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Abstract. We show that in the study of certain convolution oper-
ators, functions can be replaced by measures without changing the
size of the constants appearing in weak type (1, 1) inequalities. As
an application, we prove that the best constants for the centered
Hardy-Littlewood maximal operator associated to parallelotopes
do not decrease with the dimension.

1. Introduction

The method of discretization for convolution operators, due to M. de
Guzmán (cf. [1], Theorem 4.1.1), and further developed by M. T. Me-
nárguez and F. Soria (cf. Theorem 1 of [2]) consists in replacing func-
tions by finite sums of Dirac deltas in the study of the operator. So
far, the main applications of these theorems have been related to the
Hardy-Littlewood maximal function, and more precisely, to the deter-
mination of bounds for the best constants cd appearing in the weak
type (1, 1) inequalities (cf. [2], [3], [4], and [5] for the one dimensional
case, and for higher dimensions, [2] and [6]). In this paper we comple-
ment de Guzmán’s Theorem by proving that one can consider arbitrary
measures instead of finite discrete measures, and the same conclusions
still hold (Theorem 1). A special case of our theorem (where the space
is the real line and the convolution operator is precisely the Hardy-
Littlewood maximal function) appears in [5] (see Theorem 2).

Regarding upper bounds for cd, E. M. Stein and J. Strömberg (see [7])
showed that the constants grow at most like O(d log d) for arbitrary
balls, and like O(d) in the case of euclidean balls. With respect to
lower bounds for the maximal function associated to cubes, it is shown

in [2], Theorem 6, that cd ≥
(

1+21/d

2

)d
. These bounds decrease with the

dimension to
√

2. Increasing lower bounds are given in Proposition 1.4

of [6], where in particular it is proven that lim infd cd ≥ 47
√

2
36

. But since
the best constants are not known, this still left open the possibility that
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the cd would form a decreasing sequence; here (see Theorem 2) we show
that, for cubes, the inequality cd ≤ cd+1 holds in every dimension d (not
only for the usual maximal function, but also for lacunary versions
of it). In dimensions 1 and 2 the stronger result c1 < c2 is known,
thanks to the recent determination by Antonios D. Melas of the exact

value of c1 as 11+
√

61
12

(Corollary 1 of [5]). Since c2 ≥
√

3
2

+ 3−
√

2
4

, by

Proposition 1.4 of [6], Melas’s result entails that the first inequality is
strict.

Finally, we note that the original question of Stein and Strömberg
(see also [8], Problem 7.74 c, proposed by A. Carbery) as to whether
limd cd <∞ or limd cd =∞, remains open.

2. Convolution operators and measures

We shall state the main theorem of this note in terms of a locally com-
pact group X. Denote by C(X) the family of all continuous functions
g : X → R, by Cc(X) the continuous functions with compact support,
and by λ the left Haar measure on X. If X = Rd, λd will stand for the
d-dimensional Lebesgue measure. As usual, we shall write dx instead of
dλ(x). A finite real valued Borel measure µ on X is Radon if |µ| is inner
regular with respect to the compact sets. It is well known that if X is
a locally compact separable metric space, then every finite Borel mea-
sure is automatically Radon. Let N be a neighborhood base at 0 such
that each element of N has compact closure, and let {hU : U ∈ N} be
an approximate identity, i.e., a family of nonnegative Borel functions
such that for every U ∈ N , supphU ⊂ U and ‖hU‖1 = 1. Furthermore,
since for every neighborhood U of 0 there is a continuous function gU
with values in [0, 1], gU(0) = 1, and supp gU ⊂ U , we may assume that
each function in the approximate identity is continuous (obtain hU by
normalizing gU). Let µ be a finite, nonnegative Radon measure on X.
Recall that

h ∗ f(x) =

∫
f(y−1x)h(y) dy and µ ∗ f(x) =

∫
f(y−1x) dµ(y).

Let g ∈ Cc(X); we shall utilize the following well known results: µ ∗
(hU ∗ g) = (µ ∗ hU) ∗ g, and hU ∗ g → g uniformly as U ↓ 0. The idea
of the proof below consists simply in replacing the measure µ with the
continuous function µ ∗ hU , using the fact that ‖µ ∗ hU‖1 = µ(X).

The L1 norm refers always in this paper to Haar measure.

Lemma 1. Let {kβ} be a family of nonnegative lower semicontinuous
real valued functions, defined on X. Set k∗v := supβ |v ∗ kβ|, where v
is either a function or a measure. Then, for every finite real valued
Radon measure µ on X, and every α > 0,

λd{k∗µ > α} ≤ sup
{
λd{k∗f > α} : ‖f‖1 = |µ|(X)

}
.
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The same result holds if {kn} is a sequence of nonnegative real valued
Borel functions.

Proof. Consider first the case where {kβ} is a family of lower semicon-
tinuous functions. We shall assume that functions and measures are
nonnegative. There is no loss of generality in doing so since k∗f ≤ k∗|f |
and k∗µ ≤ k∗|µ| always. Also, by lower semicontinuity,

∫
kβ dµ =

sup{
∫
gγ,β dµ : 0 ≤ gγ,β ≤ kβ, gγ,β ∈ Cc(X)} (Corollary 7.13 of [9]). It

follows that for every x, supβ µ∗kβ(x) = supγ,β{µ∗gγ,β(x) : 0 ≤ gγ,β ≤
kβ, gγ,β ∈ Cc(X)}. Therefore we may assume that the family {kβ}
consists of nonnegative continuous functions with compact support.

Next, let {hU : U ∈ N} be an approximate identity as above, with
each hU continuous, and let C ⊂ {k∗µ > α} be a compact set. It
suffices to show that there exists a function f with ‖f‖1 = µ(X) and
C ⊂ {k∗f > α}. We shall take f to be µ ∗ hU0 , for a suitably chosen
neighborhood U0. Since {k∗µ > α} = ∪β{µ ∗ kβ > α} and each µ ∗ kβ
is continuous, there exists a finite subcollection of indices {β1, . . . , β`}
with C ⊂ ∪`1{µ ∗ kβi

> α}, so the continuous function max1≤i≤` µ ∗ kβi

attains a minimum value α+ a on C, with a strictly positive. Because
µ is a finite measure and hU ∗ kβi

converges uniformly to kβi
as U → 0,

µ ∗ hU ∗ kβi
also converges uniformly to µ ∗ kβi

. Hence, there exists an
U0 ∈ N such that for every V ⊂ U0, V ∈ N , and every i ∈ {1, . . . , `},
‖µ ∗ kβi

− µ ∗ hV ∗ kβi
‖∞ < a/2. In particular, it follows that

C ⊂
{

max
1≤i≤`

µ ∗ hU0 ∗ kβi
> α

}
⊂
{
k∗(µ ∗ hU0) > α

}
.

The case where {kn} is a sequence of nonnegative bounded Borel
functions, can be proven by reduction to the previous one. Choose a
finite Radon measure µ and fix α > 0. Given ε ∈ (0, 1), for every n let
gn ≥ kn be a bounded, lower semicontinuous function with

‖gn − kn‖1 <
ε2

2n+1µ(X)

(cf. Proposition 7.14 of [9]). Then, for any f ∈ L1(λ), using the Fubini-
Tonelli Theorem and left invariance we have

‖g∗f − k∗f‖1

=
∥∥∥ sup

n

∫
gn(y−1x)f(y) dy − sup

n

∫
kn(y−1x)f(y) dy

∥∥∥
1

≤
∑
n

∫∫
(gn(y−1x)− kn(y−1x))|f(y)| dy dx

=
∑
n

∫
|f(y)|

∫
(gn(y−1x)− kn(y−1x)) dx dy

=
∑
n

‖f‖1‖gn − kn‖1 < ‖f‖1ε2(µ(X))−1.
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In particular, if ‖f‖1 = µ(X), we have that

‖g∗f − k∗f‖1 < ε2,

from which

λ{g∗f − k∗f ≥ ε} ≤ ‖g
∗f − k∗f‖1

ε
< ε

follows. Now {g∗f > α + ε} ⊂ {k∗f > α} ∪ {g∗f − k∗f > ε}, so

(α + ε)λ{k∗µ > α + ε} ≤ (α + ε)λ{g∗µ > α + ε}
≤ (α + ε) sup{λ{g∗f > α + ε} : ‖f‖1 = µ(X)}
≤ (α + ε)(sup{λ{k∗f > α} : ‖f‖1 = µ(X)}+ ε),

and the result is obtained by letting ε ↓ 0. �

Theorem 1. Let {kβ} be a family of nonnegative lower semicontinuous
real valued functions, defined on X, and let c > 0 be a fixed constant.
Then the following are equivalent:

(i) For every function f ∈ L1(λ), and every α > 0,

αλ{k∗f > α} ≤ c‖f‖1.

(ii) For every finite real valued Radon measure µ on X, and every
α > 0,

αλ{k∗µ > α} ≤ c|µ|(X).

The same result holds if {kn} is a sequence of nonnegative real valued
Borel functions.

Proof. (i) is the special case of (ii) where dµ(y) = f(y) dy. For the
other direction, by Lemma 1 and part (i) we have

αλ{k∗µ > α} ≤ α sup{λ{k∗f > α} : ‖f‖1 = |µ|(X)} ≤ c|µ|(X).

�

Remark 1. By the discretization theorem of M. de Guzmán (see [1],
Theorem 4.1.1), further refined by M. T. Menárguez and F. Soria (The-
orem 1 of [2]), in Rd conditions (i) and (ii) of Theorem 1 are both
equivalent to

(iii) For every finite collection {δx1 , . . . , δxN
} of Dirac deltas on X,

and every α > 0,

αλ
{
k∗

N∑
1

δxi
> α

}
≤ cN.

From the viewpoint of obtaining lower bounds, the usefulness of (ii) is
due to the fact that it allows to choose among a wider class of potential
examples than just finite sums of Dirac deltas. Both (ii) and (iii) will
be utilized in the sext section.
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3. Behavior of constants for the Hardy-Littlewood
maximal operator

Let B ⊂ Rd be an open, bounded, convex set, symmetric about
zero. We shall call B a ball, since each norm on Rd yields sets of this
type, and each bounded B, convex and symmetric about zero, defines a
norm. The (centered) Hardy-Littlewood maximal operator associated
to B is defined for locally integrable functions f : Rd → R as

Md,Bf(x) := sup
r>0

χrB
rdλd(B)

∗ |f |(x).

We denote by cd,B the best constant in the weak type (1, 1) inequality
αλd{Md,Bf > α} ≤ c‖f‖1, where c is independent of f ∈ L1(Rn) and
α > 0. Let s := {rn}∞−∞ be a lacunary (bi)sequence (i.e., a sequence
that satisfies rn+1/rn ≥ c for some fixed constant c > 1 and every
n ∈ Z). Then the associated maximal operator is defined via

Ms,d,Bf(x) := sup
n∈Z

χrnB
rdnλ

d(B)
∗ |f |(x).

The arguments given below are applicable to both the maximal function
and to lacunary versions of it, so we shall not introduce a different
notation for the best constants in the lacunary case. In particular,
Lemma 2 and Theorem 2 refer to all of these maximal operators, but
only the usual maximal operator shall be mentioned in the proofs.

Given a finite sum µ =
∑k

1 δxi
of Dirac deltas, where the xi’s need

not be all different, let ](x+B) be the number of point masses from µ
contained in x+B.

Lemma 2. Let B be a ball in Rd. Then for every linear transformation
T : Rd → Rd with detT 6= 0, cd,B = cd,T (B).

Proof. Given µ :=
∑k

1 δxi
and Tµ :=

∑k
1 δT (xi), we have that

Md,Bµ(x) := sup
r>0

](x+ rB)

rdλd(B)

and

Md,T (B)Tµ(x) := sup
r>0

](x+ rT (B))

rdλd(T (B))
.

Then x ∈ {Md,Bµ > α} iff T (x) ∈ {Md,T (B)Tµ > (α/| detT |)}. Since

| detT |λd{Md,Bµ > α} = λd{Md,T (B)Tµ > (α/| detT |)},
we have

αλd{Md,Bµ > α} = (α/| detT |)λd{Md,T (B)Tµ > (α/| detT |)},
and the result follows. �

Theorem 2. For each d ∈ N \ {0} let Bd be a d-dimensional paral-
lelotope centered at zero. Then cd,Bd

≤ cd+1,Bd+1
for both the maximal

operator and for lacunary operators.



6 J. M. ALDAZ AND JUAN L. VARONA

Proof. Since every such Bd is the image under a nonsingular linear
transformation of the d-dimensional cube Qd centered at zero with
sides parallel to the axes and volume 1, we may assume that in fact
Bd = Qd. With the convex bodies fixed, we will write cd and Md

rather than cd,Bd
and Md,Bd

. Given α > 0, µd =
∑k

1 δxi
on Rd and a

constant c > 0 such that αλd{Mdµd > α} > cµd(Rd), we want to find a
measure µd+1 on Rd+1 such that αλd+1{Md+1µd+1 > α} > cµd+1(Rd+1).
This will imply that cd ≤ cd+1. Let L := (k/α)1/d. Note that if

r ≥ L, then for every x ∈ Rd, ](x+rQd)
rd ≤ α. Choose N � L such

that αN−L
N
λd{Mdµd > α} > ck, and let µd+1 := µd × λ[−N,N ], where

λ[−N,N ] stands for the restriction of linear Lebesgue measure to the
interval [−N,N ]. We claim that {Mdµd > α} × [−N + L,N − L] ⊂
{Md+1µd+1 > α}. In order to establish the claim, the following notation
shall be used: If x = (x1, . . . , xd) ∈ Rd, by (x, xd+1) we denote the point
(x1, . . . , xd, xd+1) ∈ Rd+1. Now if x ∈ {Mdµd > α}, then there exists
an r(x) ∈ (0, L) such that r(x)−dµd(x + r(x)Qd) > α, so for every
y ∈ [−N + L,N − L],

r(x)−d−1µd+1((x, y) + r(x)Qd+1)

= r(x)−d−1(µd(x+ r(x)Qd)× λ[−N,N ]([y − r(x)
2
, y + r(x)

2
])

= r(x)−dµd(x+ r(x)Qd) > α,

as desired. But now

αλd+1{Md+1µd+1 > α} ≥ 2α(N − L)λd{Mdµd > α}

= 2αN
N − L
N

λd{Mdµd > α} > 2Nck = cµd+1(Rd+1).

�

Remark 2. Recall from the Introduction that for the `∞ balls (i.e.,
cubes with sides parallel to the axes) c1 < c2. Since the `1 unit ball in
dimension 2 is a square, it follows from Lemma 2 that the best constant
in dimension 2 is equal for the `1 and the `∞ norms. It follows that
c1 < c2 in the `1 case also. It would be interesting to know whether or
not the best constants associated to the `p balls are all the same. Note
that establishing bounds of the type a−1cd,2 ≤ cd,p ≤ acd,2 (where the
constant a ≥ 1 is independent of the dimension d and cd,p denotes the
best constant associated to the `p ball), would show that the bounds
O(d) (which hold for euclidean balls by [7]) extend to `p balls.
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