilbert transforms. Here, the condition 4/3 < p < 4
appears. �

Remark 2. As we have commented in the previous proof, the condition 4/3 < p < 4
does not arise if we only analyze the case k = 0. Then, for the boundedness of the
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χ[0,1]-multiplier Mα in Lp(x2α+1), 1 < p <∞ and α > −1, we have

‖Mαf‖Lp(x2α+1) ≤ C‖f‖Lp(x2α+1) ⇐⇒

{
1 < p <∞, if −1 < α < −1

2 ,
4(α+1)
2α+3 < p < 4(α+1)

2α+1 , if −1
2 ≤ α.

This result is already implicit in [10], but not explicitely stated. And, changing
Lp(x2α+1) by some other weighted Lp spaces, also [22] can be seen.

A completely different proof of this fact, based on multipliers for Fourier-Bessel
expansions and transplantion theorems, can be found in [2].

4. Uniform boundedness for δ over the critical index

First, let us describe the translation and convolution for the Hankel transform
as well as some of its properties. A wider exposition of these results can be found
in [13, 12, 3]. Mostly in this section, we can assume α > −1/2, although the proof
of Theorem 2 will require α ≥ 0 (because (18) is not true for α < 0).

We consider the translation operator T x, with x ≥ 0, defined, for suitable func-
tions h, by

T x(h, t) =
Γ(α+ 1)√
π Γ(α+ 1/2)

∫ π

0

h(w) sin2α θ dθ,

where w2 = x2 + t2 − 2xt cos θ, x, t ≥ 0. Using this translation, the convolution
operator can be described as

(12) h ∗ g(x) =
∫ ∞

0

g(t)T x(h, t)t2α+1 dt.

It is not difficult to check that, for α > −1/2,

(13) ‖h ∗ g‖Lp(x2α+1) ≤ ‖h‖L1(x2α+1)‖g‖Lp(x2α+1)

for 1 ≤ p ≤ ∞. The convolution structure and its boundedness will play a signifi-
cant role in the proof of Theorem 2.

Let us introduce some other notation. Let {P (α)
k }∞k=0 be the ultraspherical poly-

nomials of order α (also known as Gegenbauer polynomials). Here, and in the
discussion that will follow, the usual modifications must be applied if α = 0 (i.e.,
the use of Chebyshev polynomials). A wide information on ultraspherical polyno-
mials can be found in [21]. To simplify some expressions, we take

(14) pα
k (x) =

2α−1k! Γ(α)
πΓ(2α+ k)

P
(α)
k (x).

For Bessel functions, we will denote

(15) J δ
α(x) = 2δΓ(α+ 1)

Jα+δ+1(x)
xα+δ+1

.

Also, we will use the Sonine’s formula (see [24, § 12.11, p. 373] or [19, Lemma 4.13])

(16) Jν+µ+1(z) =
zν+1

2νΓ(ν + 1)

∫ 1

0

Jµ(zs)sµ+1(1− s2)ν ds,

which is valid for Re(µ) > −1 and Re(ν) > −1.
Now, let us see a new expression for the Bochner-Riesz operator M δ

α,k and its
kernel Kδ

α+k. It is more useful for our purposes than the previous one we showed
in (8).
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Lemma 1. Let α > −1/2 and δ > 0. Then,

M δ
α,k(f, x) = x−α

∫ ∞

0

f(t)Kδ
α+k(x, t)tα+1 dt

with

(17) Kδ
α+k(x, t) = (xt)α

∫ π

0

J δ
α(w)pα

k (cos θ) sin2α θ dθ,

being w2 = x2 + t2 − 2xt cos θ.

Proof. We have already seen that M δ
α,k(f, x) can be written with Kδ

α+k(x, t) as
in (8). Now, let us transform this expression to become (17). For this, we will use∫ π

0

Jα(w)
wα

pα
k (cos θ) sin2α θ dθ =

Jα+k(x)
xα

Jα+k(t)
tα

,

with pα
k as in (14); this formula, that is valid for α > −1/2, can be found in [24,

§ 11.41, p. 367]. In this way,

Kδ
α+k(x, t) =

∫ 1

0

s(1− s2)δJα+k(xs)Jα+k(ts) ds

= (xt)α

∫ 1

0

s2α+1(1− s2)δ

(∫ π

0

Jα(sw)
(sw)α

pα
k (cos θ) sin2α θ dθ

)
ds.

Exchanging the order of integration and applying Sonine’s formula (16), we can
conclude

Kδ
α+k(x, t) = (xt)α

∫ π

0

w−αpα
k (cos θ) sin2α θ

(∫ 1

0

sα+1(1− s2)δJα(sw) ds
)
dθ

= (xt)α

∫ π

0

J δ
α(w)pα

k (cos θ) sin2α θ dθ.

�

By using standard estimates for ultraspherical polynomials (see, for instance [21,
Th. 7.33.1]) we have that, for α ≥ 0,

(18) |pα
k (x)| ≤ 1, x ∈ [−1, 1].

Also, the well-known estimates for Bessel functions (of order ν > −1)

|Jν(t)| ≤ Cνt
ν , t ∈ (0, 1), |Jν(t)| ≤ Cνt

−1/2, t ∈ (1,∞),

ensure that

(19) ‖J δ
α(x)‖L1(x2α+1) = Cα,δ <∞

for δ > δ0 = (2α+ 1)/2.
Now, we have all that we will use for

Proof of Theorem 2. By Lemma 1, we can write

(20) ‖M δ
α,kf‖Lp(x2α+1) =

∥∥∥∥x−α

∫ ∞

0

f(t)Kδ
α+k(x, t)tα+1 dt

∥∥∥∥
Lp(x2α+1)

.

Moreover, by (17) and (18), we get∣∣Kδ
α+k(x, t)

∣∣ ≤ C (xt)α

∫ π

0

|J δ
α(w)| sin2α θ dθ.
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Then, by using this and (12), we have∣∣∣∣x−α

∫ ∞

0

f(t)Kδ
α+k(x, t)tα+1 dt

∣∣∣∣
≤ C

∫ ∞

0

|f(t)|
(∫ π

0

|J δ
α(w)| sin2α θ dθ

)
t2α+1 dt

= C ′
∫ ∞

0

|f(t)|T x(|J δ
α |, t)t2α+1 dt

≤ C ′ (|J δ
α | ∗ |f |)(x).

Finally, by applying (20), (13) and (19), we conclude

‖M δ
α,kf‖Lp(x2α+1) ≤ C

∥∥ |J δ
α | ∗ |f |

∥∥
Lp(x2α+1)

≤ C‖J δ
α‖L1(x2α+1)‖f‖Lp(x2α+1)

≤ C ′‖f‖Lp(x2α+1).

�

5. Uniform boundedness for δ below the critical index

The proof of Theorem 3 needs some prior machinery. In particular, we will use
Stein’s theorem on interpolation of analytic families of operators; it can be seen
in [17]. Here, we will show this result adapted to our spaces Lp(x2α+1).

First, let us consider the notion of analytic family of operators. A family of
operators {Tz} depending on a complex parameter z that runs in 0 ≤ Re(z) ≤ 1 is
called analytic if:

(a) For each z, Tz is a linear transformation of simple functions on (0,∞) into
measurable functions on (0,∞).

(b) If φ and ψ are simple functions on (0,∞), then

Φ(z) =
∫ ∞

0

Tz(ψ, x)φ(x) dx

is analytic in 0 < Re(z) < 1 and continuous in 0 ≤ Re(z) ≤ 1.
We say that an analytic family {Tz} is of admissible growth if Φ(z) is of admis-

sible growth; that is, if

sup
|y|≤s

sup
0≤x≤1

log |Φ(x+ iy)| ≤ Aeas,

where a < π and A is a constant. Both A and a may depend on the functions φ
and ψ.

The interpolation result is therefore:

Theorem 4. Let {Tz} be an analytic family of linear operators of admissible
growth, defined in the strip 0 ≤ Re(z) ≤ 1. Suppose that 1 ≤ p0, p1, q0, q1 ≤ ∞
and

1
p

=
1− r

p0
+

r

p1
,

1
q

=
1− r

q0
+

r

q1

for 0 ≤ r ≤ 1. We also assume

(21) ‖Tiyf‖Lq0 (x2α+1) ≤ A0(y)‖f‖Lp0 (x2α+1)
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and

(22) ‖T1+iyf‖Lq1 (x2α+1) ≤ A1(y)‖f‖Lp1 (x2α+1)

for any simple function f . Finally, suppose

log |Ai(y)| ≤ Aea|y|, a < π, i = 0, 1.

Then, we may conclude

(23) ‖Trf‖Lq(x2α+1) ≤ Ar‖f‖Lp(x2α+1)

where
logAr ≤

∫
R
ω(1− r, y) logA0(y) dy +

∫
R
ω(r, y) logA1(y) dy

and

ω(1− r, y) =
tan(πr/2)

2[tan2(πr/2) + tanh2(πy/2)] cos2(πy/2)
.

Proof. See [17] or [19, Ch. V, § 4]. �

Remark 3. Note that, if the family {Tz} depends on a parameter k, and the es-
timates (21) and (22) are independent of k, we can conclude that the bounded-
ness (23) will be uniform in k.

The proof of Theorem 3 (the uniform boundedness of M δ
α,k in the range 0 < δ ≤

δ0) will use an analytic family of operators related with M δ
α,k.

Let us consider δ(z) = (1−z)δ0+ε with ε > 0, 0 ≤ Re(z) ≤ 1 and δ0 = (2α+1)/2.
We will take the family of operators

(24) M
δ(z)
α,k (f, x) = x−α

∫ ∞

0

f(t)Kδ(z)
α+k(x, t)tα+1 dt, k ∈ N,

where the kernel Kδ(z)
α+k is as in (17) with δ changed by δ(z). This definition of

M
δ(z)
α,k is valid for simple functions in (0,∞).
Bessel functions of complex order λ = ν + iµ satisfy

Jλ(t) =
(t/2)λ

Γ(1/2)Γ(λ+ 1/2)

∫ 1

0

(1− s2)λ−1/2 cos(st) ds, ν > −1/2

(it is just a particular case of (16)), and the estimates

|Jν+iµ(t)| ≤ Cνe
π|µ|t−1/2, t ≥ 1, ν ≥ 0,(25)

|Jν+iµ(t)| ≤ Cνe
π|µ|tν , t > 0, ν ≥ 0.(26)

Then, it is not difficult to check that, for any k, the family of operators (24) is
analytic and of admissible growth. The details can be seen in [25, § 3].

Now, let us prove the uniform boundedness for the operators M δ(z)
α,k in Re(z) = 0

and Re(z) = 1 for some values of p. Lemma 2 will establish the boundedness for
Re(z) = 0, and Lemma 3 for Re(z) = 1.

Lemma 2. Let α ≥ 0 and 1 ≤ p ≤ ∞. Consider M δ(z)
α,k the family of operators given

by (24), where δ(z) = (1− z)δ0 + ε with ε > 0, 0 ≤ Re(z) ≤ 1 and δ0 = (2α+ 1)/2.
Then, the inequality

‖M δ(iy)
α,k f‖Lp(x2α+1) ≤ A0(y)‖f‖Lp(x2α+1), k ∈ N,

holds, with A0(y) = Cα,pe
π|δ0y|.
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Proof. First, note that Lemma 1 can be reproduced with the change δ by δ(iy).
Then, the proof of this lemma is similar to the one of Theorem 2, by applying again
the convolution structure. But, this time, we use the estimation

‖J δ(iy)
α (x)‖L1(x2α+1) ≤ Cαe

π|δ0y|,

that follows from the bounds (25) and (26) for (15) (with δ(iy)). �

Now, the boundedness for M δ(1+iy)
α,k :

Lemma 3. Let α ≥ 0 and 1 ≤ p ≤ ∞. Consider M δ(z)
α,k the family of operators given

by (24), where δ(z) = (1− z)δ0 + ε with ε > 0, 0 ≤ Re(z) ≤ 1 and δ0 = (2α+ 1)/2.
If

(27)
4(α+ 1)
2α+ 3

< p <
4(α+ 1)
2α+ 1

,

then the inequality

‖M δ(1+iy)
α,k f‖Lp(x2α+1) ≤ A1(y)‖f‖Lp(x2α+1), k ∈ N,

holds with A1(y) = Cα,p

(
1 + |δ0y|

ε

)
.

Proof. Von Lommel’s formula

sJν(xs)Jν(ts) =
1

x2 − t2
d

ds
{stJν(xs)J ′ν(ts)− sxJ ′ν(xs)Jν(ts)}

and an integration by parts in (8) (with δ changed by δ(1 + iy)) give

K
δ(1+iy)
α+k (x, t) = 2δ(1 + iy)

∫ 1

0

s(1− s2)δ(1+iy)−1Ks
α+k(x, t) ds,

where

(28) Ks
ν(x, t) =

stJν(xs)J ′ν(ts)− sxJ ′ν(xs)Jν(ts)
x2 − t2

.

Also, let us denote

(29) T s
α,k(f, x) = x−α

∫ ∞

0

f(t)Ks
α+k(x, t)tα+1 dt.

In this way, by using Fubini’s theorem, we can write

M
δ(1+iy)
α,k (f, x) = 2δ(1 + iy)

∫ 1

0

s(1− s2)δ(1+iy)−1T s
α,k(f, x) ds.

Taking into account that δ(1 + iy) = ε − iyδ0 and by applying Minkowsky’s
integral inequality, we have

‖M δ(1+iy)
α,k f‖Lp(x2α+1) ≤ C(ε+ |δ0y|)

∥∥∥∥∫ 1

0

2s(1− s2)ε−iyδ0−1T s
α,k(f, x) ds

∥∥∥∥
Lp(x2α+1)

≤ C(ε+ |δ0y|)
∫ 1

0

2s(1− s2)ε−1
∥∥T s

α,k(f, x)
∥∥

Lp(x2α+1)
ds.

Now, we claim that

‖T s
α,kf‖Lp(x2α+1) ≤ Cα,p‖f‖Lp(x2α+1)
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holds for every s for p verifying (27). We have T s
α,k(f(·), x) = T 1

α,k(f( (·)
s ), sx), and

then it is enough to prove the inequality

(30) ‖T 1
α,kf‖Lp(x2α+1) ≤ Cα,p‖f‖Lp(x2α+1).

But comparing (28) and (29) with (11), it is clear that

T 1
α,kf = Mα,kf.

Then, by applying the uniform boundedness of Theorem 1, we get (30).
Finally, using that

(ε+ |δ0y|)
∫ 1

0

2s(1− s2)ε−1 ds ≤
(
1 +

|δ0y|
ε

)
,

we conclude

‖M δ(1+iy)
α,k f‖Lp(x2α+1) ≤ Cα,p

(
1 +

|δ0y|
ε

)
‖f‖Lp(x2α+1).

�

Now,

Proof of Theorem 3. We will restrict our attention to 1 ≤ p ≤ 2. The other values
for p can be obtained by using a duality argument, because∫ ∞

0

f(x)M δ
α,k(g(t), x)x2α+1 dx =

∫ ∞

0

M δ
α,k(f(x), t)g(t)t2α+1 dt.

To prove that (9) is a necessary condition, let us take a function f ∈ S+ such
that Hα(f, x) = 1 if x ∈ (0, 1). Thus, by using the definition (5) and Sonine’s
formula (16), we get that

M δ
α,0(f, x) = Hα((1− t2)δ

+Hαf, x) = Hα((1− t2)δ
+, x)

=
∫ 1

0

Jα(xt)
(xt)α

(1− t2)δt2α+1 dt = 2δΓ(δ + 1)
Jα+δ+1(x)
xα+δ+1

.

Now, by applying the well-known asymptotic estimate (see [24, § 7.21 (1), p. 199])

Jν(x) ≈ ( 2
π )1/2

x−1/2 cos(x− νπ
2 − π

4 ) +O(x−3/2), x→∞,

it is clear that M δ
α,0f /∈ Lp(x2α+1) if p ≤ 4(α+1)

2α+2δ+3 .
Finally, let us prove that (9) is also sufficient. Let us take the analytic family

given by (24), with δ(z) = (1 − z)δ0 + ε, δ0 = (2α + 1)/2 and ε > 0, and take
p0 = q0 = 1, p1 = q1 = 4(α+ 1)/(2α+ 3) + ε. Now, let us use Lemmas 2 and 3 for
p0 and p1. Then,

‖M δ(iy)
α,k f‖Lp0 (x2α+1) ≤ A0(y)‖f‖Lp0 (x2α+1),

with A0(y) = Cα,p0e
π|δ0y|, and

‖M δ(1+iy)
α,k f‖Lp1 (x2α+1) ≤ A1(y)‖f‖Lp1 (x2α+1),

with A1(y) = Cα,p1

(
1 + |δ0y|

ε

)
. In this way, Theorem 4 ensures

(31) ‖M δ(t)
α,k f‖Lp(x2α+1) ≤ C‖f‖Lp(x2α+1)

for those values for p which satisfy
1
p

= (1− r) +
r

p1
, 0 ≤ r ≤ 1.
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By using δ = δ(r) = (1− r)δ0 +ε, we have r = 1− δ−ε
δ0

, so the result holds for those
values for p which satisfy

1
p

=
(δ − ε

δ0

)(
1− 1

p1

)
+

1
p1
, ε ≤ δ ≤ ε+ δ0.

Taking an arbitrarily small ε, we see that, if 0 < δ < δ0, the boundedness (31) holds
for those values of p which satisfy 1

p <
2α+3+2δ
4(α+1) . This completes the proof. �
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