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Abstract

We give a short proof to characterize the cases when arccos(
√

r), the
arccosine of the square-root of a rational number r ∈ [0, 1], is a rational
multiple of π: This happens exactly if r is an integer multiple of 1/4.
The proof relies on the well-known recurrence relation for the Chebyshev
polynomials of the first kind.
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The arithmetic properties of trigonometric functions has been a recurring
topic in the mathematical literature. In 1933, D. H. Lehmer [2] proved that
if d > 2 and k/d is an irreducible fraction, then 2 cos(2πk/d) is an algebraic
integer of degree ϕ(d)/2 (with ϕ(d) being Euler’s totient function); the proof
can be also found in [3, Theorem 3.9]. As a consequence, it can be shown that,
for t ∈ Q, the only rational values of cos(πt) are cos(πt) = 0,±1,±1/2. But
this can be proved independently of Lehmer’s result; see also [3, Chapter 3] for
historical references. Another nice and self-contained proof appears in [4, § 6.3,
Theorem 6.16].

In [1, Chapter 6], as a key step for the construction of Dehn’s counterexam-
ples to Hilbert’s third problem about decomposing polyhedra, it is established
that

1
π

arccos
(

1√
n

)
/∈ Q when n ∈ N, n odd, n ≥ 3. (1)

The aim of this paper is to give a direct and simple proof of a much more general
result: the complete characterization of the r ∈ Q such that

1
π

arccos
(√

r
)
∈ Q.
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Let us explain the idea of our proof. The elegant proof of (1) given in [1,
Chapter 6] is based in the trigonometric identity

cos((k + 1)θ) = 2 cos(θ) cos(kθ)− cos((k − 1)θ), (2)

which is an immediate consequence of

cos(α) + cos(β) = 2 cos(α+β
2 ) cos(α−β

2 ).

For even n, a different method is suggested in that book, distinguishing be-
tween the cases n = 2j and n not a power of 2. Thus, it is obtained that
(1/π) arccos(1/

√
n) is rational if and only if n ∈ {1, 2, 4}.

The relation (2) can be read in term of Chebyshev polynomials of the first
kind. These polynomials are well known in the mathematical literature (see,
for instance, [6] or [5]), mainly for their importance in approximation theory
(they are orthogonal polynomials, and are also used in least squares fit and
in quatrature formulas for numerical integration). At least for this author,
polynomial relations are easier to handle than trigonometric relations and, thus,
the proof given in [1, Chapter 6] seems to be clearer when written in terms of
polynomials. Moreover, this allows a useful generalization of (1) whose proof
does not lose the simplicity of [1]; concretely, in this way we show that

1
π

arccos
(

m

2
√

nM

)
/∈ Q

when n, m,M ∈ N, n ≥ 2, gcd(n, m) = 1 and m/(2
√

nM) < 1.
Finally, the square root of every positive rational number r < 1 can be

written as
√

r = m/(2
√

nM) with gcd(n, m) = 1, with the exceptions of
√

r = 1,
1/2, 1/

√
2 and

√
3/2. Thus, we conclude that, for r ∈ Q with 0 ≤ r ≤ 1, the

number (1/π) arccos(
√

r) is irrational except in the cases arising from these
values of the cosine function:

cos(0) = 1, cos(π/6) =
√

3/2, cos(π/4) = 1/
√

2,

cos(π/3) = 1/2, and cos(π/2) = 0.
(3)

Remark. As an easy consequence, for t ∈ Q, the only possible rational values
of cos2(πt) are given by cos(πt) = ±1, ±

√
3/2, ±1/

√
2, ±1/2 and 0. Actually,

this can also be proved by using that the only rational values of cos(πt) are 0,
±1, and ±1/2, and the relation cos2(θ) = (1 + cos(2θ))/2; or can be derived
from Lehmer’s result by searching algebraic integers of degree at most 2 of
cos(πt). But it seems that none of these facts about cos2 have been noticed in
the literature. In any case, we are giving a direct and new proof of this result.
Of course, using the elementary trigonometric relations cos2(θ) = 1 − sin2(θ)
and cos2(θ) = 1/(1 + tan2(θ)), similar results for the rational values of sin2(πt)
and tan2(πt) can be obtained.

Thus, let us state

Theorem. Let r ∈ Q with 0 ≤ r ≤ 1. Then, the number

1
π

arccos
(√

r
)

is rational if and only if r is 0, 1/4, 1/2, 3/4, or 1; and the same holds for
(1/π) arcsin(

√
r).
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Proof. Noticing that arccos(x) + arcsin(x) = π/2, it is enough to analyze the
case arccos. Even more, the “if” part is clear from the trigonometric values
shown in (3), so let us study the “only if” part.

We claim that every r ∈ Q \ {0, 1/4, 2/4, 3/4, 1}, r ≥ 0, can be written as

r =
m2

4nM
(4)

with conditions n, m,M ∈ N, n ≥ 2 and gcd(n, m) = 1. This is true because
given r = p/q, with p and q co-prime and q not a divisor of 4, there are only
two possibilities:

• if q has an odd divisor n, say q = nM ′, we can write r = (2p)2/(4nM)
(with M = pM ′);

• if q is a power of 2, then q = 2j with j ≥ 3, p is odd and we have
r = p2/(4 · 2j−2p) (with n = 2j−2 ≥ 2).

In both cases we have found the decomposition (4). Then, we only need to
prove that

A(n, m,M) =
1
π

arccos
(

m

2
√

nM

)
/∈ Q

when n, m,M ∈ N, n ≥ 2, gcd(n, m) = 1 and m/(2
√

nM) < 1.
For x ∈ [−1, 1] and k ∈ N ∪ {0}, let Tk(x) be

Tk(cos(θ)) = cos(kθ), x = cos(θ).

It is immediate that T0(x) = 1 and T1(x) = x. Moreover, the trigonometric
relation

cos((k + 1)θ) = 2 cos(θ) cos(kθ)− cos((k − 1)θ)

proves the recurrence formula

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1.

In particular, this implies that Tk(x) is a polynomial of degree k, and so we get
the so-called Chebyshev polynomials of the first kind. Making the substitution
gk(x) = 2Tk(mx/2), we get{

g0(x) = 2, g1(x) = mx,

gk+1(x) = mxgk(x)− gk−1(x), k ≥ 1.
(5)

Then, gk(x) is a polynomial of degree k and coefficients in Z, and it verifies

2 cos(kθ) = 2Tk(cos(θ)) = gk(2 cos(θ)/m). (6)

Now, let us take

θ = arccos
(

m

2
√

nM

)
, x =

1
2
√

nM
, cos(θ) = mx.

By (6), we have

2 cos(kθ) = gk(2x) = gk

(
1√
nM

)
=

Bk

(
√

nM)k
(7)
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for some Bk ∈ Z. From (5) it is easy to check that B0 = 2, B1 = m, and
Bk+1 = mBk − nMBk−1. Now, let us recall that gcd(n, m) = 1. Then, by
induction on k (starting with k = 1), it follows that n does not divide Bk for
any k ≥ 1.

To conclude the proof, let us suppose that A(n, m,M) = (1/π)θ = h/k ∈ Q.
Then, kθ = hπ and, by (7),

±2 = 2 cos(hπ) = 2 cos(kθ) =
Bk

(
√

nM)k
, Bk ∈ Z.

This implies that n divides Bk, which is a contradiction.
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