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Abstract. From the Dunkl analogue of Gegenbauer’s expansion of the
plane wave, we derive an explicit closed formula for the spectrum of a right
inverse of the Dunkl operator. This is done by stating the problem in such
a way it is possible to use the technique due to Ismail and Zhang.

1. Introduction

During the last years, and starting in the seminal paper [14], Mourad Ismail
and his collaborators had studied the diagonalization of the inverse of several
differential or difference operators. In particular, it has been done in [14, 12] for
the differential and the Askey-Wilson divided difference operators in different
polynomial bases, in [11] for the full Askey-Wilson weight, in [13] for the q-
difference operator, and in [5] for the q−1-Askey-Wilson operator.

This article is devoted to the diagonalization of the right inverse of the Dunkl
operator on the real line given by

Λαf(x) =
d

dx
f(x) +

2α + 1

x

(
f(x)− f(−x)

2

)
.

The operator Λα is a generalization of the derivative d
dx

(which is the case
corresponding to α = −1/2) whose study, as well as of the so-called Dunkl
transform that is closely related to Λα, has engender many recent papers (see,
for instance, [3, 4, 6, 7, 8, 15, 16, 17]). In the present paper, we are going to find
the spectrum of a right inverse for the Dunkl operator Λα in spaces weighted
by the appropriated weight functions.

In [14], an important tool to study the inverse of the differential operator d
dx

is Gegenbauer’s expansion of the plane wave in ultraspherical polynomials and
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Bessel functions (see [10, § 4.8, formula (4.8.3), p. 116]):

(1) eixt = Γ(β)
(x

2

)−β ∞∑
n=0

in(β + n)Jβ+n(x)Cβ
n (t)

(in the particular case β = 0, this formula is the so-called Jacobi-Anger iden-
tity). Instead of this expansion for eixt, that is the kernel of the Fourier trans-
form, we will require an expansion for Eα(ixt), the kernel of the Dunkl trans-
form on the real line. Thus, we will use that the Dunkl kernel Eα(ixt) can be
expanded as
(2)

Eα(ixt) = Γ(α+β+1)
(x

2

)−α−β−1
∞∑
n=0

in(α+β+n+1)Jα+β+n+1(x)C(β+1/2,α+1/2)
n (t),

where C
(β+1/2,α+1/2)
n are the so-called generalized Gegenbauer polynomials and

Ja denotes the Bessel function of order a. The identity (2) holds for α, β > −1
and α + β > −1. It was proved by M. Rösler in [17] for α ≥ −1/2, and by
the authors in [2] for α > −1. By using (2) in the place of (1), a part of the
technique for d

dx
can be followed, and the results obtained are very satisfactory,

finally getting a nice extension of the result of Ismail and Zhang in [14], in the
same sense as the Bessel functions generalize the trigonometric functions, the
Dunkl operator has the derivative as a particular case, or the Dunkl transform
is an extension of the Fourier transform.

The structure of the paper is as follows. In Section 2 we state the precise
notation and give some preliminaries related to the Dunkl operator on the real
line and to the generalized Gegenbauer polynomials, as well as the identity (2),
that is the main tool to solve our problem. The essential part of the paper
is included in Section 3. We define the right inverse of the Dunkl operator in
spaces weighted by the weight function of the generalized Gegenbauer polyno-
mials and use this definition to find explicit formulas for the spectrum of this
right inverse that we will denote Tβ,α. It turns out that the eigenvalues of the
resulting integral operator Tβ,α are defined in terms of zeros of Bessel functions
{±i/jα+β+1,k}k≥1 and the eigenfunctions are

g±i/jα+β+1,k
(t) = ∓i

(
jα+β+1,k

2

)α+β+1
Eα(∓tjα+β+1,k)

Γ(α + β + 1)(α + β + 2)Jα+β(jα+β+1,k)
;

actually, this is the main result of the paper, whose complete details can be
seen in Theorem 3.

2. Notation and preliminaries

2.1. The Dunkl operator on the real line. For α > −1, let Jα denote the
Bessel function of order α and, for complex values of the variable z, let

Iα(z) = 2αΓ(α + 1)
Jα(iz)

(iz)α
= Γ(α + 1)

∞∑
k=0

(z/2)2k

k! Γ(k + α + 1)
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(Iα is a small variation of the so-called modified Bessel function of the first kind
and order α, usually denoted by Iα; see [18]). Moreover, let us take

Eα(z) = Iα(z) +
z

2(α + 1)
Iα+1(z), z ∈ C;

this function is called the Dunkl kernel.
The Dunkl operators on Rn are differential-difference operators associated

with some finite reflection groups (see [7]). We consider the Dunkl operator
Λα, α ≥ −1/2, associated with the reflection group Z2 on R given by

(3) Λαf(x) =
d

dx
f(x) +

2α + 1

x

(
f(x)− f(−x)

2

)
.

For α ≥ −1/2 and λ ∈ C, the initial value problem

(4)

{
Λαf(x) = λf(x), x ∈ R,
f(0) = 1

has Eα(λx) as its unique solution (see [8] and [15]). For α = −1/2, it is clear
that Λ−1/2 = d/dx, and E−1/2(λx) = eλx.

Along this paper we will usually employ Eα in the form

(5) Eα(ix) = 2αΓ(α + 1)

(
Jα(x)

xα
+
Jα+1(x)

xα+1
xi

)
.

If, moreover, we take

dµα(x) = (2α+1Γ(α + 1))−1|x|2α+1 dx,

the name Dunkl kernel for Eα is justified because it is the kernel of the Dunkl
transform of order α ≥ −1/2 given by

(6) Fαf(x) =

∫
R
f(t)Eα(−ixt) dµα(t), x ∈ R,

for f ∈ L1(R, dµα). In a similar way to the Fourier transform (which is the par-
ticular case α = −1/2), the definition is extended L2(R, dµα) and Fα becomes
to be an isometric isomorphism on L2(R, dµα). Yet more, the Dunkl transform
Fα can also be defined in L2(R, dµα) for −1 < α < −1/2; although in this case
the expression (6) is no longer valid for f ∈ L1(R, dµα) in general, it preserves
the same properties in L2(R, dµα) (see [16] for details). Following this spirit,
we will do our study not only for α ≥ −1/2, but for the whole range α > −1.

2.2. Generalized Gegenbauer polynomials. Following [9, Definition 1.5.5,
p. 27], let us introduce the generalized Gegenbauer polynomials C(λ,ν)(t) for
λ > −1/2, ν ≥ 0 and n ≥ 0 (the case ν = 0 corresponding with the ordinary
Gegenbauer polynomials); actually, for convenience with the notation of this

paper, we are going to use C
(β+1/2,α+1/2)
n (x). In this way, for β > −1 and
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α ≥ −1/2, the generalized Gegenbauer polynomials are defined by

C
(β+1/2,α+1/2)
2n (t) = (−1)n

(α + β + 1)n
(α + 1)n

P (α,β)
n (1− 2t2),(7)

C
(β+1/2,α+1/2)
2n+1 (t) = (−1)n

(α + β + 1)n+1

(α + 1)n+1

tP (α+1,β)
n (1− 2t2),(8)

where in the coefficients we are using the Pochhammer symbol (a)n = a(a +
1) · · · (a+ n− 1) = Γ(a+ n)/Γ(a). Note that there is no problem in extending
the definition of the generalized Gegenbauer polynomials taking α > −1, so we
will assume this situation.

The definitions (7) and (8) easily allow to translate the well known orthog-
onality of the Jacobi polynomials on (−1, 1) to the orthogonality of the gen-
eralized Gegenbauer polynomials on (−1, 1) with a related weight, which is
more useful in the context of this paper. In particular, the generalized Gegen-

bauer polynomials {C(β+1/2,α+1/2)
k (t)}k≥0 form a complete orthogonal system on

L2((−1, 1), (1− t2)β dµα(t)) for α, β > −1. Moreover, from the L2-norm of the
Jacobi polynomials (see [1, formula 22.2.1, p. 774]), it is easy to find

h
(β,α)
2n =

∫ 1

−1

[
C

(β+1/2,α+1/2)
2n (t)

]2

(1− t2)β dµα(t)(9)

=
1

2α+1

Γ(α + 1)Γ(β + n+ 1)Γ(α + β + n+ 1)

(α + β + 2n+ 1)Γ(α + β + 1)2Γ(α + n+ 1)n!
,

h
(β,α)
2n+1 =

∫ 1

−1

[
C

(β+1/2,α+1/2)
2n+1 (t)

]2

(1− t2)β dµα(t)(10)

=
1

2α+1

Γ(α + 1)Γ(β + n+ 1)Γ(α + β + n+ 2)

(α + β + 2n+ 2)Γ(α + β + 1)2Γ(α + n+ 2)n!
.

2.3. The expansion of the Dunkl kernel. The last ingredient in this section
with preliminaries is to explain the (2) that we give in the introduction. Firstly,
let us note that, when you use something like Ja+n(x)/xa, we mean

Ja+n(x)

xa
=
∞∑
k=0

(−1)k

2k! Γ(k + a+ n+ 1)

(x
2

)2k+n

,

that is an analytic function on the complex plane for every a > −1 and every
integer n ≥ 0.

Then, the precise statement of the Dunkl analogue of Gegenbauer’s expansion
of the plane wave is that, for α, β > −1 and α+ β > −1, the Dunkl kernel can
be expanded, for x ∈ R, as
(11)

Eα(ixt) = 2α+β+1Γ(α+β+1)
∞∑
n=0

in(α+β+n+1)
Jα+β+n+1(x)

xα+β+1
C(β+1/2,α+1/2)
n (t),

and this expansion holds in L2((−1, 1), dµα(t)).
This important identity has been proved in [17] for α ≥ −1/2 by showing

that, under this restriction, formulas (1) and (11) are equivalent. The proof
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in one direction is clear, just by specializing the parameters. To obtain (11)
from (1), we can use the intertwining operator

Vαg(t) =
Γ(2α + 2)

22α+1Γ(α + 1/2)Γ(α + 3/2)

∫ 1

−1

g(st)(1− s)α−1/2(1 + s)α+1/2 ds

(see [9, Definition 1.5.1, p. 24], we change the parameter µ in the definition
given in [9] by α + 1/2), defined for α ≥ −1/2. With this notation we have

VαC
α+β+1
n (t) = C(β+1/2,α+1/2)

n (t)

and

Vαe
i·(t) = Eα(it).

In this way, applying Vα to (1) (with α + β + 1 instead of β) we get (11).
This idea cannot be used in the whole range α > −1, and the extension

of (11) to this case can be found in [2].

3. Diagonalization of the right inverse of Dunkl operator

As stated in the introduction, Ismail and Zhang study in [14] the eigenfunc-
tions and the eigenvalues of the right inverse of the derivative operator, and
the main tool is a suitable expansion of the corresponding plane wave. The
aim of this section is the analysis of this question for the Dunkl operator (3)
using the expansion (11). This is a very natural extension, because the ordinary
derivative corresponds to the Dunkl operator Λα with α = −1/2.

To simplify the notation, let us introduce the measure

dµβ,α(t) = (1− t2)β dµα(t) = 1
2α+1Γ(α+1)

(1− t2)β|t|2α+1 dt.

It is not difficult to prove, using the appropriate recurrence relations for the
Jacobi polynomials, that the Dunkl operator over the generalized Gegenbauer
operator satisfies

(12) ΛαC
(β+1/2,α+1/2)
n (t) = 2(α + β + 1)C

(β+3/2,α+1/2)
n−1 (t).

Motivated by the identity (12), we define the right inverse operator of Λα

over L2((−1, 1), dµβ+1,α) by

Tβ,αg(t) =
∞∑
n=1

gn−1

2(α + β + 1)
C(β+1/2,α+1/2)
n (t),

whenever g has the expansion

g(t) =
∞∑
n=0

gnC
(β+3/2,α+1/2)
n (t),

with

gn =
(
h(β+1,α)
n

)−1
∫ 1

−1

g(r)C(β+3/2,α+1/2)
n (r) dµβ+1,α(r)
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(the norms h
(β+1,α)
n are given in (9) and (10)). Then, we can write

Tβ,αg(t) =

∫ 1

−1

g(r)Kβ,α(t, r) dµβ+1,α(r),

with

Kβ,α(t, r) =
1

2(α + β + 1)

∞∑
n=1

C
(β+1/2,α+1/2)
n (t)C

(β+3/2,α+1/2)
n−1 (r)

h
(β+1,α)
n−1

.

We want to diagonalize Tβ,α. To this end we have to find values λ ∈ C and
functions gλ ∈ L2((−1, 1), dµβ,α) ∩ L2((−1, 1), dµβ+1,α) such that

(13) λgλ(t) = Tβ,αgλ(t),

where the expansion of g in {C(β+1/2,α+1/2)
n }n≥0 is

(14) gλ(t) ∼
∞∑
n=1

an(λ)C(β+1/2,α+1/2)
n (t).

To find the eigenvalues and the eigenfunctions we start obtaining a recurrence
relation for the coefficients {an(λ)}n≥1. This is done by using an expression to

write (1−r2)C
(β+3/2,α+1/2)
n−1 (r) in terms of C

(β+1/2,α+1/2)
n−1 (r) and C

(β+1/2,α+1/2)
n+1 (r).

This relation can be deduced from the identity for the Jacobi polynomials (see
[1, formula 22.7.16, p. 782])

(15) P (a,b+1)
n (z) =

2(n+ b+ 1)P
(a,b)
n (z) + 2(n+ 1)P

(a,b)
n+1 (z)

(2n+ a+ b+ 2)(1 + z)
.

Indeed, taking z = 1 − 2t2 in (15) and using the definition of the generalized
Gegenbauer polynomials, we have
(16)

(α+β+ 1)(1− r2)C
(β+3/2,α+1/2)
n−1 (r) = AnC

(β+1/2,α+1/2)
n−1 (r)−BnC

(β+1/2,α+1/2)
n+1 (r),

with

An =


(β + k + 1)(α + β + k + 1)

α + β + 2k + 2
, if n = 2k + 1,

(β + k)(α + β + k + 1)

α + β + 2k + 1
, if n = 2k,

Bn =


(k + 1)(α + k + 1)

α + β + 2k + 2
, if n = 2k + 1,

k(α + k + 1)

α + β + 2k + 1
, if n = 2k.
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From (16) we have the decomposition

(1− r2)Kβ,α(t, r) =
1

2(α + β + 1)2

∞∑
n=1

An
C

(β+1/2,α+1/2)
n (t)C

(β+1/2,α+1/2)
n−1 (r)

h
(β+1,α)
n−1

− 1

2(α + β + 1)2

∞∑
n=1

Bn

C
(β+1/2,α+1/2)
n (t)C

(β+1/2,α+1/2)
n+1 (r)

h
(β+1,α)
n−1

.

With the previous identity, we get

Tβ,αgλ(t) =
1

2(α + β + 1)2

∞∑
n=2

an−1(λ)An
h

(β,α)
n−1

h
(β+1,α)
n−1

C(β+1/2,α+1/2)
n (t)

− 1

2(α + β + 1)2

∞∑
n=1

an+1(λ)Bn

h
(β,α)
n+1

h
(β+1,α)
n−1

C(β+1/2,α+1/2)
n (t).

In this way, identifying the coefficients in both sides of (13), we obtain the
recurrence relation

λan(λ) =
1

2(α + β + 1)2

(
an−1(λ)An

h
(β,α)
n−1

h
(β+1,α)
n−1

− an+1(λ)Bn

h
(β,α)
n+1

h
(β+1,α)
n−1

)
, n > 1,

and

λa1(λ) = −a2(λ)
B1

2(α + β + 1)2

h
(β,α)
2

h
(β+1,α)
0

,

which, applying (9) and (10), becomes

(17) λan(λ) =
an−1(λ)

2(α + β + n)
− an+1(λ)

2(α + β + n+ 2)
, n > 1,

and

(18) λa1(λ) = − a2(λ)

2(α + β + 3)
.

Now, we can prove the following:

Theorem 1. For α, β > −1, and α + β > −1, let Rβ+1/2,α+1/2 be the closure

of the span of {C(β+1/2,α+1/2)
n }n≥1 in L2((−1, 1), dµβ+1,α); then

(19) L2((−1, 1), dµβ+1,α) = Rβ+1/2,α+1/2 ⊕R⊥β+1/2,α+1/2,

where

(20) R⊥β+1/2,α+1/2 =

{
span{(1− t2)−1}, for β > 0,

{0}, for 0 ≥ β > −1.

Furthermore, if we let gλ(x) ∈ Rβ+1/2,α+1/2 have the orthogonal expansion (14),
then the eigenvalue equation (13) holds if and only if

(21)
∞∑
n=1

|an(λ)|2n2β−1 <∞.
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Proof. It is clear that L2((−1, 1), dµβ,α) ⊂ L2((−1, 1), dµβ+1,α) and Tβ,α maps
L2((−1, 1), dµβ+1,α) into L2((−1, 1), dµβ,α). Moreover, Tβ,α is a bounded oper-
ator and its norm is controlled by a constant M given by

M2 =
1

4(α + β + 1)2
sup
n≥0

h
(β,α)
n+1

h
(β+1,α)
n

.

Indeed,

‖Tβ,αg‖2
L2((−1,1),dµβ,α) =

∞∑
n=1

|gn−1|2

4(α + β + 1)2
h(β,α)
n

≤M2

∞∑
n=1

|gn|2h(β+1,α)
n = M2‖g‖L2((−1,1),dµβ+1,α).

Note that M is finite because

h
(β,α)
2k+1

h
(β+1,α)
2k

=
(α + β + 1)2

(β + k + 1)(α + k + 1)
and

h
(β,α)
2k

h
(β+1,α)
2k−1

=
(α + β + 1)2

k(α + β + k + 1)
.

In this way, we can deduce that Rβ+1/2,α+1/2 is an invariant subspace for Tβ,α
and the decomposition (19) holds. Now, each function f ∈ R⊥β+1/2,α+1/2 will

satisfy the conditions ‖f‖L2((−1,1),dµβ+1,α) <∞ and

(22)

∫ 1

−1

f(r)C(β+1/2,α+1/2)
n (r) dµβ+1,α(r) = 0, n = 1, 2, . . . .

Using that {C(β+1/2,α+1/2)
n }n≥0 is a complete orthogonal system in L2((−1, 1), dµβ,α)

and the relation dµβ+1,α(r) = (1− r2) dµβ,α(r), from (22) we get

(1− r2)f(r) = K

for a certain constant K. So, taking into account that f ∈ L2((−1, 1), dµβ+1,α),
we conclude (20).

Let gλ be a function having the expansion (14) and verifying (13). Then,
using that gλ ∈ L2((−1, 1), dµβ,α), it follows that

‖gλ‖2
L2((−1,1),dµβ,α) =

∞∑
n=1

|an(λ)|2h(β,α)
n <∞

and this imply (21) because h
(β,α)
n ≈ n2β−1.

On other hand, let us suppose that (21) and (14) hold. To prove that gλ is

a solution of (13), we need rewrite the function gλ in terms of C
(β+3/2,α+1/2)
n .

To this end, we use that the Jacobi polynomials satisfy the identity [1, formula
22.7.19, p. 782]

(2n+ a+ b)P (a,b−1)
n (z) = (n+ a+ b)P (a,b)

n (z) + (n+ a)P
(a,b)
n−1 (z)

to produce

C(β+1/2,α+1/2)
n (t) =

α + β + 1

α + β + n+ 1
(C(β+3/2,α+1/2)

n (t)− C(β+3/2,α+1/2)
n−2 (t)).
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So, we find

(23) gλ(t) =
∞∑
n=1

α + β + 1

α + β + n+ 1
an(λ)C(β+3/2,α+1/2)

n (t)

−
∞∑
n=1

α + β + 1

α + β + n+ 1
an(λ)C

(β+3/2,α+1/2)
n−2 (t).

Thus,

‖gλ‖2
L2((−1,1),dµβ+1,α) ∼

∞∑
n=1

|an(λ)|2n2β−1 <∞

and gλ ∈ L2((−1, 1), dµβ+1,α). Moreover, from (23), with (17) and (18), we can
check that gλ is an eigenfunction of Tβ,α. �

It is clear, from (17) and (18), that a1(λ) 6= 0 (in other case an(λ) = 0 for
n > 1). So this is a multiplicative factor and can be factored out. To verify the
condition (21), we have to renormalize the sequence {an(λ)}n≥1. Set

(24) an(λ) = in−1 (α + β + n+ 1)

(α + β + 2)
bn−1(iλ)a1(λ).

Then, using the relations (17) and (18), we can check that

(25) 2w(α + β + n+ 2)bn(w) = bn−1(w) + bn+1(w), n ≥ 1,

where w = iλ, b−1(w) = 0, and b0(w) = 1. If Rn,a(z) denotes the Lommel poly-
nomials, we define hn,a(z) = Rn,a(1/z), which are known as modified Lommel
polynomials. Lommel polynomials satisfy the three terms recurrence relation
(see [18, § 9.63, formula (2), p. 299])

2(n+ a)

z
Rn,a(z) = Rn−1,a(z) +Rn+1,a(z).

In this way, we deduce that bn(w) = hn,α+β+2(w).
Let us identify the values verifying (21).

Theorem 2. The convergence condition (21) holds if and only if λ is purely
imaginary, λ 6= 0, and Jα+β+1(i/λ) = 0.

Proof. By Hurwitz’ theorem [18, § 9.65, formula (1), p. 302], we have the as-
ymptotic relation

hn,a(z) ∼ Γ(n+ a)(2z)n+a−1Ja−1(1/z), n→∞.
This fact, taking into account (24) and that bn(iλ) = hn−1,α+β+2(iλ), shows
that in order for (21) to hold it is necessary that Jα+β+1(i/λ) = 0 or possibly
λ = 0. For λ = 0 we can deduce, by (25), that b2n+1(0) = 0 and b2n(0) = (−1)n,
then (21) does not hold.

To deduce the sufficiency of Jα+β+1(i/λ) = 0 we need the identity [18, § 9.6,
formula (1), p. 295]

Ja+n(z) = Rn,a(z)Ja(z)−Rn−1,a+1(z)Ja−1(z).
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From this relation we have

(26) −Jα+β+n+1(i/λ) = hn−1,α+β+2(λ/i)Jα+β(i/λ)

when Jα+β+1(i/λ) = 0. In this way, by the asymptotic

Ja+n(z) ∼ (2z)−n−a

Γ(a+ n+ 1)
, n→∞,

we can conclude that (21) is satisfied. �

Finally, we can obtain the eigenvalues and the eigenfunctions of Tβ,α (remem-
ber that the Bessel function Ja has an increasing sequence of positive zeros, and
that we are denoting them by ja,k, for k ≥ 1).

Theorem 3. Let α, β > −1, and α + β > −1. Then the eigenvalues of the
integral operator Tβ,α are {±i/jα+β+1,k}k≥1 and the eigenfunctions g±i/jα+β+1,k

(t)
have the series expansion in terms of the generalized Gegenbauer polynomials

(27)
∞∑
n=1

(∓i)n−1 (α + β + n+ 1)

(α + β + 2)
hn−1,α+β+2

(
1

jα+β+1,k

)
C(β+1/2,α+1/2)
n (t).

Moreover,
(28)

g±i/jα+β+1,k
(t) = ∓i

(
jα+β+1,k

2

)α+β+1
Eα(∓tjα+β+1,k)

Γ(α + β + 1)(α + β + 2)Jα+β(jα+β+1,k)
.

Proof. The eigenvalues follow immediately from Theorem 2. The expression (27)
for the eigenfunctions is a consequence of (14), (24), the fact bn(iλ) = hn−1,α+β+2(iλ)
and the identity

hn−1,α+β+2

(
i
±i

jα+β+1,k

)
= (∓1)n−1hn−1,α+β+2

(
1

jα+β+1,k

)
,

which is obtained using that Rn,a(−z) = (−1)nRn,a(a).
Let us prove (28). Taking λ = ±i/jα+β+1,k in (26), we obtain that

Jα+β+n+1(jα+β+1,k) = −hn−1,α+β+2

(
1

jα+β+1,k

)
Jα+β(jα+β+1,k).
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From the previous identity, (27) becomes

g±i/jα+β+1,k
(t) =

−1

(α + β + 2)Jα+β(jα+β+1,k)

×
∞∑
n=1

(∓i)n−1(α + β + n+ 1)Jα+β+n+1(jα+β+1,k)C
(β+1/2,α+1/2)
n (t)

=
∓i jα+β+1

α+β+1,k

(α + β + 2)Jα+β(jα+β+1,k)

×
∞∑
n=0

in(α + β + n+ 1)
Jα+β+n+1(∓jα+β+1,k)

(∓jα+β+1,k)α+β+1
C(β+1/2,α+1/2)
n (t)

= ∓i
(
jα+β+1,k

2

)α+β+1
Eα(∓tjα+β+1,k)

Γ(α + β + 1)(α + β + 2)Jα+β(jα+β+1,k)

where in the last step we have used (11). �
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12 L. D. ABREU, Ó. CIAURRI, AND J. L. VARONA

[15] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), 147–162.
[16] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus,

Oper. Theory Adv. Appl. 73 (1994), 369–396.
[17] M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math.

Soc. 355 (2003), 2413–2438.
[18] G. N. Watson, A Treatise on the Theory of Bessel Functions (2nd edition), Cambridge

Univ. Press, Cambridge, 1944.
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