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Abstract

In this paper we conjecture some regularity properties for the zeros of
Wronskian and Casorati determinants whose entries are orthogonal poly-
nomials. These determinants are formed by choosing orthogonal polyno-
mials whose degrees run on a finite set F of nonnegative integers. The
case when F is formed by consecutive integers was studied by Karlin and
Szegő.
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1 Introduction

Wronskian and Casorati determinants whose entries are orthogonal poly-
nomials have been considered in the literature from long time ago. For
instance, Karlin and Szegő considered such determinants in their cele-
brated paper [Karlin and Szegő 60/61], devoted to extending Turán’s in-
equality for Legendre polynomials [Turán 50] to Hankel determinants whose
entries are ultraspherical, Laguerre and Hermite polynomials (see, also,
[Karlin and McGregor 59], [Dimitrov 98], [Ismail 05], [Ismail and Laforgia 07],
[Felder et al. 12], [Filipuk and Zhang 14]).

Wronskian and Casorati determinants whose entries are classical orthogo-
nal polynomials are nowadays receiving increasing interest because of their role

∗THIS PAPER HAS PUBLISHED IN: Experimental Mathematics 24 (2015), 123–
132.
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in the construction of the so-called exceptional and exceptional discrete poly-
nomials. Exceptional polynomials pn, n ∈ X  N, are complete orthogonal
polynomial systems with respect to a positive measure which in addition are
eigenfunctions of a second order differential operator. They extend the classical
families of Hermite, Laguerre and Jacobi. The most apparent difference between
classical polynomials and exceptional polynomials is that the exceptional fam-
ilies have gaps in their degrees, in the sense that not all degrees are present in
the sequence of polynomials. In the same way, exceptional discrete polynomials
are complete orthogonal polynomial systems with respect to a positive mea-
sure which in addition are eigenfunctions of a second order difference operator,
extending the discrete classical families of Charlier, Meixner, Krawtchouk and
Hahn. The last few years have seen a great deal of activity in the area of ex-
ceptional polynomials (see [Durán 14a], [Durán 14b], [Gómez-Ullate et al. 09],
[Gómez-Ullate et al. 14a], [Sasaki et al. 10], and the references therein).

It turns out that the regularity of the second order differential operator as-
sociated to exceptional polynomials (no singularities in the operator’s domain)
is very much related with the zeros of certain Wronskians constructed from
classical polynomials. And the same role is played by Casorati determinants
constructed from classical discrete polynomials in relation with the regularity
of the second order difference operator associated to exceptional discrete poly-
nomials.

The purpose of this paper is to conjecture some regularity properties for
the zeros of Wronskian and Casorati determinants whose entries are orthogonal
polynomials. These conjectures are displayed in Sections 2 (Wronskian) and 3
(Casorati), while in Section 4 we discuss all the evidences we have found to give
support to these conjectures.

2 Conjectures on Wronskians

Along this paper, MK denotes the set of positive measures µ on R with finite
moments of order i, 0 ≤ i ≤ 2K, so that we can integrate polynomials of degree
less than or equal to 2K with respect to µ. We also assume that µ has at
least 2K points in its support. Hence, each measure µ ∈MK has associated a
sequence of polynomials (pn)Kn=0, pn of degree n, orthogonal with respect to µ
and with positive norm. We normalize the sequence (pn)Kn=0 by assuming that
the leading coefficient of each pn is equal to 1.

From now on, F will denote a finite set of nonnegative integers. We will
write F = {f1, . . . , fk}, with fi < fi+1. Hence k is the number of elements of F
and fk is the maximum element of F . A finite set of (nonnegative) consecutive
integers will be called a segment.

Given a finite set F of nonnegative integers and a measure µ ∈MmaxF , we
consider the k × k Wronskian Wµ

F defined by

Wµ
F (x) = |p(j−1)

fi
(x)|i,j=1,...,k. (2.1)

To simplify the notation, we sometimes write WF = Wµ
F .
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Karlin and Szegő studied the zeros of these Wronskian determinants when
F is a segment. More precisely, they proved the following theorem (see
[Karlin and Szegő 60/61]):

Theorem 2.1 (Theorems 1 and 2 of [Karlin and Szegő 60/61]). Given the seg-
ment Fn = {n, n+ 1, . . . , n+ k − 1}, where n is a nonnegative integer, then:

1. If k is even the Wronskian Wµ
Fn

has no zeros in R.

2. If k is odd the Wronskian Wµ
Fn

has exactly n simple zeros in R. Moreover,
the zeros lie in the convex hull of suppµ, and the zeros of WFn

separate
the zeros of WFn+1 .

Karlin and Szegő’s proof for this result shows that, when F is a segment, this
regularity for the zeros of the Wronskian Wµ

F is a relative of the usual regularity
properties for the zeros of a sequence of orthogonal polynomials with respect to
a positive measure.

In this section, we conjecture some regularity properties for the zeros of the
Wronskian Wµ

F when F is not a segment.
Using standard determinantal techniques, it is not difficult to see that, for

any set F , the Wronskian Wµ
F is a polynomial of degree

degWµ
F =

∑
f∈F

f − k(k − 1)

2
, (2.2)

and leading coefficient equal to
∏

1≤i<j≤k(fj − fi). Hence, neither the degree

nor the leading coefficient of the Wronskian Wµ
F depend on the measure µ. On

the other hand, with the normalization of the set F , the leading coefficient of
Wµ
F is always positive.
Our first conjecture is related to the location of the zeros of Wµ

F . We guess
that Karlin and Szegő’s result on the zero location for the Wronskian of segments
is true for any finite set F of nonnegative integers.

Conjecture 2.2. Given a finite set F of nonnegative integers and a measure
µ ∈ MmaxF , the real zeros of the Wronskian Wµ

F (if any) always lie in the
convex hull of suppµ.

To study the number of real zeros of the Wronskian Wµ
F , we have first to

clarify how to count the zeros of a Wronskian. Denote by Wµ
F the Wronskian

matrix Wµ
F (x) = (p

(j−1)
fi

(x))i,j=1,...,k. From this definition, it follows at once

that x0 is a zero of the Wronskian Wµ
F if and only if 0 is an eigenvalue of

Wµ
F (x0).

Definition 2.3. We define the geometric multiplicity of a zero x0 of the Wron-
skian Wµ

F as the geometric multiplicity of 0 as an eigenvalue of the k×k matrix
Wµ
F (x0). That is, the geometric multiplicity of x0 is k − rankWµ

F (x0).

We have the following straightforward lemma.
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Lemma 2.4. The geometric multiplicity of a zero x0 of the Wronskian Wµ
F is

less than or equal to its usual multiplicity. In particular, if x0 is a simple zero
of Wµ

F then its geometric multiplicity is 1.

According to this lemma, for simple zeros there is no difference between the
geometric and the usual multiplicity. For multiple zeros the difference can be
quite large. For instance, take a symmetric measure µ. This means that each
orthogonal polynomial p2n+1(x), n ≥ 0, is an odd function, and hence 0 is a

root of p
(2j)
2n+1(x), j ≥ 0. Take now a set F formed by k odd numbers. A simple

computation shows that the multiplicity of 0 as a root of Wµ
F is at least

(
k+1

2

)
;

on the other hand, its geometric multiplicity is at most k − 1.
We now introduce the so-called Wronskian zero counting set for F .

Definition 2.5. Let F be a finite set of nonnegative integers. The Wronskian
zero counting set for F , denoted by ZF , is formed by all nonnegative integers l
for which there exists a measure µ ∈ MmaxF such that the Wronskian Wµ

F

has exactly l real zeros, counted according to their geometric multiplicities (see
Definition 2.3).

Since degWF =
∑
f∈F f −

k(k−1)
2 , we trivially have

ZF ⊂
{

0, 1, . . . ,
∑
f∈F

f − k(k − 1)

2

}
.

The key concept to study the Wronskian zero counting set ZF is that of
admissible sets. In order to define the admissibility of a set F , we first need to
consider the segment decomposition of F :

Definition 2.6. Given a finite set of nonnegative integers F , the segment {0, 1,
2, . . . ,maxF} has a unique decomposition of the following form:

{0, 1, 2, . . . ,maxF} = X0 ∪ Y1 ∪X1 ∪ Y2 ∪X2 ∪ · · · ∪ YgF ∪XgF ,

where X0 and Xi, Yi, i = 1, . . . , gF , satisfy

1. X0 = ∅ if 0 /∈ F ; otherwise, 0 ∈ X0 and X0 is a segment;

2. all Xi and Yi, i = 1, . . . gF , are nonempty segments (that is, they are
formed by consecutive numbers);

3. F = X0 ∪X1 ∪ · · · ∪XgF ;

4. Yi ∩ F = ∅, i = 1, . . . , gF ;

5. 1 + maxYi = minXi, 1 + maxXi = minYi+1.

The segments Xi, i = 0, . . . , gF , will be called the segment decomposition of F ,
while the segments Yi, i = 1, . . . , gF , will be called the complementary segment
decomposition of F . The number gF will be called the genre of F .

In other words: Yi are the gaps in F , Xi are the maximal segments in F ,
and we start at X0 if 0 ∈ F , at X1 otherwise.
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All the segments X0, Y1, X1, . . . , YgF , XgF are pairwise disjoint.

Definition 2.7. A finite set of nonnegative integers F is called admissible if
each segment Xi, i = 1, . . . , gF , in the segment decomposition of F has an even
number of elements. Notice that X0 is not required to have an even number of
elements.

It is easy to see that admissible sets F are also characterized from the fol-
lowing property:

∏
f∈F (x− f) ≥ 0 for any nonnegative integer x. This concept

of admissibility has appeared several times in the literature. Relevant to this
paper are [Krein 57] and [Adler 94], because of the relationship with zeros of
certain Wronskians. Indeed, consider a second order differential operator T of
the form T = −d2/dx2 + U . Write φn, n ≥ 0, for a sequence of eigenfunctions

for T , and form the Wronskian ΩTF (x) = |φ(j−1)
fl

(x)|kl,j=1. For operators defined
on a half-line, and under certain boundary conditions, Krein proved [Krein 57]
that F is admissible if and only if ΩTF does not vanish on the real line. A similar
result was proved by Adler [Adler 94] for operators defined on a bounded inter-
val (although Adler’s result extends easily to the whole real line and, in fact, he
considered in [Adler 94] the case of Wronskian determinants of Hermite polyno-
mials). Admissibility appeared also in [Karlin and Szegő 60/61] in connection
with the sign of some Casorati determinants, though in a subordinate form.

Our next conjecture can be considered an improvement of part (1) in The-
orem 2.1 of Karlin and Szegő above.

Conjecture 2.8. A finite set F of nonnegative integers is admissible if and
only if ZF = {0}. In other words, if and only if the Wronskian Wµ

F has no
zeros in R for any measure µ ∈MmaxF .

When F is not admissible, our conjecture is that the structure of ZF is
somehow determined by the distance of F to the admissible sets. This distance
is defined as follows.

We will write A for the set formed by all admissible sets of nonnegative
integers.

Definition 2.9. For a finite set F of nonnegative integers we define the distance
of F to A by

d(F,A) = min
{
l : ∃x1, . . . , xl /∈ F such that F ∪ {x1, . . . , xl} ∈ A

}
.

Some easy consequences of this definition are included in the next lemma.

Lemma 2.10. Let F be a finite set of nonnegative integers. Then we have

d(F,A) = min
{
l : ∃x1, . . . , xl ∈ F such that F \ {x1, . . . , xl} ∈ A

}
.

Moreover, d(F,A) = |{l ≥ 1 : Xl has an odd number of elements}|, where F =
X0 ∪X1 ∪ · · · ∪XgF is the segment decomposition of F .
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According to this Lemma 2.10, if d(F,A) = m, there are m positive integers
0 < l1 < l2 < · · · < lm ≤ gF such that Xli are the only odd segments in the
segment decomposition of F (apart, possibly, from X0). We set l0 = 0 and write

ξj =

lj∑
i=lj−1+1

|Yi|, j = 1, . . . ,m, (2.3)

where {Yj} is the complementary segment decomposition of F .

Definition 2.11. For a finite set of nonnegative integers F with d(F,A) = m,
the numbers ξi, i = 1, . . . ,m, defined by (2.3) are called the characteristic gap
lengths of F .

The next conjecture characterizes the sets F with ZF = {m} for some m ≥ 1
as those whose distance to the admissible sets is just 1.

Conjecture 2.12. A finite set F of nonnegative integers satisfies d(F,A) = 1
if and only if ZF is a singleton other than {0}.

When d(F,A) = 1, we can also conjecture the value of the unique element
of ZF in terms of the characteristic gap lengths of F (see Definition 2.11).

Conjecture 2.13. If d(F,A) = 1 then

ZF = {ξ1}.

We will prove in Section 4 (see Theorem 4.3) that conjecture 2.13 is a con-
sequence of conjeture 2.8.

The structure of ZF is more complicated when d(F,A) ≥ 2. Indeed, accord-
ing to Conjectures 2.8 and 2.12, the number of zeros of Wµ

F does not depend
on µ when d(F,A) equals 0 or 1. This situation changes when d(F,A) ≥ 2.
Anyway, there seems to be still some regularity in the structure of ZF .

Conjecture 2.14. Let F be a finite set of nonnegative integers satisfying
d(F,A) = m ≥ 2. Then

1. ZF is formed either by consecutive odd numbers or by consecutive even
numbers, depending on whether degWF (see (2.2)) is odd or even, respec-
tively;

2. d(F,A) ≤ |ZF | ≤
∑
f∈F f −

k(k−1)
2 .

When one counts multiple zeros according to the usual multiplicity, the num-
ber of real zeros of a polynomial with real coefficients has always the same parity
as the degree of the polynomial, but this no longer holds when the geometric
multiplicity is used. Since we are using geometric multiplicity, it is not clear
at all that ZF is formed by numbers with the same parity as degWF , and this
statement is hence a genuine part of the conjecture.

According to Conjecture 2.14, the set ZF is completely described by its
maximum and minimum values, maxZF and minZF .

For m = 2, our conjecture for these values is:
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Conjecture 2.15. If d(F,A) = 2, then

maxZF = 2ξ1 + ξ2,

minZF = ξ2.

We will prove in Section 4 (see Theorem 4.4) that the bound maxZF ≤
2ξ1 + ξ2 in Conjecture 2.15 is a consequence of Conjecture 2.8.

Notice that in this case the set ZF depends only on the characteristic gap
lengths ξj , j = 1, 2, of F (see Definition 2.11). This is also the case when d(F,A)
equals 0 or 1. Is this dependence of ZF only on the characteristic gap lengths of
F true for all finite sets F? If the answer if yes, it would be quite a surprising
result. Our numerical experiments are not conclusive enough neither to propose
this result as a conjecture nor to forget it.

Our last conjecture is about the zeros of Wronskians whose entries belong
to the most important families of orthogonal polynomials.

Conjecture 2.16. Let F be a finite set of nonnegative integers with d(F,A) =
m and write ξj, j = 1, . . . ,m, for its characteristic gap lengths (see Defini-
tion 2.11). If µ is any of the classical weights of Hermite, Laguerre or Jacobi,
then the number of zeros of Wµ

F , counted according to their geometric multiplic-
ities (see Definition 2.3) is always

[(m+1)/2]∑
j=1

ξm−2j+2.

In particular, Conjecture 2.16 is saying that the set Wµ
F does not depend on

the parameters of the classical orthogonal polynomials. This is not true even if
we change the classical families by any of the classical discrete families, which
in many senses are so closely related. For instance, if we consider the Charlier
measure

µ =

∞∑
n=0

an

n!
δn, a > 0,

then the set Wµ
F depends on the parameter a. (For results concerning ze-

ros of classical orthogonal polynomials see [Szegő 59, Ch. VI], [Driver el al. 11,
Driver and Jordaan 11]).

After this paper was accepted for publication, we earned that this conjecture
has been partially proved in [Garćıa-Ferrero and Gómez-Ullate 14b].

3 Conjectures on Casorati determinants

In this section we denote by M̃K the subset of MK formed by all discrete
measures of the form

µ =

Υ∑
n=0

αnδan , (3.1)
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where Υ is either a positive integer or infinity and, for every n, αn > 0, an ∈ R
and an < an+1.

Given two finite sets F and G of nonnegative integers with k-elements sat-
isfying

• F = {f1, . . . , fk}, fi < fi+1,

• G = {g1, . . . , gk} ⊆ {0, 1, . . . ,Υ}, gi < gi+1,

and a discrete measure µ ∈ M̃maxF as in (3.1), we consider the k × k Casorati

determinant CG,µF defined by

CG,µF = |pfi(agj )|i,j=1,...,k.

Notice that the Casorati determinant CG,µF is a number, while the Wronskian
Wµ
F (2.1) is a polynomial in x.

Karlin and Szegő studied the sign of these Casorati determinants when
F is a segment. More precisely, they proved the following theorem (see
[Karlin and Szegő 60/61]):

Theorem 3.1 (Theorem 3’ of [Karlin and Szegő 60/61]). Given the segment
F = {m,m + 1, . . . ,m + k − 1}, where m is a nonnegative integer, and k is

an even positive integer, then the Casorati determinant CG,µF is positive for any

admissible set G and any discrete measure µ ∈ M̃maxF .

We have found examples of admissible sets F and G for which there ex-
ist discrete measures µ ∈ M̃maxF such that CG,µF is negative. However, we
can conjecture what can be considered a (strong) dual version of the previous
theorem.

Conjecture 3.2. A finite set F of nonnegative integers is admissible if and
only if the Casorati determinant CG,µF is positive for any segment G and any

discrete measure µ ∈ M̃maxF .

4 Discussion

4.1 “Logical” evidences for the conjectures on Wronskians

For any set F and any measure µ ∈MmaxF , let Z(Wµ
F ) be the number of real

zeros of the Wronskian Wµ
F counted according to their usual multiplicity. Notice

that for Z(Wµ
F ) we are counting the zeros in a different way that for ZF , where

the geometric multiplicity is used (see Definition 2.3).

Lemma 4.1. Let F1 and F2 be two sets such that F1 = (F1 ∩ F2) ∪ {p}, F2 =
(F1 ∩F2)∪ {q} for some integers p < q, p /∈ F2, q /∈ F1. Then, for any measure
µ ∈MmaxF2

,∣∣Z(Wµ
F2

)− Z(Wµ
F1

)− 1
∣∣ ≤ Z(Wµ

F1∪F2
) + Z(Wµ

F1∩F2
). (4.1)

Moreover, every zero of Wµ
F1
Wµ
F2

with multiplicity m is a zero of Wµ
F1∪F2

Wµ
F1∩F2

with multiplicity at least m− 1.
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Proof. The proof is based in the proof of Theorem 2 in [Karlin and Szegő 60/61,
p. 6]. We write WF instead of Wµ

F throughout the proof.
Consider the Wronskian WF1∪F2

. Applying Sylvester’s identity (see, for
instance, [Karlin and Szegő 60/61, p. 26]) to the rows corresponding to the el-
ements p and q of F1 ∪ F2 and the last two columns gives

WF1∪F2WF1∩F2 = WF1W
′
F2
−W ′F1

WF2 . (4.2)

This proves the last part of the lemma: every zero of WF1
WF2

with multiplicity
m is a zero of WF1∪F2

WF1∩F2
with multiplicity at least m − 1. Furthermore,

equation (4.2) gives (
WF1

WF2

)′
= −WF1∪F2WF1∩F2

W 2
F2

.

Let ϕ be the greatest common divisor of WF1
and WF2

, so that WF1
= ϕg1,

WF2 = ϕg2, and g1 and g2 have no common zeros. Then(
g1

g2

)′
= −WF1∪F2

WF1∩F2

W 2
F2

.

If a1 < a2 < · · · < am are the distinct poles of the rational function g1/g2, then
in each interval (aj , aj+1) there must be at least one zero or one critical point
of g1/g2. In other words, in each interval (aj , aj+1) there is at least one zero
of g1, WF1∪F2 or WF1∩F2 . This proves that

m− 1 ≤ Z(g1) + |{zeros of WF1∪F2 which are not zeros of g2}|
+ |{zeros of WF1∩F2 which are not zeros of g2}| . (4.3)

Now, for each j = 1, . . . ,m, it follows from (4.2) that if aj is a zero of g2 with
multiplicity rj , then it is a zero of WF1∪F2

WF1∩F2
with multiplicity at least

rj − 1. In other words,

Z(g2)−m ≤ |{zeros of WF1∪F2
which are zeros of g2}|

+ |{zeros of WF1∩F2
which are zeros of g2}| . (4.4)

Adding (4.3) and (4.4) gives

Z(g2)− 1 ≤ Z(g1) + Z(WF1∪F2
) + Z(WF1∩F2

)

and
Z(WF2

)− 1 ≤ Z(WF1
) + Z(WF1∪F2

) + Z(WF1∩F2
). (4.5)

On the other hand, if WF1∪F2WF1∩F2 has k zeros in any interval (aj , aj+1),
then g1 has at most k + 1 zeros there. In the intervals (−∞, a1) and (am,+∞)
the situation is slightly different: if WF1∪F2

WF1∩F2
has k zeros in one of the

intervals (−∞, a1) and (am,+∞), then g1 has at most k zeros there: the reason
is that lim

x→±∞
g1
g2

= 0. Therefore,

Z(g1) ≤ |{zeros of WF1∪F2
which are not zeros of g2}|

+ |{zeros of WF1∩F2
which are not zeros of g2}|+m− 1.
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Adding (4.4) gives now

Z(g1) + Z(g2)−m ≤ Z(WF1∪F2) + Z(WF1∩F2) +m− 1.

Since m ≤ Z(g2), this leads to

Z(g1)− Z(g2) + 1 ≤ Z(WF1∪F2
) + Z(WF1∩F2

)

and
Z(WF1

)− Z(WF2
) + 1 ≤ Z(WF1∪F2

) + Z(WF1∩F2
),

which, together with (4.5), proves (4.1).

As a particular case, the following result states that if d(F,A) = 1, moving
the unique odd segment one place to the right increases the number of zeros of
the Wronskian in one unit, for each measure. For each integer k, let τk(n) =
n+ k.

Lemma 4.2. Assume that every admissible set F has ZF = {0}. Let F1 be
such that d(F1,A) = 1, with a segment decomposition

F1 = X0 ∪X1 ∪ · · · ∪Xl ∪ · · · ∪XgF1
,

where for some l (1 ≤ l ≤ gF1) Xl is the unique odd segment apart, possibly,
from X0. Let

F2 = X0 ∪X1 ∪ · · · ∪ τ1(Xl) ∪ · · · ∪XgF1
.

All zeros of Wµ
F1

are simple. Moreover, if Wµ
F1

has m zeros for some measure
µ ∈MmaxF2

, then Wµ
F2

has m+ 1 zeros.

Proof. The sets F1 and F2 are under the hypothesis of Lemma 4.1, and both
F1 ∩F2 and F1 ∪F2 are admissible sets. Therefore, (4.1) proves that Z(Wµ

F2
) =

Z(Wµ
F1

) + 1. Since Wµ
F1∪F2

Wµ
F1∩F2

has no zeros, the last part of Lemma 4.1
proves that all zeros of Wµ

F1
are simple.

Then, the assumption that admissible sets F have ZF = {0} proves Conjec-
ture 2.13:

Theorem 4.3. Assume that every admissible set F has ZF = {0}. Then,
for every set F of nonnegative integers with d(F,A) = 1, the Wronskian zero
counting set is

ZF = {ξ1}. (4.6)

Proof. According to Lemma 4.2 the zeros of Wµ
F are simple, so the geometric

and the usual multiplicity coincides, and hence we count the zeros in ZF and
Z(Wµ

F ) in the same way.
Since d(F,A) = 1, the segment decomposition of F is of the form

F = X0 ∪X1 ∪ · · · ∪Xl ∪ · · · ∪XgF ,
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where for some l (1 ≤ l ≤ gF ) Xl is the unique odd segment apart, possibly,
from X0.

Lemma 4.2 shows that ZF = {m} for some m ≥ 1 if and only if the set

F±1 = X0 ∪X1 ∪ · · · ∪ τ±1(Xl) ∪ · · · ∪XgF

has Wronskian zero counting set ZF±1 = {m±1}. Moreover, m is given by (4.6)
if and only if m ± 1 corresponds to F±1 by the same rule. In other words, we
can move the odd segment Xl to the left and to the right one position.

We proceed by induction on the number gF of segments. If gF = 1, then
either

F = X1 = {m,m+ 1, . . . ,m+ k}

for some m ≥ 1 and an even integer k, or

F = X0 ∪X1 = {0, . . . , n} ∪ {m,m+ 1, . . . ,m+ k}

with n + 1 < m and an even integer k. In the first case, Theorem 2 of
[Karlin and Szegő 60/61, p. 6] proves that the Wronskian WF has exactly m
zeros. That is, ZF = {m}, which is consistent with (4.6). In the second case,
the set

Fn+1−m = X0 ∪ τn+1−m(X1) = {0, 1, . . . , n+ 1 + k}

has Wronskian zero counting set ZFn+1−m
= {0}. An iterated application of

Lemma 4.2 shows that ZF = {m− n− 1}, which is consistent with (4.6).
Let us now suppose that gF > 1. Assume, for instance, that Xl is not the

rightmost segment of F ; if

k + 1 + maxXl = minXl+1,

then repeating the moves we have that ZF = {m} if and only if the set

Fk = X0 ∪X1 ∪ · · · ∪ τk(Xl) ∪Xl+1 ∪ · · · ∪XgF

has Wronskian zero counting set ZFk
= {m + k}. Now, τk(Xl) ∪ Xl+1 is a

consecutive segment, so that Fk decomposes in gF − 1 segments, exactly one of
them being odd. Thus, ZFk

is given by the analogous to formula (4.6) and the
same holds for ZF .

A similar procedure works if the odd segment Xl is not X1: in this case we
arrive at a set

F−k = X0 ∪X1 ∪ · · · ∪Xl−1 ∪ τ−k(Xl) ∪ · · · ∪XgF

which decomposes in gF − 1 segments, exactly one of them being odd.

The assumptions that admissible sets F have ZF = {0} proves also part of
Conjecture 2.15:
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Theorem 4.4. Assume that every admissible set F has ZF = {0}. Then,
for every set F of nonnegative integers with d(F,A) = 2 the Wronskian zero
counting set ZF satisfies the inequality

maxZF ≤ 2ξ1 + ξ2, (4.7)

where ξ1 and ξ2 are the characteristic gap lengths of F (see Definition 2.11).

Proof. Let
F = X0 ∪X1 ∪ · · · ∪Xl1 ∪ · · · ∪Xl2 ∪ · · · ∪Xn

be the segment decomposition of F , where Xl1 and Xl2 are the unique odd
segments apart, possibly, from X0. We choose F1 by removing the first element
of Xl2 and adding the first element after Xl1 :

X̃l1 = Xl1 ∪ {1 + maxXl1},
X̃l2 = Xl2 \ {minXl2},
F1 = X0 ∪X1 ∪ · · · ∪ X̃l1 ∪ · · · ∪ X̃l2 ∪ · · · ∪Xn.

Observe that this decomposition of F1 might not be the segment decomposition,
for X̃l1 ∪ Xl1+1 might be a joint segment and X̃l2 might be the empty set.
Anyway, both X̃l1 and X̃l2 are even segments, so that F1 is admissible and
ZF1

= {0}.
The sets F1 ∪ F and F1 ∩ F are as follow:

F1 ∪ F = X0 ∪X1 ∪ · · · ∪ X̃l1 ∪ · · · ∪Xl2 ∪ · · · ∪Xn,

F1 ∩ F = X0 ∪X1 ∪ · · · ∪Xl1 ∪ · · · ∪ X̃l2 ∪ · · · ∪Xn.

Apart from X0, only Xl2 is odd in the first decomposition; only Xl1 is odd in the
second one. Again, they might not be the segment decompositions, but it is easy
to check that this does not affect the following calculations. Firstly, this proves
that d(F1 ∪ F,A) = d(F1 ∩ F,A) = 1. Secondly, according to Theorem 4.3,

ZF1∩F =
{∑
j≤l1

|Yj |+ (|Yl1+1| − 1) +
∑

l1+2≤j≤l2

|Yj |
}

=
{
− 1 +

∑
j≤l2

|Yj |
}
,

ZF1∩F =
{∑
j≤l1

|Yj |
}
,

even in the cases where the above decompositions are not the segment decom-
positions. By Lemma 4.1,

Z(Wµ
F ) ≤ 1 + Z(Wµ

F1∪F ) + Z(Wµ
F1∩F ) = 2

∑
j≤l1

|Yj |+
∑

l1<j≤l2

|Yj |

for every measure µ ∈MmaxF , and this proves (4.7).

Remark 4.5. Since all zeros of Z(Wµ
F1∪F ) or Z(Wµ

F1∩F ) are simple, Lemma 4.1
proves that all zeros of Z(Wµ

F ) have multiplicity at most 3, if d(F,A) = 2.
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Remark 4.6. For any set F with d(F,A) = 2, it is worthwhile mentioning that
ξ2 =

∑
l1<j≤l2

|Yj | has the same parity as the degree of the Wronskian Wµ
F , which

is

degWµ
F =

∑
f∈F

f − |F |(|F | − 1)

2
.

Indeed, it is easy to see that both quantities keep their parity if two consecutive
numbers are removed from F . Thus, it is enough to consider the obvious case
F = {p, q}, with p+ 1 < q.

Remark 4.7. As we mentioned before, for any set F and any measure µ ∈
MmaxF , the Wronskian Wµ

F is a polynomial of degree

∑
f∈F

f − |F |(|F | − 1)

2
,

so obviously maxZF ≤
∑
f∈F f −

|F |(|F |−1)
2 . Let F = {f1, f2, . . . } with a

segment decomposition

F = X0 ∪X1 ∪ · · · ∪Xn

and complementary segments Y1, . . . , Yn. One can see with no much effort that
fj = j − 1 + |Y1|+ |Y2|+ · · ·+ |Yl|, if fj ∈ Xl. Therefore,

∑
f∈F

f − |F |(|F | − 1)

2
=

|F |∑
j=1

(fj − j + 1) =

n∑
l=1

|Xl|
l∑

j=1

|Yj |

=

n∑
j=1

|Yj |
n∑
l=j

|Xl|.

In particular, ∑
f∈F

f − |F |(|F | − 1)

2
≥

n∑
j=1

(n+ 1− j)|Yj |

and the equality holds when all segments X1, . . . , Xn consist of just one element.
Under the conditions of Theorem 4.4, it follows that

2ξ1 + ξ2 = 2
∑
j≤l1

|Yj |+
∑

l1<j≤l2

|Yj | ≤
∑
f∈F

f − |F |(|F | − 1)

2
,

and again the equality holds when all segments X1, . . . , Xn consist of just one
element (and n = 2). That is, (4.7) gives a non trivial bound on maxZF .

Remark 4.8. A common impression after all the conjectures and results is that
the segment X0 plays no role. This is reinforced by the fact that the contribu-
tion of X0 to the Wronskian matrix Wµ

F is an upper diagonal block with non
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zero constant entries in the diagonal. For instance, it is easy to conclude that
the Wronskians Wµ

F associated to F = [0, 1, . . . , n, n+ k] have k− 1 simple real
zeros. For the admissible sets F = [0, 1, . . . , n, n+ k, n+ k+ 1], the Wronskians
have no real zeros, as predicted by Conjecture 2.8. This is consequence of the
fact that, given two orthogonal polynomials, their derivatives belong to another
sequence of orthogonal polynomials: the interlacing of zeros of orthogonal poly-
nomials is preserved under differentiation (see, for instance, [Fisk 08, Theorem
1.47]), and the corresponding interlacing property for the derivatives guarantee
that the derivatives of the two polynomials belong to a sequence of orthogonal
polynomials (see [Wendroff 61]).

4.2 Computational evidences for the conjectures on
Wronskians

In the process of establishing and fine tuning our conjectures, we have done
billions of symbolic and numerical experiments. We have used Maple, Mathe-
matica and Sage.

The main goal of this paper is to describe the set ZF for every finite set F of
nonnegative integers. A way to establish that some k ∈ ZF is to find a positive
measure µ whose Wronskian Wµ

F has k zeros in R. Let us also note that, by
Favard’s Theorem, for each three term recurrence relation

pn+1(x) = (x− an)pn(x)− bnpn−1(x), p0(x) = 1, p1(x) = x− a0, (4.8)

where an ∈ R and bn > 0 for every n, there exists a measure µ such that
(pn)n≥0 are the monic orthogonal polynomials with respect to µ. Consequently,
producing sequences an and bn as in (4.8) is a way to compute orthogonal
polynomial sequences and, then, the Wronskians Wµ

F . Actually, we only need
to compute pn up to maxF , so it is enough to have finite sequences an and bn.

In our numerical experiments, for a fixed F we have generated many random
finite sequences an and bn and their corresponding Wronskians. To avoid nu-
merical rounding errors, we have always taken an and bn to be rational numbers
generated by mean of pseudorandom procedures. Then, we use (4.8) to com-
pute the polynomials and the Wronskian by mean of computer algebra systems.
Finally, we find the number of real roots of the Wronskian using appropriate
procedures. For this kind of random experiments, it is virtually impossible to
obtain examples with multiple roots, so there is no need to worry about the
multiplicity.

After repeating this procedure a huge number of times, it becomes apparent
that ZF has the form {j, j + 2, . . . , j + 2t}, but the “central elements” of ZF
appear in the experiments really much more often than the extremes, which
sometimes are very unusual. Whatever the number of experiments we perform,
we can not ensure that we have found maxZF and minZF , except when a
Wronskian appears with exactly 0 or 1 roots, what clearly implies that minZF =
0 or 1, respectively.
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Then, in the search for ZF for a given F (in particular, to identify minZF
and maxZF ) we typically do millions of experiments. Unfortunately, the com-
puter time increases very fast with the size of the determinant and the degree
of the polynomials, so it is not possible to do many experiments for big sets F .
Then, we have performed a reasonable number of experiments for sets F with
distance d(F,A) up to 6, and only with maxF < 25. Although, the correspond-
ing conjectures are best experimentally checked for small values of d(F,A).
With this kind of experiments we have found many computational evidences of
conjectures 2.8, 2.12, 2.13, 2.14 and 2.15.

For instance, the set F = [5, 7, 10] has d(F,A) = 3 and characteristic gap
lengths ξ1 = 5, ξ2 = 1, ξ3 = 2, and the same happens with the sets

[5, 6, 7, 9, 12], [5, 7, 8, 9, 12], [5, 7, 10, 11, 12], [5, 7, 9, 10, 12, 13, 14].

With any of these sets F we have found the number of roots of Wµ
F for at

least one million measures randomly generated as explained above, and we have
always found Wronskians with 3, 5, 7, 9 and 11 roots (and no other number of
roots). Strictly speaking, we can only ensure that {3, 5, 7, 9, 11} ⊂ ZF , but it
seems reasonable to conjecture that ZF = {3, 5, 7, 9, 11} for all those sets F .

Another kind of experiments have been done to come across conjecture 2.16.
Now, there is no need to use the three term recurrence relation, for the Ja-
cobi, Laguerre and Hermite polynomials are already defined in the software.
Then, given F , we have randomly generated the parameters for the orthogonal
polynomials and, again, computed the number of roots of the corresponding
Wronskian. For Laguerre polynomials and Jacobi polynomials with α − β not
an even integer, the geometric multiplicity of the roots (as explained in Defi-
nition 2.3) is involved only in a few cases, which can be detected checking if
gcd(WF (x),W ′F (x)) is a polynomial of degree greater than 0. But computing
the geometric multiplicity without really having the roots is not easy (and,
moreover, it is slow), so our routines do not consider it; when one of those few
cases occurs, it must be checked apart.

For instance, for Laguerre polynomials with α = 7/5 and F = [1, 5] (so
that ξ1 = 1, ξ2 = 3) the Wronskian WF (x) has the roots 12/5 (triple) and
(99 ± 5

√
33)/10. The Wronskian matrix is WF (12/5) =

(
0 0
−1 72/25

)
, whose

rank is 1, so the geometric multiplicity of 12/5 is 1. Then, the number of real
roots of WF (x), according with the geometric multiplicity, is 3, as predicted by
conjecture 2.16.

In the case of Hermite polynomials, H2n+1(x) is odd and H2n(x) is even for
every n, so it is essential to take into account the geometric multiplicity of the
root x0 = 0. This applies also to Jacobi polynomials with parameters α = β
(that is, Gegenbauer polynomials). Multiplicity bigger than 1 at x0 = 0 also
appears when α and β differ by an even integer. In those cases, according to
Definition 2.3, we have effectively computed the rank of the matrix WF (0) so
as to find the geometric multiplicity. In each case, the numerical experiments
agree with our conjecture.
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4.3 Computational evidences for the conjectures on Ca-
sorati determinants

Regarding Casorati determinants, we have again done a huge number of sym-
bolic experiments with Maple, Mathematica and Sage.

Now, to produce a measure µ as in (3.1), we only need to generate finite
sequences of pseudorandom numbers an and αn. To avoid the usual problems
of float numbers and their algorithms (rounding, truncating, instability), we
take the points an and the mass points αn of the measure to be integers (this
is not an essential restriction). Then, we compute the moments of the measure
by

µk =

Υ∑
n=0

αna
k
n, k = 0, . . . ,Υ,

and use the moments to compute the orthogonal polynomials pn (with positive
leading coefficient). These are well known standard procedures. With an appro-
priate normalization of the orthogonal polynomials, only integer numbers are
involved.

Given a set F (which can be built through pseudorandom procedures, as
well), we can generate many measures µ, compute the Casorati determinant

CG,µF for many sets G, and check whether CG,µF is positive or not. In all the
cases, the numerical experiments agree with our conjecture.

In the process of stating conjecture 3.2, we have performed millions of these
experiments, with Υ up to 150, and Casorati determinants up to 15 × 15. We
have thus observed that the result fails if G is an admissible set other than a
segment. It is worth while remarking that in the course of these experiments
we discovered a relevant bug of Mathematica when computing determinants of
big integers (see [Durán et al. 14]).
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nants whose elements are orthogonal polynomials, J. Analyse Math. 8
(1960/1961), 1–157.

[Krein 57] M. G. Krein, On a continual analogue of a Christoffel formula from
the theory of orthogonal polynomials, Dokl. Akad. Nauk SSSR (N.S.) 113
(1957), 970–973.

[Sasaki et al. 10] R. Sasaki, S. Tsujimoto and A. Zhedanov, Exceptional La-
guerre and Jacobi polynomials and the corresponding potentials through
Darboux-Crum transformations, J. Phys. A 43 (2010), 315204.
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