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Abstract. The Lindelöf-Wirtinger expansion of the Lerch transcen-
dent function implies, as a limiting case, Hurwitz’s formula for the
eponymous zeta function. A generalized form of Möbius inversion ap-
plies to the Lindelöf-Wirtinger expansion and also implies an inversion
formula for the Hurwitz zeta function as a limiting case. The inverted
formulas involve the dynamical system of rotations of the circle and yield
an arithmetical functional equation.

1. Introduction

The Lerch transcendent function is given by the series

Φ(λ, s, z) =
∞∑
k=0

λk

(k + z)s
; (1.1)

see [8, §1.11, p. 27] or [2, §25.14], for example. Logarithms and complex
powers are always assumed to be principal. If |λ| < 1, then for any s ∈ C, the
series converges uniformly in z over C\(−∞, 0], thus defining a holomorphic
function of z in this region. If |λ| = 1, then the series converges in this same
region provided Re s > 1. The value λ = 0 is considered trivial since it yields
Φ(0, s, z) = z−s, and thus is usually excluded. There are multiple ways of
defining analytic continuations of Φ in each parameter.

This function, defined by Mathias Lerch in 1887 in his paper [11], includes
as special cases of the parameters the Hurwitz and Riemann zeta functions
and the polylogarithms, among others, and has applications ranging from
number theory to physics. It is often used to obtain functional identities;
see, for instance, [3, 7, 9, 15].

One often extends the domain to z ∈ C\{0,−1,−2, . . . } by including the
branch discontinuity of the principal argument. In addition, in this paper we
shall only be considering s ∈ C with Re s < 0, in which case the summand
(k + z)−s (with k ∈ N) in (1.1) continuously extends to z = −k by defining
0−s = 0. Thus for Re s < 0 we can define Φ(λ, s, z) for all z ∈ C. For the
parameter s, we shall often denote σ = Re s. Also, we shall use the notation
C∗ = C \ {0}.
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In light of the remarks made above, one concludes that given |λ| < 1
and Re s < 0, the function Φ(λ, s, x) extends continuously as a function of
x ∈ [0, 1], with Φ(λ, s, 0) = Φ(λ, s, 1). In particular, it may be expanded in
a Fourier series on this interval. The resulting formula is classical and is the
point of departure for what follows.

Theorem 1 (Lindelöf-Wirtinger expansion). Let λ and s be complex pa-
rameters with 0 < |λ| < 1 and Re s < 0. Then

Φ(λ, s, x) = λ−x Γ(1− s)
∑
n∈Z

(2πin− log λ)s−1e2πinx, x ∈ [0, 1]. (1.2)

The convergence is uniform in x.

Proof. Wirtinger’s paper [16] is one of the original sources. The result has
been reproved often by various means. See for example [8], for the traditional
approach using complex analytic techniques, or [14], for a short proof using
basic Fourier Analysis. �

Remark 1. Note that changing the branch of the logarithm in (1.2) shifts the
summation index n, and hence does not affect the validity of the expansion,
as long as the same branch is used for both log λ and λ−x.

The special values s = 1 − k (with k ∈ N) give the Apostol-Bernoulli
polynomials Bk(x;λ) first defined in [1]:

Φ(λ, 1− k, x) = −Bk(x;λ)

k
. (1.3)

Bk(x;λ) is a polynomial in x of degree k − 1 over whose coefficients are
rational functions in λ having a unique pole at λ = 1. By (1.2) we obtain
their Fourier series

Bk(x;λ) = −λ−x k!
∑
n∈Z

e2nπix

(2nπi− log λ)k
, x ∈ [0, 1], (1.4)

which is initially valid for |λ| < 1, but is extended by analytic continuation
to all λ 6= 0, 1. In [13], (1.4) is proved directly using the algebraic properties
of this polynomial family.

The structure of the paper is as follows. In Section 3, we look at the
Lindelöf-Wirtinger expansion in a manner analogous to Hurwitz’s formula
for the Hurwitz zeta function. The expansion (1.2) is separated into two
parts involving a three-parameter function which specializes to the periodic
zeta function. Next, we observe that one may apply to this new function
an inversion formula for a certain generalized form of convolution, which
contains the Möbius inversion formula of analytic number theory as a special
case (this general framework, discussed previously in [5], is described in
Section 2). This yields an inverted form of the Lindelöf-Wirtinger expansion.
In Section 4, by studying the logarithmic singularity of Φ at λ = 1, we show
how to deduce Hurwitz’s formula from the Lindelöf-Wirtinger expansion
and in Section 5, using the same technique, we obtain the corresponding
inverted form of Hurwitz’s formula from the inverted form of the Lindelöf-
Wirtinger expansion. As special cases we obtain relations for the Apostol-
Bernoulli polynomials. Finally, in Section 6, for rational x, it is shown that
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the inverted form of Hurwitz’s formula generalizes the functional equation
of the Riemann zeta function.

2. Generalized Möbius inversion

In [5] and [6], an abstract framework for Möbius inversion is established
along with numerous examples. We will show that the Lindelöf-Wirtinger
formula (Theorem 1) provides another application of this mechanism. In
order to formulate the result, first we need to summarize its main features.
Although the results in [5] are valid in a rather general setting, here we will
only need the following special case.

Consider a dynamical system consisting of the natural numbers N acting
on a spaceX, in other words, a function ϕ : N×X → X such that ϕ(1, x) = x
and ϕ(m,ϕ(n, x)) = ϕ(mn, x). The action of N induces an action of the
ring of complex-valued arithmetical functions on suitable spaces of functions
f : X → C, where an arithmetical function α : N→ C acts on a function f
via

(α� f)(x) =
∑
n∈N

α(n)f(ϕ(n, x)), x ∈ X. (2.1)

In other words, one has

α� (β � f) = (α ∗ β)� f

where ∗ denotes Dirichlet convolution of arithmetical functions, given by

(α ∗ β)(n) =
∑
kl=n

α(k)β(l).

Here, “suitable” means that the series (2.1) should converge fast enough.
See [5] for the technical details.

If α is invertible under convolution then, again under suitable convergence
hypotheses, we have

g = α� f =⇒ f = α−1 � g

where α−1 denotes the convolution inverse of α. In particular, if α is com-
pletely multiplicative, its Dirichlet inverse is α−1 = µα, where µ is the
Möbius function. Thus we may expect in this case that

g = α� f =⇒ f = (µα)� g (2.2)

if the appropriate convergence conditions are satisfied.

3. Möbius inversion of the Lindelöf-Wirtinger formula

We will apply the method of generalized Möbius inversion outlined in
Section 2 to the Lindelöf-Wirtinger formula. This cannot be done directly
with (1.2) as it stands, but rather after some manipulation of the series.
Actually, we can separate the sum over all integers in (1.2) into a sum over
positive and negative integers and invert each separately. For this purpose,
consider the function defined by

L(λ, s, x) =
∞∑
n=1

(2πin− log λ)−se2πinx. (3.1)
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This series is normally convergent for x ∈ R and on compact subsets of the
domains defined by λ 6= 0, Re s > 1. The principal branch of the logarithm is
assumed throughout. Since L is 1-periodic in x we may restrict to x ∈ [0, 1].

Proposition 2. With L(λ, s, x) defined by (3.1) and 0 < |λ| < 1, Re s > 1
and x ∈ [0, 1], we have

λx

Γ(s)
Φ(λ, 1− s, x)− (− log λ)−s = L(λ, s, x) + eπisL(λ−1, s, 1− x). (3.2)

Proof. Starting from the Lindelöf-Wirtinger expansion (1.2), with s changed
to 1− s, and separating the term in the sum corresponding to n = 0, gives

λx

Γ(s)
Φ(λ, 1− s, x)− (− log λ)−s =

∑
n∈Z\{0}

(2πin− log λ)−se2πinx.

The sum over positive n corresponds to L(λ, s, x), while the sum over neg-
ative integers is

−1∑
n=−∞

(2πin− log λ)−se2πinx =

∞∑
n=1

(−2πin− log λ)−se−2πinx

= eπis
∞∑
n=1

(2πin+ log λ)−se2πin(1−x) = eπisL(λ−1, s, 1− x),

since log λ−1 = − log λ for λ /∈ (−∞, 0], so that we obtain (3.2). �

Next, we apply Möbius inversion to (3.1).

Proposition 3. For λ 6= 0, Re s > 1 and x ∈ [0, 1] we have

(2πi− log λ)−se2πix =
∞∑
n=1

µ(n)

ns
L(λ1/n, s, {nx}) (3.3)

where L(λ, s, x) is defined in (3.1), {x} denotes the fractional part of a real
number, and µ(n) is the Möbius function, given by

µ(n) =

{
0 if n is not squarefree,

(−1)k if n is the product of k distinct primes.

Proof. Consider the action of N on the space C∗ × [0, 1) given by

ϕ(n, (λ, x)) =
(
λ1/n, {nx}

)
. (3.4)

It is straightforward to verify that (λa)b = λab holds for the principal power if

a, b ∈ (0, 1], so that (n, λ) 7→ λ1/n is an action on C∗, and that (n, x) 7→ {nx}
is an action on [0, 1]. The action (3.4) is the direct product of these two.

Consider α(n) = n−s : N → C, which is a completely multiplicative
arithmetical function, and fs : C∗ × [0, 1] → C given by fs(λ, x) = (2πi −
log λ)−se2πix. Now, observe that, if s is considered fixed, L is α � fs as
defined in (2.1).

Thus (3.3) is a consequence of (2.2), assuming that the convergence is fast
enough. This is so because α and fs satisfy the hypotheses of Theorems 3
and 4 of [5], which justify the inversion formula. Briefly, since α(n) is a
power, all that is needed is the estimate d(n) = o(nε) for any ε > 0, where
d(n) is the number of divisors of n. �
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Using (3.2), we obtain an inversion formula involving the Lerch function.

Theorem 4. For 0 < |λ| < 1, Re s > 1 and x ∈ [0, 1], we have

(2πi− log λ)−se2πix + eπis(2πi+ log λ)−se−2πix

=

∞∑
n=1

µ(n)n−s

(
λ{nx}/n

Γ(s)
Φ(λ1/n, 1− s, {nx})− ns(− log λ)−s

)
.

(3.5)

Proof. Changing λ to λ−1 and x to 1−x in (3.3), noting that {−x} = 1−{x}
for x /∈ Z, since L is 1-periodic in x, we have

(2πi+ log λ)−se−2πix =
∞∑
n=1

µ(n)

ns
L(λ−1/n, s, 1− {nx)}).

Adding this to (3.3) and using (3.2) we obtain (3.5). �

Corollary 5. For k ∈ N, k ≥ 2, λ 6= 0, 1 and x ∈ [0, 1], we have

(2πi− log λ)−ke2πix + eπik(2πi+ log λ)−ke−2πix

= −
∞∑
n=1

µ(n)n−k

(
λ{nx}/n

k!
Bk({nx};λ1/n) +

nk

(− log λ)k

)
where Bk(x;λ) denotes the kth Apostol-Bernoulli polynomial.

Proof. In the case 0 < |λ| < 1, set s = k for k ∈ N in (3.5) and use (1.3).
Then, since the Apostol-Bernoulli polynomials are defined for λ 6= 0 and
have a unique pole at λ = 1, the result extends immediately to λ 6= 0, 1 by
analytic continuation. �

Remark 2. Corollary 5 is Theorem 2 of [4]. There is also a corresponding
formula for the Apostol-Euler polynomials En(x;λ) via the simple relation
En(x;λ) = − 2

n+1Bn+1(x;−λ), that was first proved in Lemma 2 of [13]. It
should be noted that, although Apostol-Bernoulli and Apostol-Euler poly-
nomials are often dealt with as separate parametrized families, probably
due to their specializations to the classical Bernoulli and Euler polynomials,
they are essentially one and the same.

4. Hurwitz’s Formula as a limit formula of the
Lindelöf-Wirtinger expansion

Setting λ = 1 in the series (1.1) defining the Lerch transcendent Φ one
obtains the definition of the Hurwitz zeta function,

ζ(s, z) = Φ(1, s, z) =
∞∑
n=0

1

(n+ z)s
,

where the series converges absolutely for Re s > 1 and z ∈ C, z 6= 0,−1,−2, . . . .
One often adopts the convention that summands with n+z = 0 are omitted.
This makes ζ(s, 0) equal by definition to the Riemann zeta function ζ(s).
For Re s < 0, which is the case we consider, one also has ζ(s, 0) = ζ(s) by
analytic continuation.
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The Hurwitz zeta function ζ(s, z) has a well-known analytic continuation
to all s 6= 1 given by

ζ(s, x) =
Γ(1− s)e−πis

2πi
I(s, x), I(s, x) =

∫
Lρ

zs−1e−xz

1− e−z
dz (4.1)

where 0 < ρ < 2π and Lρ is the path along the positive real axis from ∞
to ρ, with argument 0, the counterclockwise circle of radius ρ around the
origin, and the path from ρ back to ∞, with argument 2π.

A key relation satisfied by ζ(s, z) is Hurwitz’s formula, which is

ζ(1− s, x) =
Γ(s)

(2π)s

(
e−πis/2H(s, x) + eπis/2H(s, 1− x)

)
(4.2)

where Re s > 1, x ∈ [0, 1] and

H(s, x) =
∞∑
n=1

e2πinx

ns

is known as the periodic zeta function.
The importance of Hurwitz’s formula rests on the fact that at x = 1 it

specializes to the functional equation of the Riemann zeta function. Many
proofs of (4.2) using different techniques are found in the literature. We
will show how Hurwitz’s formula can be derived as a limit formula from
the Lindelöf-Wirtinger expansion for the Lerch transcendent and, likewise,
Möbius inversion of Hurwitz’s formula from the corresponding inversion of
the Lindelöf-Wirtinger formula given in Theorem 4.

Clearly H(s, x) = (2πi)sL(1, s, x), where L is defined in (3.1), and (4.2)
bears an obvious resemblance to (3.2). However, one cannot directly substi-
tute λ = 1 in formulas such as the Lindelöf-Wirtinger expansion and obtain
a valid result, since λ = 1 is a logarithmic singularity of Φ(λ, s, x). Rather,
the correct approach is to cancel the singularity by subtracting the term
corresponding to n = 0 in (1.2). This is done via an important auxiliary
result, namely, the expansion of Φ in powers of log λ. Erdélyi showed (see
formula (8) on p. 29 of [8] or formula (3) in [10]) that

Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)
s−1

= λ−x
∞∑
k=0

ζ(s− k, x)
(log λ)k

k!
(4.3)

for | log λ| < 2π, 0 < x ≤ 1 and s 6= 1, 2, 3, . . . ; for Re s < 0 we may also
include x = 0.

We shall need to justify exchanging the limit as λ → 1 with the various
infinite sums which appear. This means finding suitable uniform bounds.

Lemma 1. Given 0 < ρ < 2π and a compact subset S of the left half-plane
Re s < 0, there is a constant C depending only on S, ρ, such that the contour
integral in (4.1) satisfies

|I(s− k, x)| ≤ Cρσ−k (4.4)

for all x ∈ [0, 1], s ∈ S and k ≥ 0 (recall that σ = Re s).
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Proof. For σ = Re s < 0 and t = Im s, we have the estimate |zs−1| ≤
|z|σ−1e2π|t|, while along the positive real axis we have |e−xz| = e−xRe z ≤ 1
and 1− e−z ≥ 1− e−ρ. Thus, on either branch along the real axis,∣∣∣∣∫ ∞

ρ

zs−1e−xz

1− e−z
dz

∣∣∣∣ ≤ e2π|t|

1− e−ρ

∫ ∞
ρ

uσ−1 du =
e2π|t|

1− e−ρ
· ρ

σ

−σ

and for |z| = ρ we have |1− e−z| ≥ 1− eρ−2π and |e−xz| ≤ eρ, hence∣∣∣∣∣
∫
|z|=ρ

zs−1e−xz

1− e−z
dz

∣∣∣∣∣ ≤ 2πeρe2π|t|

1− eρ−2π
· ρσ.

For any k ≥ 0, shifting s to s−k with k ≥ 0, since k−σ ≥ −σ > 0, we have
ρσ−k/(k − σ) ≤ ρσ−k/(−σ) and hence we obtain the bound

|I(s− k, x)| ≤ 2e2π|t|

1− e−ρ
· ρ

σ−k

−σ
+

2πeρe2π|t|

1− eρ−2π
· ρσ−k.

These bounds clearly imply (4.4) over a compact subset of {Re s < 0}. �

Proposition 6. Given 0 < ρ < 2π and a compact subset S of the left
half-plane Re s < 0, there is a constant C depending only on S, ρ, such that

|ζ(s− k, x)| ≤ Ck! (2ρ−1)k

for all x ∈ [0, 1] and k = 0, 1, 2, . . . .

Proof. We use the integral representation (4.1), shifted by k:

ζ(s− k, x) =
(−1)kΓ(1− s+ k)e−πis

2πi
I(s− k, x).

By Lemma 1, we have |I(s− k, x)| ≤ Cρσ−k where C depends only on S, ρ.
On the other hand, since Γ(1−s+k) = (k−s)(k−s−1) · · · (−s+1)Γ(1−s),
if m ∈ Z is such that |s| ≤ m < |s|+ 1, we have

|Γ(1− s+ k)|
k!

≤ 1

k!
(k +m)(k − 1 +m) · · · (1 +m)|Γ(1− s)|

=

(
m+ k

k

)
|Γ(1− s)| ≤ 2m+k|Γ(1− s)| ≤ 2k+1+|s||Γ(1− s)|.

Thus, for any x ∈ [0, 1] and s ∈ S, with σ = Re s, t = Im s, we have

1

k!
|ζ(s− k, x)| = |Γ(1− s+ k)| · eπt

2πk!
· |I(s− k, x)|

≤ π−12k+|s| · |Γ(1− s)| · eπ|t| · Cρσ−k ≤ C ′(2ρ−1)k

where C ′ is another constant depending only on S, ρ. �

Proposition 7. The tails of the series (4.3) satisfy a bound of the form

∞∑
k=m

∣∣∣∣∣ζ(s− k, x)
logk λ

k!

∣∣∣∣∣ ≤ C| log λ|m (4.5)

for x ∈ [0, 1] and λ, s in respective compact subsets Λ, S of the domains
| log λ| < π and Re s < 0, where C > 0 is a constant depending only on Λ, S.
Thus (4.3) is normally convergent for x ∈ [0, 1] and on compact subsets of
Re s < 0 and | log λ| < π.
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Proof. By Proposition 6, given 0 < ρ < 2π and a compact subset S of the
left half-plane Re s < 0, there is a constant C(S, ρ) depending only on ρ
and S, such that 1

k! |ζ(s − k, x)| ≤ C(S, ρ)(2ρ−1)k for all s ∈ S, x ∈ [0, 1],
and k ≥ 0.

For λ in a compact subset Λ of the domain | log λ| < π, there is a uniform
bound | log λ| ≤ ` < π. Since 0 < ρ < 2π is arbitrary, choosing 2` <
ρ < 2π with ρ close enough to 2π makes 2ρ−1` < 1 and 2ρ−1 < 1, hence
for (λ, s, x) ∈ Λ × S × [0, 1], the series (4.5) is dominated by a convergent
geometric series, yielding the bound

∞∑
k=m

1

k!
|ζ(s− k, x)| | log λ|k ≤ C(S, ρ)

1− 2ρ−1`
|2ρ−1 log λ|m ≤ C(S,Λ)| log λ|m

for all m ≥ 0, where C(S,Λ) > 0 is a constant depending only on S,Λ. �

Corollary 8. For x ∈ [0, 1] and λ, s lying in respective compact subsets Λ, S
of the domains | log λ| < π, 0 < |λ| < 1, and Re s < 0, there is a constant
C > 0 depending only on Λ, S such that∣∣Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)

s−1 − λ−xζ(s, x)
∣∣ ≤ C| log λ| (4.6)

for (λ, s, x) ∈ Λ × S × [0, 1]. In particular, Hardy’s relation (formula (4)
in [10]) holds uniformly:

lim
λ→1

(
Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)

s−1
)

= ζ(s, x) (4.7)

for (s, x) ∈ S × [0, 1].

Proof. Assume s lies in a compact subset S of {Re s < 0} and λ in a compact
subset Λ of | log λ| < π. Separating the summand corresponding to k = 0 in
Erdélyi’s expansion (4.3), the bound (4.5) of Proposition 7 shows that∣∣Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)

s−1 − λ−xζ(s, x)
∣∣ ≤ C|λ|−x| log λ|

where C > 0 is a constant depending only on S,Λ. Now, min(1, |λ|) ≤ |λx| ≤
max(1, |λ|) for x ∈ [0, 1], and the mean value inequality for the exponential

gives |ez − 1| ≤ |z|eRe+ z where Re+ = max(0,Re). Thus we have

|λx − 1| ≤ |x log λ|exRe+ log λ ≤ | log λ| ·max(1, |λ|)

for x ∈ [0, 1] and hence, since ζ(s, x) is bounded on S × [0, 1],∣∣Φ(λ, s, x)− λ−xΓ(1− s)(log λ−1)
s−1 − ζ(s, x)

∣∣
≤ C|λ|−x| log λ|+ |λ−x − 1||ζ(s, x)|
≤ C|λ|−x| log λ|+ |λ|−x|λx − 1| · ‖ζ‖S×[0,1]

≤
C + max(1, |λ|) · ‖ζ‖S×[0,1]

min(1, |λ|)
| log λ| ≤ C ′| log λ|

for another constant C ′ depending only on S,Λ. Finally, note that | log λ| =
O(|λ− 1|) as λ→ 1. �

Corollary 9. The Lindelöf-Wirtinger expansion (1.2) implies Hurwitz’s for-
mula (4.2).
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Proof. By Hardy’s relation (4.7), changing s to 1 − s and hence assuming
Re s > 1, we have

lim
λ→1

(
Φ(λ, s, x)− λ−xΓ(s)(log λ−1)

−s
)

= ζ(1− s, x).

Now take the limit as λ → 1 in the modified form (3.2) of the Lindelöf-
Wirtinger relation, noting that log λ−1 = − log λ for 0 < |λ| < 1:

Φ(λ, 1− s, x)− λ−xΓ(s)(log λ−1)
−s

= λ−xΓ(s)
(
L(λ, s, x) + eπisL(λ−1, s, 1− x)

)
to obtain, since L(λ, s, x) is holomorphic for λ /∈ (−∞, 0],

ζ(1− s, x) = Γ(s)
(
L(1, s, x) + eπisL(1, s, 1− x)

)
= Γ(s)(2πi)−s

(
H(s, x) + eπisH(s, 1− x)

)
=

Γ(s)

(2π)s

(
e−πis/2H(s, x) + eπis/2H(s, 1− x)

)
,

which is Hurwitz’s formula. �

5. Möbius inversion of Hurwitz’s formula

One can apply the method of Möbius inversion outlined in Section 2
to Hurwitz’s formula (4.2) in the same manner as it was used to invert
the Lindelöf-Wirtinger expansion in Section 3. Rather than repeating the
process, we may derive the result as a limit formula of (3.5) when λ→ 1, by
subtracting the logarithmic singularity using the technique outlined in the
previous section.

Proposition 10. The series (3.5) resulting from Möbius inversion of the
Lindelöf-Wirtinger expansion in the form (3.2), is normally convergent for
x ∈ [0, 1], s in a compact subset of the half-plane Re s > 1, and λ in a
compact subset of the domain | log λ| < π, 0 < |λ| < 1. The following limit
formula holds:

e−πis/2e2πix + eπis/2e−2πix =
(2π)s

Γ(s)

∞∑
n=1

µ(n)

ns
ζ(1− s, {nx}) (5.1)

where {x} denotes the fractional part of x.

Proof. Changing s to 1 − s in the bound (4.6) which implies Hardy’s rela-
tion (4.7), we have∣∣Φ(λ, 1− s, x)− λ−xΓ(s)(log λ−1)

−s − ζ(1− s, x)
∣∣ ≤ C| log λ|

for x ∈ [0, 1] and λ, s in respective compact subsets Λ, S of | log λ| < π
and Re s > 1, where C > 0 depends only on Λ, S. Given n = 1, 2, 3, . . . ,
changing λ to λ1/n (the principal branch) and x to the fractional part {nx},
we obtain, assuming also that λ /∈ (−∞, 0],∣∣Φ(λ1/n, 1− s, {nx})− λ−{nx}/nΓ(s)ns(log λ−1)

−s − ζ(1− s, {nx})
∣∣

≤ Cn−1| log λ| ≤ C| log λ|,
so that the limit as λ→ 1 is uniform in s, x. Now, rewrite (3.5) as
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(2πi− log λ)−se2πix + eπis(2πi+ log λ)−se−2πix

=
1

Γ(s)

∞∑
n=1

µ(n)

ns
λ{nx}/n

(
Φ(λ1/n, 1− s, {nx})− λ−{nx}/nΓ(s)ns(− log λ)−s

)
and note that |λ{nx}/n| ≤ max(1, |λ|), so that the series

1

Γ(s)

∞∑
n=1

µ(n)

ns
λ{nx}/n,

1

Γ(s)

∞∑
n=1

µ(n)

ns
λ{nx}/nζ(1− s, {nx})

are both normally convergent for (λ, s, x) ∈ Λ× S × [0, 1], and hence taking
the limit as λ→ 1 in (3.5) yields

(2πi)−s
(
e2πix + eπise−2πix

)
=

1

Γ(s)

∞∑
n=1

µ(n)

ns
ζ(1− s, {nx})

which is equivalent to (5.1). �

Remark 3. Note that (5.1) has the equivalent form

2(2π)−sΓ(s) cos
(
π
(s

2
− 2x

))
=

∞∑
n=1

µ(n)

ns
ζ(1− s, {nx}). (5.2)

Corollary 11. For k = 2, 3, 4, . . . and x ∈ [0, 1], we have

cos

(
πk

2
− 2πx

)
= −(2π)k

2(k!)

∞∑
n=1

µ(n)

nk
Bk({nx}),

where Bk(x) is the kth Bernoulli polynomial. Equivalently, separating ac-
cording to the parity of k, we obtain the pair of formulas ((2.4) and (2.5)
of [12])

cos(2πx) = (−1)k−1
(2π)2k

2(2k)!

∞∑
n=1

µ(n)

n2k
B2k({nx}),

sin(2πx) = (−1)k−1
(2π)2k+1

2(2k + 1)!

∞∑
n=1

µ(n)

n2k+1
B2k+1({nx}).

Proof. Let s = k with k ∈ N, k > 1, in (5.1). The Hurwitz zeta function
then evaluates to

ζ(1− k, x) = −Bk(x)

k
for 0 ≤ x ≤ 1. �

6. A Functional Equation

Since
∑∞

n=1
µ(n)
ns = ζ(s)−1, for x = 1 and Re s > 1, the expansion (5.1)

and its equivalent (5.2) reduce to the functional equation of the Riemann
zeta function, in the form

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s)

(using the reflection formula for the gamma function yields a similar relation
but with the sine function).

In general, (5.1) may be regarded as a combination of the functional
equation with the discrete dynamical system of fractional parts of multiples
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of a real number, which is conjugate to the rotations of the circle. Recall that
{nx} is equidistributed in [0, 1] when x is irrational, while it is a periodic
sequence when x is rational.

For example, consider the Dirichlet series

ζ∗(m, r, s) =
∑

n≡r mod m

µ(n)

ns
, Re s > 1,

for r,m ∈ N with 1 ≤ r ≤ m. If x ∈ Q has denominator equal to m, then
{nx} is m-periodic and for Re s > 1 we can group terms in (5.2) according
to their residue modulo m. We obtain

2(2π)−sΓ(s) cos
(
π
(s

2
− 2x

))
=

m∑
r=1

ζ∗(m, r, s)ζ(1− s, {rx}),

which again reduces to the functional equation for ζ(s) for r = m = 1.
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