
The Lindemann theorem for matrices
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Abstract

In this note, we prove a Lindemann theorem about the transcen-
dence of the exponential of square matrices.

In 1882, Ferdinand von Lindemann [1] proved that, if α ∈ C is an alge-
braic number, then eα is algebraic if and only if α = 0. In particular, this
result implies the transcendence of π because eiπ = −1. This note states a
Lindemann theorem for the exponential of square matrices, that are defined
as

exp(A) =
∞∑
k=0

1

k!
Ak.

(The convergence of this series is well known.) In what follows, we will use
I to denote the identity matrix, and O the zero matrix.

Theorem 1. Let m be a positive integer, let A be the field of algebraic
complex numbers, and let Mm(A) be the set of m×m square matrices whose
elements are in A, and take A ∈ Mm(A). Then exp(A) ∈ Mm(A) if and
only if Am = O.

Proof. Let us define the function F : Mm(C) → Mm(C) by means of the
series

F (X) = exp(X) =

∞∑
k=0

1

k!
Xk.

Thus, we want to prove that F (A) ∈ Mm(A) if and only if Am = O. The
“if” part is clear, because F (A) becomes a finite sum, so let us analyze the
“only if” part.

The eigenvalues of A are the roots of the polynomial det(A − xI) = 0
and, being that A is an algebraically closed field, these eigenvalues are in A.
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On the other hand, Am = O is equivalent to saying that 0 is the unique
eigenvalue of A. (It is enough to use the Cayley–Hamilton theorem.) Let us
prove that 0 is the unique eigenvalue by reductio ad absurdum.

Let us suppose that λ 6= 0 in A is an eigenvalue of A. An eigenvector
associated to λ will be a nonzero vector solution v ∈ Cm of the linear
homogeneous system (A − λI)x = 0. The existence of nonzero solutions is
guaranteed because det(A − λI) = 0. The general solution of the system
depends on m − r free parameters, with r = rank(A − λI), and it can be
obtained by means of gaussian elimination, a process that only uses algebraic
operations. As A − λI is in Mm(A), by choosing algebraic values, not all
zero, for the free parameters, we will have an eigenvector v ∈ Am. But, by
hypothesis, F (A) ∈Mm(A), so also F (A)v ∈ Am.

From Av = λv, it follows that Akv = λkv for any k ≥ 1. Consequently,

F (A)v = exp(A)v =
∞∑
k=0

1

k!
Akv =

∞∑
k=0

1

k!
λkv = (exp(λ))v.

From this equality, and because v 6= 0, it follows that exp(λ) ∈ A. But, by
the Lindemann theorem, the unique λ ∈ A such that exp(λ) is in A is λ = 0,
so we have found a contradiction.

Well-known consequences of the Lindemann theorem, or the more gen-
eral Lindemann–Weierstrass theorem, are that, for α 6= 0 an algebraic num-
ber, log(1 + α), sin(α), cos(α), sinh(α), cosh(α) are trascendental numbers.

Moreover, it is standard to extend an analytic function f(z) =
∑∞

k=0 akz
k

with radius of convergence r > 0 to a matrix function F (X) =
∑∞

k=0 akX
k

that converges for matrices X whose spectral radius ρ(X) (i.e., the maxi-
mum of the absolute value of the eigenvalues of X) satisfies ρ(X) < r. In
particular, this can be done with log, sin, cos, sinh and cosh. Then, with
the same proof as in Theorem 1, we have the following.

Theorem 2. For A ∈Mm(A), any of log(I + A) (with ρ(A) < 1), sin(A),
cos(A), sinh(A) or cosh(A) is in Mm(A) if and only if Am = O.
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