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Abstract. Dunkl theory on the real line involves some tools such as the Dunkl
derivative

Λαf(x) =
d

dx
f(x) +

2α+ 1

2

f(x)− f(−x)

x
or the Dunkl exponential Eα(z) that is defined in terms of the Bessel functions.

Taking α = −1/2 we get Λ−1/2 = d/dx and E−1/2(z) = ez , hence, the classic
derivative and exponential are particular cases. In recent years, some papers

have generalized, in a Dunkl sense, number theoretic concepts such as Appell

sequences, and then they are called Appell-Dunkl sequences; in particular,
the so called Bernoulli-Dunkl and Euler-Dunkl polynomials have been defined,

among others. Here we generalize, also in a Dunkl sense, some Hurwitz or

Lerch zeta functions such as ζ(s, x) =
∑∞

n=0 1/(n + x)s and, in addition, we
get properties that relate those functions, extended to the s-complex plane

and evaluated at negative integers s, with Bernoulli-Dunkl and Euler-Dunkl
polynomials. One of the results we get for the “Dunkl zeta function” ζα(s) is

ζα(1− s) = Γ(s) cos
(πs

2

) ∞∑
n=1

1

ssn
, Re(s) > 1

(where sn are the positive zeros of the Bessel function Jα+1(x)). This equation

provides a generalization of the reflection formula of the Riemann zeta func-
tion, where the function

∑∞
n=1 1/s

s
n is playing a similar role as

∑∞
n=1 1/n

s.

1. Introduction

An Appell sequence {Pn(x)}∞n=0 is a sequence of polynomials defined by a Taylor
generating expansion

(1.1) A(t)ext =

∞∑
n=0

Pn(x)
tn

n!
,

where A(t) is a function analytic at t = 0 with A(0) ̸= 0. Since the exponential
function ex is invariant under the differential operator d/dx, it is easy to show that
Pn(x) is a polynomial of degree n and P ′

n(x) = nPn−1(x). Typical examples of
Appell sequences are the Bernoulli polynomials {Bn(x)}∞n=0, the Euler polynomials
{En(x)}∞n=0, or the probabilistic Hermite polynomials {Hen(x)}∞n=0 that are defined

by taking A(t) = text

et−1 ,
2ext

et+1 or e−t2/2 respectively (a slight variation is the physi-

cists’ Hermite polynomials {Hn(x)}∞n=0 defined by e−t2e2xt =
∑∞

n=0 Hn(x)
tn

n! ).
The Appell sequences of polynomials have been extended in many ways. One

of them consists of changing the derivative operator by operators in the context of
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Dunkl. In [16] and [13], the derivative operator was replaced by

Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
,

where α > −1 is a fixed parameter (see [17, 29]); observe that the case α = −1/2
recovers the classical case Λ−1/2 = d

dx . In that setting, an Appell-Dunkl sequence
{Pn}∞n=0 is a sequence of polynomials that satisfies

ΛαPn(x) =
(
n+ (α+ 1/2)(1− (−1)n)

)
Pn−1(x)

(instead of ΛαPn = nPn−1, the previous definition with a different multiplicative
constant in the place of n is used for convenience with the notation). The Appell-
Dunkl sequences can be written as a generating expansion similar to (1.1), namely

A(t)Eα(xt) =

∞∑
n=0

Pn(x)
tn

γn,α
,

for a certain function Eα and certain constants γn,α (with E−1/2 = exp and
γn,−1/2 = n!); we will see the details in Section 2. The first Appell-Dunkl se-
quence of polynomials studied in the mathematical literature were the so called
generalized Hermite polynomials; see [29]. In recent years, also the Bernoulli and
the Euler polynomials (among other Appell families) have been extended to the
Dunkl context; see, for instance, [13, 14, 18]. These polynomials have proved to
be very useful to extend some classical properties to a more general context. For
instance, the Bernoulli polynomials can be used to find the values of the series∑∞

m=1 1/m
2k, and the Bernoulli-Dunkl polynomials can be used to compute the

Rayleigh series
∑∞

m=1 1/s
2k
m , where {sm}∞m=1 are the positive zeros of a Bessel

function (note that, essentially, the sine function is a particular case of a Bessel
function, and the positive zeros of the sine are sm = πm, m ≥ 1, so in this case the
corresponding Rayleigh series reduces to

∑∞
m=1 1/m

2k).
In the classical case, there is a large class of Appell sequences {Pn(x)}∞n=0 for

which there is a function H(s, x), entire in s for fixed x with Rex > 0, and satis-
fying H(−n, x) = Pn(x) for n = 0, 1, 2, . . . For example, in the case of Bernoulli
polynomials, H is essentially the Hurwitz zeta function ζ(s, x) that for Re(s) > 1
is defined as ζ(s, x) =

∑∞
m=0(m + x)−s, and whose analytic extension to the s-

complex plane satisfies −nζ(1−n, x) = Bn(x). Another well-known example is the
Apostol-Bernoulli polynomials, whose corresponding function H is, essentially, the
Lerch transcendent function (see [3]). More examples can be found in [8, 9, 22].
The papers [24, 25] show how this can be done, in a very general way, with the help
of the Mellin transform

∫∞
0

f(t)ts−1 dt, and provide many additional examples.
The aim of this paper is to show how to do it in the context of Appell-Dunkl

sequences. Here, there are two important difficulties. The first one is the size of
Eα(t) when t → ±∞. Although Eα(t) is a generalization of et to the Dunkl context,
it is not true that Eα(t) ∼ et when t → ±∞, but, roughly speaking, Eα(t) ∼ e|t|

(except for α = −1/2). In the above mentioned Mellin transform, a factor e−t in
f(t) greatly contributes to the convergence of the integral; however, this does not
happen with Eα(−t). In the second place, the classical translation f(x) 7→ f(x+m)
becomes a complicate operator in the Dunkl context, and this affects the summands
of type (x +m)−s of the classical Hurwitz zeta function, which are not so simple
in the new context.

The organization of this paper is as follows. In Section 2 we give the details
of the Dunkl context, and the precise definitions of the Appell-Dunkl sequences.
Section 3 gives the details of the Dunkl translation. In Section 4 we give a general
procedure, based on the Mellin transform, to extend an Appell-Dunkl sequence
{Pn(x)}∞n=0 to an analytic function H(s, x) such that H(−n, x) = Pn(x) (actually,
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it is a bit different); due to the above mentioned difficulties, this is not as gen-
eral as in the classical case studied in [24], is not valid in the whole range of x,
and requires some additional hypotheses. This section also studies several particu-
lar cases of Appell-Dunkl polynomials (Bernoulli-Dunkl, Euler-Dunkl, generalized
Bernoulli-Dunkl, generalized Euler-Dunkl, and generalized Hermite), giving their
corresponding Hurwitz-Dunkl zeta functions. In Section 5 we study some additional
properties of these Hurwitz-Dunkl zeta functions. In particular, we show how these
functions are connected with series of type

∑∞
m=1 1/j

s
m,α (where {jm,α}∞m=1 are the

positive zeros of the Bessel function of order α), by means of some formulas that
resembles Riemann’s functional equation for the classical ζ(s) function: if we use
ζα to denote the function associated to de Bernoulli-Dunkl polynomials, we have

ζα(1− s) = Γ(s) cos
(πs

2

) ∞∑
m=1

1

jsm,α+1

, Re(s) > 1

(see the details in that section). In Section 6 we study the conection of our results
with the analytic continuation to the s-complex plane of Zα(s) =

∑∞
m=1 1/j

s
m,α,

which was studied by Hawkins [21]. Finally, Section 7 includes some of the technical
proofs of the results presented in Section 5.

2. Appell-Dunkl sequences

For α > −1, let Jα denote the Bessel function of order α and, for complex values
of the variable z, let

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
= Γ(α+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)
= 0F1(α+ 1, z2/4)

(the function Iα is a small variation of the so-called modified Bessel function of
the first kind and order α, usually denoted by Iα; see [35] or [28]). Also, again for
z ∈ C, take

(2.1) Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z) = ez 1F1(α+ 1/2, 2α+ 2,−2z).

Following [17] for α ≥ −1/2 and [29] for α > −1, in the real line and with the
reflection group Z2, the Dunkl operator Λα is defined as

(2.2) Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
,

where f is a suitable function on R. If we want to specify that the variable involved
in the Dunkl operator is x, we will use Λα,x. For any λ ∈ C, we have

(2.3) ΛαEα(λx) = Λα,xEα(λx) = λEα(λx).

Let us note that, when α = −1/2, we have Λ−1/2 = d/dx and E−1/2(λx) = eλx.
From the definition, it is easy to check that

Eα(z) =

∞∑
n=0

zn

γn,α
, Iα(x) =

∞∑
n=0

x2n

γ2n,α
,

with

(2.4) γn,α =

{
22kk! (α+ 1)k, if n = 2k,

22k+1k! (α+ 1)k+1, if n = 2k + 1,

and where (a)n denotes the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
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Table 1. Scheme that describes the process to transform the defi-
nition of the classical Bernoulli and Euler polynomials into the def-
inition of the Bernoulli-Dunkl and Euler-Dunkl polynomials (and
their generalizations of order r). In the classical case, we use the
“basic” interval [0, 1], the function exp and the factorial n!; in the
Dunkl case with α > −1, we must use the “basic” interval [−1, 1],
the function Eα and γn,α.

Bernoulli 7→ Bernoulli-Dunkl Euler 7→ Euler-Dunkl

Classical text

et−1 =
∞∑

n=0
Bn(x)

tn

n!
2ext

et+1 =
∞∑

n=0
En(x)

tn

n!

x 7→ x+1
2

text/2et/2

et−1 =
∞∑

n=0
Bn(

x+1
2 ) t

n

n!
2ext/2et/2

et+1 =
∞∑

n=0
En(

x+1
2 ) t

n

n!

t 7→ 2t 2textet

e2t−1 =
∞∑

n=0
Bn(

x+1
2 ) 2

ntn

n!
2extet

e2t+1 =
∞∑

n=0
En(

x+1
2 ) 2

ntn

n!

rewrite 2text

et−e−t =
∞∑

n=0
Bn(

x+1
2 ) 2

ntn

n!
2ext

et+e−t =
∞∑

n=0
En(

x+1
2 ) 2

ntn

n!

exp 7→ Eα
2tEα(xt)

Eα(t)−Eα(−t) =
∞∑

n=0
B∗

n(
x+1
2 ) 2

ntn

γn,α

2Eα(xt)
Eα(t)+Eα(−t) =

∞∑
n=0

E∗
n(

x+1
2 ) 2

ntn

γn,α

rewrite 2(α+1)Eα(xt)
Iα+1(t)

=
∞∑

n=0
B∗

n(
x+1
2 ) 2

ntn

γn,α

Eα(xt)
Iα(t) =

∞∑
n=0

E∗
n(

x+1
2 ) 2

ntn

γn,α

Dunkl Eα(xt)
Iα+1(t)

=
∞∑

n=0
Bn,α(x)

tn

γn,α

Eα(xt)
Iα(t) =

∞∑
n=0

En,α(x)
tn

γn,α

Generalized Eα(xt)
(Iα+1(t))r

=
∞∑

n=0
B

(r)
n,α(x)

tn

γn,α

Eα(xt)
(Iα(t))r =

∞∑
n=0

E
(r)
n,α(x)

tn

γn,α

(with a a non-negative integer); of course, γn,−1/2 = n!. From (2.4), we have

(2.5)
γn,α

γn−1,α
= n+ (α+ 1/2)(1− (−1)n) =: θn,α.

We also define (
n

j

)
α

=
γn,α

γj,αγn−j,α
,

which becomes the ordinary binomial coefficient in the case α = −1/2. To simplify
the notation we sometimes write γn = γn,α and θn = θn,α. For each function A(t)
analytic in a neighborhood of t = 0 and with A(0) ̸= 0, we define an Appell-Dunkl
sequence {Pn(x)}∞n=0 by means of the generating function

(2.6) A(t)Eα(xt) =

∞∑
n=0

Pn(x)
tn

γn

(additionally to the papers [2, 29] cited in the introduction, Appell-Dunkl sequences
have been also considered, for instance, in [10, 11, 16]). From this definition, it is not
difficult to prove that Pn,α(x) is a polynomial of degree n and, moreover, ΛαPn(x) =
γn

γn−1
Pn−1(x) (when α = −1/2, this becomes the classical P ′

n(x) = nPn−1(x) in the

Appell sequences).
Besides the generalized Hermite polynomials that, in the Dunkl context, were

studied in [29], we will use the so called Bernoulli-Dunkl polynomials, Euler-Dunkl
polynomials, and their corresponding generalization with an extra parameter.
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2.1. Bernoulli-Dunkl polynomials. Following [13], we define the Bernoulli-Dunkl
polynomials {Bn,α}∞n=0 by means of the generating function

(2.7)
Eα(xt)

Iα+1(t)
=

∞∑
n=0

Bn,α(x)

γn,α
tn.

To simplify the notation we sometimes write Bn = Bn,α (and γn = γn,α).
The first few Bernoulli-Dunkl polynomials are

B0(x) = 1, B1(x) = x,

B2(x) = x2 − α+ 1

α+ 2
, B3(x) = x3 − x,

B4(x) = x4 − 2x2 +
(α+ 4)(α+ 1)

(α+ 3)(α+ 2)
, B5(x) = x5 − 2

α+ 3

α+ 2
x3 +

α+ 4

α+ 2
x.

Some of the properties of these polynomials can be seen in [13].
Before we continue, let us explain why we use “Bernoulli-Dunkl” to name these

polynomials. The first reason is that

(2.8)
Bn,−1/2(2x− 1)

2n
= Bn(x),

where {Bn}∞n=0 are the Bernoulli polynomials (for the definition and properties
of the Bernoulli polynomials see, for instance, [15] or [20]). Indeed, taking into
account that

E−1/2(x) = ex, I1/2(x) =
sin(ix)

ix
,

the relation (2.8) can be deduced substituting x for 2x−1, t for t/2 and α for −1/2
in the definition (2.7). Here, we must note that the change x 7→ 2x − 1 in (2.8)
is very natural, because in the reflection group Z2, which is key in the standard
definition of the Dunkl operator (2.2), the symmetry plays a important role, and
thus the role of x = 0 and x = 1 on the classical Bernoulli polynomials must be
translated to the points −1 and 1. In fact, this is the process that is explained in
Table 1 (extracted from [14]) to define Bernoulli-Dunkl polynomials as an extension
to the Dunkl case of the classical Bernoulli polynomials. As is shown in the table,
this process can be used for other classical polynomials.

Another reason to use the name Bernoulli-Dunkl polynomials for Bn is the role
that they play in certain sums involving the zeros of the Bessel functions (see [13]),
which is a generalization of what happens in the case α = −1/2 with the Bernoulli
polynomials. This will appear again later in this paper; see Corollary 5.6.

2.2. Generalized Bernoulli-Dunkl polynomials. In the classical case, the gen-

eralized Bernoulli polynomials of order r are {B(r)
n (x)}∞n=0, defined by(

t

et − 1

)r

ext =

∞∑
n=0

B(r)
n (x)

tn

n!
.

They were introduced by Nørlund in 1922 (see [26, 27]).
When α > −1 we can also define the generalized Bernoulli-Dunkl polynomials

{B(r)
n,α}∞n=0 (or B

(r)
n ) of order r by means of the generating function

(2.9)
Eα(xt)

Iα+1(t)r
=

∞∑
n=0

B
(r)
n,α(x)

γn,α
tn.

In this case, the generalized Bernoulli polynomials and the generalized Bernoulli-
Dunkl polynomials are related by

B
(r)
n,−1/2(2x− r) = 2nB(r)

n (x).
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In the recent paper [19] we can see how the polynomials B
(r)
n,α can be used in the

context of Appell-Dunkl discrete sequences, in the same way that B
(r)
n appear in

the context of Appell discrete sequences and falling factorial polynomials.

2.3. Euler-Dunkl polynomials. We define the Euler-Dunkl polynomials {En,α}∞n=0

of order α > −1 by means of the generating function

Eα(xt)

Iα(t)
=

∞∑
n=0

En,α(x)

γn,α
tn.

As usual, we will sometimes denote it only by En, without specifying α. The first
few Euler-Dunkl polynomials are

E0(x) = 1, E1(x) = x,

E2(x) = x2 − 1, E3(x) = x3 − α+ 2

α+ 1
x,

E4(x) = x4 − 2
α+ 2

α+ 1
x2 +

α+ 3

α+ 1
, E5(x) = x5 − 2

α+ 3

α+ 1
x3 +

(α+ 3)2

(α+ 1)2
x.

These polynomials are related to the classical Euler polynomials {En}∞n=0 by

(2.10)
En,−1/2(2x− 1)

2n
= En(x)

(for the definition and properties of the Euler polynomials see, for instance, [15]).
This process has been sketched in Table 1.

2.4. Generalized Euler-Dunkl polynomials. When α > −1 we can also define

the generalized Euler-Dunkl polynomials {E(r)
n,α}∞n=0 (or E

(r)
n ) of order r by means

of the generating function

Eα(xt)

Iα(t)r
=

∞∑
n=0

E
(r)
n,α(x)

γn,α
tn.

In the classical case, the generalized Euler polynomials of order r are {E(r)
n (x)}∞n=0

defined by (
2

et + 1

)r

ext =

∞∑
n=0

E(r)
n (x)

tn

n!
.

The generalized Euler polynomials and the generalized Euler-Dunkl polynomials
are related by

E
(r)
n,−1/2(2x− r) = 2nE(r)

n (x).

3. The Dunkl translation: definition and some properties

The Dunkl translation operator of a function f is defined by

(3.1) τyf(x) =

∞∑
n=0

Λn
αf(x)

yn

γn,α
, α > −1,

where Λ0
α is the identity operator and Λn+1

α = Λα(Λ
n
α). As in the case of Λα,x = Λα,

we sometimes use τy,x if we want to indicate that the translation τy is acting on a
function whose variable is x. In the case α = −1/2, the translation τyf is just the
Taylor expansion of a function f around a fixed point x, that is,

f(x+ y) =

∞∑
n=0

f (n)(x)
yn

n!
.

Of course, definition (3.1) is valid only for C∞ functions, and assuming also that
the series on the right is convergent. In particular, this can be guaranteed when
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f is a polynomial, because the operator Λα applied to a polynomial of degree k
generates a polynomial of degree k− 1, so the series (3.1) has only a finite number
of nonzero summands. Other properties of the translation operator τy can be found
in [29], [31], [34] and [23], including some integral expressions that can be applied
to a wider class of functions than (3.1).

From the definition (3.1), it is clear that τy commutes with the Dunkl opera-
tor Λα. In what follows, we are going to see some other basic properties. It is not
difficult to prove these properties, and here we state most of them without a proof;
in most cases, more details can be found in [14].

A nice property of the Dunkl translation, which resembles the Newton binomial
(x+ y)n =

∑n
k=0

(
n
k

)
ykxn−k, is the following:

(3.2) τy((·)n)(x) =
n∑

k=0

(
n

k

)
α

ykxn−k.

More generally, and in relation to the Appell-Dunkl sequences {Pn(x)}∞n=0 defined
as in (2.6), the Dunkl translation satisfies

τy(Pk)(x) =
k∑

j=0

(
k

j

)
α

Pj(x)y
k−j ,

which in the classical case α = −1/2 becomes Pk(x+ y) =
∑k

j=0

(
k
j

)
Pj(x)y

k−j .

Another important property is the fact

(3.3) τyf(x) = τxf(y).

This is a direct consequence of the above mentioned integral expressions for the
Dunkl translation. Moreover, at least for polynomials, it can be easily checked
starting from (3.1) using the linearity of τy and its behaviour on f(x) = xn, n =
0, 1, 2, . . . Indeed, using

(
n
k

)
α
=
(

n
n−k

)
α
and (3.2) we have τy((·)n)(x) = τx((·)n)(y),

and this proves (3.3).
The inverse operator of τy defined as in (3.1) is

(3.4) τ−1
y f(x) =

∞∑
n=0

cny
n

γn,α
Λn
αf(x),

where c0 = 1 and cn for n ≥ 1 is defined by the recurrence cn = −
∑n−1

j=0

(
n
j

)
α
cj

(a proof can be found in [14, Lemma 4.4]). The operator τ−1
y is not, in general, a

translation (in particular, it is not τ−y except when α = −1/2).
Moreover, it is not difficult to check that the operators of type τa, τb, τ

−1
c and

τ−1
d commute; for instance, τaτb = τbτa, τ

−1
c τ−1

d = τ−1
d τ−1

c , τaτ
−1
c = τ−1

c τa and so
on. Note that, in general (except when α = −1/2), τaτb is not a new translation,
even if a = b.

In relation to Eα, the Dunkl translation has a nice behaviour that resembles the
classical et(x+y) = etxety, namely

(3.5) τy(Eα(t·))(x) = Eα(tx)Eα(ty).

Indeed, using Λα,x(Eα(tx)) = tEα(tx) (this is d
dxe

tx = tetx in the classical case),
the proof of (3.5) is a simple consequence of the definition (3.1):

τy
(
Eα(t·)

)
(x) =

∞∑
m=0

Λm
α,xEα(tx)

ym

γm
=

∞∑
m=0

Eα(tx)
(ty)m

γm
= Eα(tx)Eα(ty).

It is also easy to check that

τ−1
y

(
Eα(t·)

)
(x) = Eα(tx)/Eα(ty).
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From these relations, we can easily state the following lemmas, which we will use
later in this paper:

Lemma 3.1. Let τy be the Dunkl translation operator. Then the identities

τny
(
Eα(t·)

)
(x) = Eα(tx)Eα(ty)

n

and

τ−n
y

(
Eα(t·)

)
(x) = Eα(tx)/Eα(ty)

n

holds for all n = 0, 1, 2, 3, . . .

Lemma 3.2. Let τy and τz be Dunkl translations and let n and m be two non-
negative integers. Then

τny τ
−m
z

(
Eα(t·)

)
= Eα(t·)Eα(ty)

n/Eα(tz)
m.

There are still a couple of technical lemmas about the behaviour of the Dunkl
translation which we will use later in the paper (Subsections 4.1 and 4.2). We will
apply these results only to functions like Eα, so we can use the Dunkl translation
operator (3.1), which is valid only for functions in C∞. Then, we can assume in
the lemmas and in the proofs that the functions are in C∞ (this could be weakened
using integral expressions for the translation).

Lemma 3.3. Let Λα,x be the Dunkl operator acting over the variable x and let
g(t, x) be a function such as the integral

∫∞
0

g(t, x) dt converges and Λα,xg(t, x)
exists. Then,

Λα,x

∫ ∞

0

g(t, x) dt =

∫ ∞

0

Λα,xg(t, x) dt.

Proof. Using the definition of Λα,x, we have

Λα,x

∫ ∞

0

g(t, x) dt =
d

dx

∫ ∞

0

g(t, x) dt+
2α+ 1

2

∫∞
0

g(t, x) dt−
∫∞
0

g(−t, x) dt

x

=

∫ ∞

0

d

dx
g(t, x) dt+

2α+ 1

2

∫ ∞

0

g(t, x)− g(−t, x)

x
dt

=

∫ ∞

0

Λα,xg(t, x) dt. □

Lemma 3.4. Let g(t, x) be a function in C∞ such that the integral
∫∞
0

g(t, x) dt
converges, and let τy,x be the Dunkl translation operator. Then

τy,x

∫ ∞

0

g(t, x) dt =

∫ ∞

0

τy,xg(t, x) dt.

Proof. By the previous lemma,

τy,x

∫ ∞

0

g(t, x) dt =

∞∑
n=0

Λn
α,x

(∫ ∞

0

g(t, x) dt
)yn
γn

=

∞∑
n=0

(∫ ∞

0

Λn
α,xg(t, x) dt

)yn
γn

=

∫ ∞

0

∞∑
n=0

Λn
α,xg(t, x)

yn

γn
dt =

∫ ∞

0

τy,xg(t, x) dt. □

4. The Mellin transform to get Appell-Dunkl polynomials as values
of Hurwitz-Dunkl zeta functions

In this section, we define a special function,H(s, x), which generalizes the Appell-
Dunkl polynomials in such way that H(−n, x) will give us the n-th Appell-Dunkl
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polynomial Pn(x) multiplied by some constant. We express H(s, x) in terms of the
well-known Mellin transform

M(f)(s) =
1

Γ(s)

∫ ∞

0

f(t)ts−1 dt.

Here we have a very general result, and later we study particular cases of gen-
erating functions that involve Bernoulli-Dunkl and Euler-Dunkl polynomials (and
also their respective generalized families) and obtain particular special functions,
H(s, x) for each one. In Theorem 4.3 we relate this H(s, x) with a function which
we call Hurwitz-Dunkl zeta function, ζα(s, x) (see Definition 4.4), because it plays a
similar role as the traditional Hurwitz zeta function ζ(s, x) =

∑∞
n=0 1/(x+n)s and,

in addition, it generalizes ζ(s, x) when changing α = −1/2, x 7→ 2x−1 and t 7→ t/2,
as we explain with more detail later. On the other hand, we obtain a similar func-
tion in the Euler-Dunkl case, ζE,α(s, x) (see Definition 4.8), which generalizes the
so-called Hurwitz zeta function of Euler type, ζE(s, x) =

∑∞
n=0(−1)n/(x + n)s.

Note that in this theorem we could assume k = 0 (which corresponds to the usual
case A(0) ̸= 0), but we allow a more general case.

Theorem 4.1. Let {Pn(x)}∞n=0 be an Appell-Dunkl sequence with generating func-
tion G(x, t) = A(t)Eα(xt) and suppose that A(t) has a zero of order k at t = 0.
We also assume that, for all x ∈ (a, b), the integral

(4.1) H(s, x) =
1

Γ(s)

∫ ∞

0

G(x,−t) ts−1 dt =
1

Γ(s)

∫ ∞

0

A(−t)Eα(−xt)ts−1 dt

converges in the right plane Re(s) > −k to a holomophic function. Then, H(s, x)
may be analytically continued to an entire function of s satisfying

H(−n, x) =
n!

γn,α
Pn(x), n = 0, 1, 2, . . .

Proof. Suppose H(s, x) converges in the right plane Re(s) > −k for all x ∈ (a, b),
as was stated in the hypothesis of the theorem. Given N ∈ N ∪ {0} with N ≥ k,
the Mellin integral can be analytically continued to the half plane Re(s) > −N − 1
as follows. Fix r with 0 < r < R and x with a < x < b and separate the complete
integral into three parts:

H(s, x) =
1

Γ(s)

∫ ∞

r

A(−t)Eα(−xt)ts−1 dt

+
1

Γ(s)

∫ r

0

(
A(−t)Eα(−xt)−

N∑
n=0

Pn(x)
(−t)n

γn,α

)
ts−1 dt

+
1

Γ(s)

∫ r

0

N∑
n=0

Pn(x)
(−t)n

γn,α
ts−1 dt.

In the first part, the integrand is Eα(−xt)A(−t)ts−1. Since a < x < b, it converges
when t → ∞, hence the integral is an entire function of s, dominated on arbitrary
closed vertical strips of finite width. We may conclude that the integral is an entire
function of s.

In the second part, the integrand is the product of ts−1 with the tail of the
generating series,

∑∞
n=N+1 Pn(x)(−t)n/γn,α, which, since |t| ≤ r < R, is O(tN+1)

at t = 0. Thus, for Re(s) > −N−1, the complete integrand is O(tN+Re(s)) at t = 0
(with the order constant depending only on x) and hence is integrable on [0, r] and
dominated on closed vertical sub-strips of finite width of this section of the s-plane.
Therefore the second integral is a holomorphic function of s for Re(s) > −N − 1.
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In the third part, we have

1

Γ(s)

∫ r

0

N∑
n=0

Pn(x)
(−t)n

γn,α
ts−1 dt =

1

Γ(s)

N∑
n=0

Pn(x)
(−1)n

γn,α

∫ r

0

ts+n−1 dt

=
1

Γ(s)

N∑
n=0

Pn(x)
(−1)n

γn,α

rs+n

s+ n
,

which is an entire function of s because of the simple pole of Γ(s) at s = −n cancels
the simple zero of s+ n for n = 0, 1, 2, . . . , leaving the non-zero residue (−1)n/n!.

Finally, if s = −n with 0 ≤ n ≤ N , the 1/Γ(s) factors in front of the first
two terms vanish, as well as every term in the sum except the one corresponding
to n, where the remaining value is Pn(x)n!/γn,α because of the residue of Γ(s) at
−n = 0, 1, 2, . . . Thus H(−n, x) = Pn(x)n!/γn,α for these n and, as N ≥ k was
arbitrary, this completes the proof. □

The previous theorem is very general but needs the convergence of (4.1). In
the classical case α = −1/2 stated in [24], we have E−1/2(−t) = e−t, which tends
very quickly to 0 when t → ∞. This allows us to prove the convergence of (4.1)
with very weak hypothesis for A(t). For instance, when G(x, t) is the generating
function for the Bernoulli polynomials, (4.1) becomes

H(s, x) =
1

Γ(s)

∫ ∞

0

G(x,−t) ts−1 dt =
1

Γ(s)

∫ ∞

0

t

1− e−t
e−xtts−1 dt

and it is clear that this integral is convergent for every x > 0 when s is in right
half-plane Re(s) > 0.

But this is no longer true when α ̸= −1/2. Actually, let us recall that Eα(z) =
ez 1F1(α + 1/2, 2α + 2,−2z). For proving the convergence of the integral we need
to estimate the size of the integrand in (4.1); in particular, the size of the factor
Eα(−xt).

With this aim, let us use the asymptotic expansions of the Kummer confluent
hypergeometric function 1F1(·, ·, z) for |z| → ∞ in the sectors

S+ = {z ∈ C : −π/2 < arg(z) < 3π/2} ,
S− = {z ∈ C : −3π/2 < arg(z) < π/2}

(see, for instance [30, p. 128]). In our case, these asymptotic expansions are, re-
spectively, of the form

(4.2)

1F1

(
2α+ 1

2
, 2α+ 2, z

)
=

Γ(2α+ 2)

Γ( 2α+1
2 )

ezz−α−3/2

(
1 +O

( 1

|z|

))
+

Γ(2α+ 2)

Γ( 2α+3
2 )

e±(2α+1)iπ/2z−α−1/2

(
1 +O

( 1

|z|

))
.

Notice that, in the case α = −1/2, the coefficient of the first summand is Γ(1)/Γ(0) =
0, so the first summand vanishes. Otherwise (for simplicity, let us assume here that
the variable z is real), the “exponential parts” for Eα(z) = ez 1F1(α + 1/2, 2α +
2,−2z) in (4.2) appears as e−z in the first summand, and as ez in the second sum-
mand. Then, the asymptotic size e−t (for t → ∞) of the classical case α = −1/2
becomes something similar to Eα(−t) ∼ e|t| for α ̸= −1/2. In this way, instead of
“a help” to prove the convergence of (4.1), the factor Eα(−xt) is a handicap, and
a further analysis will be necessary to state the convergence of (4.1).

On the other hand, we would like to rewrite the function H(s, x) that appears
in Theorem 4.1 as a series, just as it occurs in the classical zeta function.
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For the generating function of the Bernoulli polynomials, the Mellin transform
of the G(x,−t) is, for x > 0 and Re(s) > 0,

(4.3)

H(s, x) =
1

Γ(s)

∫ ∞

0

G(x,−t) e−xt ts−1 dt =
1

Γ(s)

∫ ∞

0

t

1− e−t
e−xt ts−1 dt

=
1

Γ(s)

∫ ∞

0

∞∑
n=0

e−nt e−xt ts dt =
1

Γ(s)

∞∑
n=0

∫ ∞

0

e−(n+x)t ts dt

=
Γ(s+ 1)

Γ(s)

∞∑
n=0

1

(n+ x)s+1
= s

∞∑
n=0

1

(n+ x)s+1

(a similar method can be followed for the Euler polynomials, as well as other Appell
sequences; see, for instance, [24]). Then, H(s, x) can be given, for x > 0 and
Re(s) > 0, in terms of the Hurwitz zeta function

(4.4) ζ(s, x) =

∞∑
n=0

1

(x+ n)s
,

so H(s, x) is the analytic continuation (in the variable s) of sζ(s+1, x) for ζ defined
in (4.4) by means of a series that converges in a certain domain. Or, with the same
meaning, we can say that the analytic continuation of the function ζ(s, x) defined
in (4.4) is H(s− 1, x)/(s− 1).

Let us finally note that, in the previous example related to the Bernoulli polyno-
mials, A(−t) was written, essentially, as a geometric series

∑∞
n=0 (e

−t)
n
, and then

H(s, x) was computed as a series where there was a way to compute each summand.
The analogous behavior for the Dunkl case is much more cumbersome. Not only is
it not possible to express the integrals by means of well-known standard functions,
but also the summands 1/(x + n) of the series become Dunkl translations instead
of ordinary translations.

4.1. The Bernoulli-Dunkl case. To adapt Theorem 4.1 to the case of the Bernoulli-
Dunkl polynomials defined in (2.7), let us first note that Iα(t) is an even function,
so the denominator in the left hand side of (2.7) can be written as

(4.5) Iα+1(t) =
α+ 1

t
(Eα(t)− Eα(−t)).

Then, concerning (4.1) for the Bernoulli-Dunkl case, we have the following:

Lemma 4.2. For α > −1 and x ∈ (−1, 1), the integral

H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Iα+1(t)
ts−1 dt =

1

(α+ 1)Γ(s)

∫ ∞

0

Eα(−xt)

Eα(t)− Eα(−t)
ts dt

converges in the right plane Re(s) > 0 to a holomorphic function.

Proof. The convergence of the integral for t near 0 is clear, so let us analyse what
happens when t → ∞. By using (4.2), we have, for |z| → ∞,

Eα(−z) = e−z
1F1

(
2α+ 1

2
, 2α+ 2, 2z

)
=

Γ(2α+ 2)

Γ( 2α+1
2 )

ez(2z)−α−3/2

(
1 +O

( 1

|z|

))
+

Γ(2α+ 2)

Γ( 2α+3
2 )

e±(2α+1)iπ/2e−z(2z)−α−1/2

(
1 +O

( 1

|z|

))
.

For simplicity, let us write it as

Eα(−z) = C1e
zz−α−3/2

(
1 +O

( 1

|z|

))
+ C±

2 e−zz−α−1/2

(
1 +O

( 1

|z|

))
.
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When α = −1/2 then C1 = 0; but this case is well-known and we do not need to
analyse it. Then, let us assume that α ̸= −1/2.

Now, let us suppose that x > 0. Then we have, for t → ∞ (without lost of
generality we can assume |xt| > 1),

(4.6)
∣∣∣ Eα(−xt)

Eα(t)− Eα(−t)
ts
∣∣∣ = C3

ext(xt)−α−3/2tRe(s)(1 +O(|xt|−1))

ett−α−1/2(1 +O(|t|−1))
;

this guarantees the convergence of the integral for 0 ≤ x < 1. For x < 0 we have

(4.7)
∣∣∣ Eα(−xt)

Eα(t)− Eα(−t)
ts
∣∣∣ = C4

e|xt||xt|−α−1/2tRe(s)(1 +O(|xt|−1))

ett−α−1/2(1 +O(|t|−1))
,

and this guarantees the convergence of the integral for −1 < x ≤ 0.
By standard arguments on differentiation of parametric integrals, together with

the above estimates, the function H(s, x) is holomorphic on s. □

The above lemma proves the hypothesis of Theorem 4.1 for x ∈ (−1, 1). Then,
we have the following:

Theorem 4.3. Let Eα(xt)/Iα+1(t) be the generating function of Bernoulli-Dunkl
polynomials. Then for x ∈ (−1, 1), the integral
(4.8)

H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Iα+1(−t)
ts−1 dt =

1

(α+ 1)Γ(s)

∫ ∞

0

Eα(−xt)

Eα(t)− Eα(−t)
ts dt

converges in the right plane Re(s) > 0 to a holomorphic function, which may be
analytically continued to an entire function of s satisfying

H(−n, x) =
n!

γn,α
Bn,α(x), n = 0, 1, 2, . . .

The next step is to try to write H(s, x), for Re(s) > 0, as a kind of Hurwitz
function similar to (4.4), as in the classical Bernoulli case.

In order to compute H(s, x) we may write A(t) = 1/Iα+1(t) as a geometric
series. To do that, we use the fact that Iα+1(t) is an even function, and we use the
definition of Eα(t). By (4.5) we have that

A(t) =
1

Iα+1(t)
=

t

α+ 1

1

Eα(t)

1

1− Eα(−t)
Eα(t)

=
t

α+ 1

1

Eα(t)

∞∑
n=0

(
Eα(−t)

Eα(t)

)n

.

This is valid for all t ≥ 0 and it is enough for our purposes since we just need
convergence for t ∈ [0,∞).

Finally, we have

(4.9)

H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Iα+1(t)
ts−1 dt

=
1

Γ(s)

1

α+ 1

∞∑
n=0

∫ ∞

0

Eα(−xt)

Eα(t)

(
Eα(−t)

Eα(t)

)n

ts dt.

Notice that, in a similar way to the proof of Lemma 4.2, we can easily check that
all the integrals in (4.9) are convergent for x ∈ (−1, 1), and the interchange of the
sum and the integral is justified. However, (4.9) is more complicated than (4.3);
the integrals cannot be written in a closed form and we don’t obtain something as
simple as (4.4).

In any case, we can define a kind of Hurwitz function related to the Bernoulli-
Dunkl case in the following way (observe that, with the notation of (4.9) and (4.9),
now we are changing s to s− 1):
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Definition 4.4. For x ∈ (−1, 1) and Re(s) > 1, we define the Hurwitz-Dunkl zeta
function as

(4.10) ζα(s, x) =
1

Γ(s)

∞∑
n=0

∫ ∞

0

Eα(−xt)

Eα(t)

(
Eα(−t)

Eα(t)

)n

ts−1 dt.

Also, we call

(4.11) dα(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Eα(t)
ts−1 dt

the basic Hurwitz-Dunkl term.

Then we have, for x ∈ (−1, 1) and Re(s) > 0,

(4.12) H(s, x) =
s

α+ 1
ζα(s+ 1, x),

so we can say that the function H(s, x) of Theorem 4.1 (which exists for s ∈ C)
is the analytic extension to the s-complex plane of the function s

α+1 ζα(s + 1, x);
equivalently, we can define the analytic extension of

(4.13) ζα(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Eα(t)− Eα(−t)
ts−1 dt, Re(s) > 1

(which corresponds to (4.10)) as

(4.14) ζα(s, x) =
α+ 1

s− 1
H(s− 1, x), s ∈ C,

valid for x ∈ (−1, 1).
Finally, let us see how it is possible to give an expression for ζα(s, x) (valid in

the half plane Re(s) > 1) which, in some sense, is very similar to the series (4.4)
for the classical Hurwitz zeta function ζ(s, x), where we have a series of summands
translated by means of x 7→ x + n. In the Dunkl case, we are going to find an
expression for ζα(s, x) that, in the place of classical translations, use the Dunkl
transform defined in (3.1).

The following theorem provides an expression of the Hurwitz-Dunkl zeta function
by using Dunkl translations. For simplicity, we have defined, here and in what
follows, a “symmetric translation” σ1 as

σ1 = τ1τ
−1
−1

(or σ1,x = τ1,xτ
−1
−1,x to clarify that it is applied to the variable x). Notice that the

composition of translation operators is commutative, and also the composition with
inverse translations (see its expression in (3.4)), so we can use σn

1 = τn1 τ
−n
−1 without

paying attention to the order of the operators.

Theorem 4.5. For Re(s) > 1, the Hurwitz-Dunkl zeta function can be written as

(4.15) ζα(s, x) =
1

Γ(s)

∞∑
n=0

σn
1

∫ ∞

0

Eα(−xt)

Eα(t)
ts−1 dt =

∞∑
n=0

σn
1 dα(s, x).

Proof of Theorem 4.5. From Lemma 3.1, we have that

τn1
(
Eα(−t·)

)
(x) = Eα(−xt)Eα(−t)n,

τ
−(n+1)
−1

(
Eα(−t·)

)
(x) = Eα(−xt)/Eα(t)

n+1
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hold. This can be easily proved as it was stated in Lemma 3.1 by changing Eα(t·)
for Eα(−t·). So, from Lemma 3.2 we can conclude that

τn1 τ
−(n+1)
−1

(
Eα(t·)

)
(−x) = τn1

(
Eα(−t·)
Eα(t)n+1

)
(x) = Eα(−xt)

Eα(−t)n

Eα(t)n+1

=
Eα(−xt)

Eα(t)

(
Eα(−t)

Eα(t)

)n

,

and Lemma 3.4 gives us that

H(s, x) =
1

Γ(s)

1

α+ 1

∞∑
n=0

∫ ∞

0

τn1 τ
−(n+1)
−1

(
Eα(−t·)

)
(x)ts dt

=
1

Γ(s)

1

α+ 1

∞∑
n=0

σn
1

∫ ∞

0

τ−1
−1

(
Eα(−t·)

)
(x)ts dt

=
1

Γ(s)

1

α+ 1

∞∑
n=0

σn
1

∫ ∞

0

Eα(−xt)

Eα(t)
ts dt,

and the proof is concluded. □

Let us see that the role of ζα(s, x) with the Mellin transform of Appell-Dunkl
sequences is the same as the role of ζ(s, x) with the Mellin transform of Appell se-
quences. In fact, it generalizes the traditional Hurwitz zeta function. To see that,
we observe that to transform Bernoulli polynomials into Bernoulli-Dunkl polyno-
mials, we had to change x 7→ (x+ 1)/2 and t 7→ 2t. For that, we need to undo the
change to recover the classical Hurwitz zeta function, that means, to take α = −1/2,
x 7→ 2x− 1 and t 7→ t/2 (although many times we will not change t).

Now, let α = −1/2. Then,

d−1/2(s, x) =
1

Γ(s)

∫ ∞

0

e−t(x+1)ts−1 dt =
1

(x+ 1)s

if x ∈ (−1, 1). In this case, τn1 (f)(x) = f(x + n) and τ−n
−1 (f)(x) = f(x + n) and

hence,

ζ−1/2(s, x) =

∞∑
n=0

1

(x+ 1 + 2n)s
.

And finally, as we are considering Bernoulli-Dunkl polynomials, we need to change
x 7→ 2x− 1. Hence,

ζ−1/2(s, 2x− 1) =

∞∑
n=0

1

(2x+ 1− 1 + 2n)s
=

1

2s

∞∑
n=0

1

(x+ n)s
=

1

2s
ζ(s, x).

Furthermore, (4.14) is an integral representation of ζα(s, x) which, as expected,
generalizes under these changes the classical integral representation of ζ(s, x):

ζ(s, x) =
1

Γ(s)

∫ ∞

0

e−xt

1− e−t
ts−1 dt.

Next we summarize some of the properties of ζα(s, x) that generalize the ones for
ζ(s, x); we have already proved most of them in the preceding sections, or they are
direct consequences:

Proposition 4.6 (Properties of ζα(s, x)). For α > −1 and x ∈ (−1, 1), the function
ζα(s, x) satisfies the following:

(i) Recurrence identities: let σ1 = τ1τ
−1
−1 ; then for Re(s) > 0,

(4.16) ζα(s, x)− σ1(ζα(s, ·))(x) = dα(s, x),
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(4.17) ζα(s, x)− σm
1 (ζα(s, ·))(x) =

m−1∑
n=0

σn
1 dα(s, x).

(ii) The Dunkl derivative of ζα:

(4.18) Λα,x(ζα(s, x)) = −sζα(s+ 1, x).

(iii) Relation of ζα with Bernoulli-Dunkl polynomials: for n = 0, 1, 2, . . . , we
have

(4.19) ζα(−n, x) = −Bn+1,α(x)
(α+ 1)n!

γn+1,α
.

Now we show that when α = −1/2 and x 7→ 2x − 1 we get the corresponding
properties of the classical ζ(s, x). First, for the recurrence identities, we have
σn
1 (f(x)) = f(x+2n) so σn

1 (ζα(s, ·))(x) = ζα(s, x+2n) and hence, (4.16) transforms
into

ζ(s, x) = ζ(s, x+ 1) + x−s

and (4.17) transforms into

ζ(s, x) = ζ(s, x+m) +
m−1∑
n=0

(x+ n)−s

(see, for instance [28, 25.11.3 and 25.11.4]). Basically, the Dunkl translation σ1 is
playing the role of x+ 1 in the Hurwitz function.

In the case α = −1/2, we have Λ−1/2,x = d/dx, so (4.18) transforms into (see,
for instance, [28, 25.11.17])

d

dx
ζ(s, x) = −sζ(s+ 1, x).

We also get the classical relation with Bernoulli polynomials since

ζ−1/2(−n, 2x− 1) = −Bn+1,−1/2(2x− 1)
n!

(n+ 1)!

1

2
= −Bn+1(x)2

n+1 1

n+ 1

1

2
.

Since ζ−1/2(−n, 2x− 1) = 2nζ(−n, x), we get (see [28, 25.11.14])

(4.20) ζ(−n, x) = −Bn+1(x)

n+ 1
.

4.2. The Euler-Dunkl case. This is similar to the Bernoulli-Dunkl case, but with
A(t) = 1/Iα(t).

Theorem 4.7. Let Eα(xt)/Iα(t) be the generating function of Euler-Dunkl poly-
nomials. Then for x ∈ (−1, 1), the integral

H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Iα(−t)
ts−1 dt =

2

Γ(s)

∫ ∞

0

Eα(−xt)

Eα(t) + Eα(−t)
ts−1 dt

converges in the right plane Re(s) > 0 to a holomorphic function, which may be
analytically continued to an entire function of s satisfying

H(−n, x) =
n!

γn,α
En,α(x), n = 0, 1, 2, . . .

Proof. The statement that H(s, x) is convergent for −1 < x < 1 holds by the same
reasoning we made in the Bernoulli-Dunkl case. Hence, by Theorem 4.1, we have
H(−n, x) = n!En,α(x)/γn,α, for n = 0, 1, 2, . . . By the same argument as in the
Bernoulli-Dunkl case, we can write A(t) as a geometric series as

A(t) =
1

Iα(t)
=

2

Eα(t)

1

1 + Eα(−t)
Eα(t)

=
2

Eα(t)

∞∑
n=0

(
−Eα(−t)

Eα(t)

)n

.
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The special function H(s, x) is giving (when −1 < x < 1) by

H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Iα(t)
ts−1 dt =

2

Γ(s)

∞∑
n=0

∫ ∞

0

Eα(−xt)

Eα(t)

(
−Eα(−t)

Eα(t)

)n

ts−1 dt

=
2

Γ(s)

∞∑
n=0

(−1)nσn
1

∫ ∞

0

Eα(−xt)

Eα(t)
ts−1 dt,

which concludes the proof. □

Definition 4.8. For x ∈ (−1, 1) and Re(s) > 0, we define the Hurwitz-Dunkl zeta
function of Euler type as

(4.21) ζE,α(s, x) =
1

Γ(s)

∞∑
n=0

(−1)nσn
1

∫ ∞

0

Eα(−xt)

Eα(t)
ts−1 dt.

Finally, notice that the function H(s, x) may be extended to the entire complex
s-plane and we have, for x ∈ (−1, 1) and Re(s) > 0,

H(s, x) = 2ζE,α(s, x).

Hence, we can consider, equivalently, that the analytic extension of

(4.22) ζE,α(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

Eα(t) + Eα(−t)
ts−1 dt, Re(s) > 0

(which corresponds to (4.21)) is

(4.23) ζE,α(s, x) =
1

2
H(s, x), s ∈ C.

Again, when α − 1/2 and x 7→ 2x − 1 (now by (2.10) we make the changes
to recover Euler polynomials from Euler-Dunkl polynomials, as we did with the
Hurwitz-Dunkl zeta function) we get the function

ζE,−1/2(s, 2x− 1) =
1

2s

∞∑
n=0

(−1)n

(x+ n)s
=

1

2s
ζE(s, x),

where ζE(s, x) is called the Hurwitz-type Euler zeta function (see, for instance, [22]).
Again, ζα,E generalized many properties of ζE,α by the changes α = −1/2 and
x 7→ 2x− 1 (and sometimes also t 7→ t/2). There is also the recurrence identity

ζE,α(s, x) + σ1(ζE,α(s, ·))(x) = dα(s, x)

which generalizes [22, (2.1)] and (4.23) is an integral representation that generalizes
[36, (3.1)]. Moreover, it is easy to prove that the relation of ζE,α with Euler-Dunkl
polynomials

ζE,α(−n, x) =
1

2
En,α(x)

n!

γn,α

holds for all x ∈ (−1, 1) and n = 0, 1, 2, . . . , which give, when we recover the
classical Hurwitz-type Euler zeta function, the identity (see [22, (2.7)])

ζE(−n, x) =
1

2
En(x).
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4.3. The generalized Bernoulli-Dunkl case. In the Bernoulli-Dunkl case we
had

A(t) =
1

Iα+1(t)
=

t

α+ 1

1

Eα(t)

1

1− Eα(−t)
Eα(t)

.

For r a positive integer, the generalized Bernoulli-Dunkl polynomials are defined

as A(t)rEα(xt) =
∑∞

n=0 B
(r)
n,α(x)tn/γn,α, and we have

A(t)r =

(
t

α+ 1

1

Eα(t)

∞∑
n=0

(
Eα(−t)

Eα(t)

)n
)r

.

Theorem 4.9. Let Eα(xt)/(Iα+1(t))
r be the generating function of Bernoulli-

Dunkl polynomials of order r = 1, 2, . . . Then for each x ∈ (−r, r) the integral

(4.24) H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

(Iα+1(t))
r t

s−1 dt

converges in the right plane Re(s) > r to a holomorphic function, which may be
analytically continued to an entire function of s satisfying

H(−n, x) =
n!

γn,α
B(r)

n,α(x), n = 0, 1, 2, . . .

The theorem can be easily proved by the same arguments as in Theorem 4.1
and in Subsection 4.1. The only thing left to prove is the convergence of H(s, x) in
x ∈ (−r, r).

Proof of Theorem 4.9. Let us first analyze the convergence of the integral (4.24).
We use the asymptotic behavior of the Kummer confluent hypergeometric function
given in (4.2), and proceed as in the proof of Lemma 4.2. If x > 0, the “exponential
part” of the integrand of H(s, x) has size e−t(x+r), so the integral converges if x < r.
Repeating the argument for x < 0, we get the convergence in x ∈ (−r, r).

Let us use that, for r = 1, 2, . . . and |z| < 1,( ∞∑
n=0

zn

)r

=
1

(1− z)r
=

∞∑
n=0

(
r + n− 1

n

)
zn.

Then,

A(t)r =

(
t

α+ 1

1

Eα(t)

∞∑
n=0

(
Eα(−t)

Eα(t)

)n
)r

=
tr

(α+ 1)r
1

Eα(t)r

∞∑
n=0

(
r + n− 1

n

)(
Eα(−t)

Eα(t)

)n

.

Hence,

H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

(Iα+1(t))
r t

s−1 dt

=
1

Γ(s)

1

(α+ 1)r

∞∑
n=0

(
r + n− 1

n

)∫ ∞

0

Eα(−xt)

(Eα(t))
r

(
Eα(−t)

Eα(t)

)n

ts+r−1 dt

=
Γ(s+ r)

Γ(s)

1

(α+ 1)r

∞∑
n=0

σn
1

((
r + n− 1

n

)∫ ∞

0

Eα(−xt)

(Eα(t))
r t

s+r−1 dt

)
,

which proves the theorem. □
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Definition 4.10. For Re(s) > 1 we define the Hurwitz-Dunkl zeta function of
order r = 1, 2, 3, . . . as

ζ(r)α (s, x) =
1

Γ(s)

∞∑
n=0

(
r + n− 1

n

)
σn
1

(∫ ∞

0

Eα(−xt)

(Eα(t))
r t

s−1 dt

)
.

As in (4.11) (that is, the case r = 1), we can define the basic term

d(r)α (s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

(Eα(t))r
ts−1 dt

and then write

ζ(r)α (s, x) =

∞∑
n=0

(
r + n− 1

n

)
σn
1 d

(r)
α (s, x).

Notice that, as the function H(s, x) is extended to the entire complex s-plane,
and for Re(s) > 0 we have

H(s, x) =
(s)r

(α+ 1)r
ζ(r)α (s+ r, x) for Re(s) > 1− r.

Hence, we can define the extension of ζ
(r)
α (s, x) to the complex plane by using

ζ
(r)
α (s+ r, x) = (α+ 1)rH(s, x)/(s)r, i.e., by taking

ζ(r)α (s, x) = (α+ 1)rH(s− r, x)/(s− r)r, −r < x < r, s ∈ C,

which generalizes (4.14).
In the case α = −1/2, this kind of zeta functions for the classical generalized

Bernoulli polynomials has been studied in [8, § 4.4]; see also [8, § 4.1] for the classical
generalized Euler polynomials.

4.4. The generalized Euler-Dunkl case. Again, as we did with the generalized
Bernoulli-Dunkl case, by using the generation function of the generalized Euler-
Dunkl polynomials we have A(t) = 1/Iα(t) and

A(t)r =

(
2

Eα(t)

∞∑
n=0

(
−Eα(−t)

Eα(t)

)n
)r

.

Theorem 4.11. Let Eα(xt)/(Iα(t))r be the generating function of Euler-Dunkl
polynomials of order r = 1, 2, . . . Then for each x ∈ (−r, r) the integral

H(s, x) =
1

Γ(s)

∫ ∞

0

Eα(−xt)

(Iα(t))r
ts−1 dt

converges in the right plane Re(s) > 0 to a holomorphic function which may be
analytically continued to an entire function of s satisfying

H(−n, x) =
n!

γn,α
E(r)
n,α(x), n = 0, 1, 2, . . .

Proof. We only need to notice that

A(t)r =
2r

Eα(t)r

∞∑
n=0

(−1)n
(
r + n− 1

n

)(
Eα(−t)

Eα(t)

)n

,

and proceed as in Theorem 4.9. □

Definition 4.12. For Re(s) > 0 we define the Hurwitz-Dunkl zeta function of
Euler type and order r ∈ N as

ζ
(r)
E,α(s, x) =

∞∑
n=0

(−1)n
(
r + n− 1

n

)
σn
1 dα(s, x).
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Finally, as the function H(s, x) is extended to the entire complex s-plane, we
have

H(s, x) = 2rζ
(r)
E,α(s, x)

for Re(s) > 0. Hence, we can define the extension of ζ
(r)
E,α(s, x) to the complex

plane by

ζ
(r)
E,α(s, x) = H(s, x)/2r, −r < x < r, s ∈ C.

4.5. The generalized Hermite case. The classical Hermite polynomials Hn(x)

are giving by the generating function e−t2+2tx, and they are orthogonal on the

real line with respect to the weight e−x2

. A well known generalization of these
polynomials is the so-called generalized Hermite polynomials of order µ > −1/2,

which are orthogonal on the real line with respect to the weight ωµ(x) = |x|2µe−x2

,
that is, they are polynomials {Hµ

n (x)}∞n=0 satisfying∫ ∞

−∞
Hµ

m(x)Hµ
n (x)ωµ(x) dx = 0;

see, for instance, [2], [12, Chapters 1 and 5] or [33, p. 380, problem 25].
In [29], Rosenblum shows that these polynomials can be studied in the context

of the Dunkl transform on the real line. This is done by means of

(4.25) e−t2Eµ(2xt) =

∞∑
n=0

Hµ
n (x)

tn

n!

with µ = α + 1/2. Except by a simple change of variable, this is an Appell-Dunkl
sequence in the sense of (2.6).

For these polynomials, it is easy to find the analytic extension H(s, x) such that,
for n a negative integer, the corresponding value is Hµ

n (x), except for a multiplica-

tive constant. Due to the factor e−t2 , which appears in (4.25), the extension given
in Theorem 4.1 does not present any problem and is valid for x ∈ R. The same
happens with the integral

1

Γ(s)

∫ ∞

0

e−t2Eµ(−2xt) dt,

which is similar to the ones that appear in Theorems 4.3 or 4.7.
That leads us to the following result.

Theorem 4.13. Let G(−t, x) = e−t2Eµ(−2xt), with µ > −1/2. Then, for x ∈ R,

H(s, x) =
1

Γ(s)

∫ ∞

0

e−t2Eµ(−2xt) dt

=

√
π

2sΓ( s+1
2 )

1F1

(s
2
, µ+

1

2
, x2
)
−

√
π

2sΓ( s2 )

x

µ+ 1
2

1F1

(s
2
, µ+

3

2
, x2
)

is an entire function of s and satisfies H(−n, x) = Hµ
n (x) for n = 0, 1, 2, . . .

In fact, we have 1/Γ( s2 ) = 0 when s = −2n, and 1/Γ( s+1
2 ) = 0 when s = −2n−1

for n = 0, 1, 2, . . . Furthermore, Γ(−n+ 1
2 ) =

(−1)n 22n(2n)!
n!

√
π, which means

H(−2n, x) = Hµ
2n(x) = (−1)n

(2n)!

n!
1F1

(
−n, µ+

1

2
, x2
)
,

H(−2n− 1, x) = Hµ
2n+1(x) = (−1)n

(2n+ 1)!

n!

x

µ+ 1
2

1F1

(
−n, µ+

3

2
, x2
)
.

This, as expected, is the same as [29, (2.1.1) and (2.2.1)].
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5. Properties of the Hurwitz-Dunkl zeta functions

The aim of this section is, firstly, to provide generalization of the Riemann zeta
function ζ(s) =

∑∞
n=1 1/n

s and the Euler-type zeta function ζE(s) =
∑∞

n=1(−1)n+1/ns

(also known as Dirichlet eta function η(s)) in a Dunkl sense through the functions
ζα(s, x) and ζE,α(s, x), respectively. We also provide a generalization in a Dunkl
sense of the analytic continuation of ζ(s) (and ζE(s)), as well as the so-called re-
flection formula, and other properties concerning our Hurwitz-Dunkl zeta functions
ζα(s, x), ζE,α(s, x), ζα(s) and ζE,α(s). A conection appears here between these
functions and the function Zα(s) =

∑∞
n=1 1/j

s
n (and also with Zα+1(s)), where jn

are the positive zeros of the Bessel function Jα(x). We study Zα(s) in Section 6.
In this section we will state the main results. The proofs are rather technical

and require several lemmas. We will postpone them to Section 7.

5.1. Theorems for ζα(s, x) and ζα(s). In this section we are going to give another
way of expressing the analytic continuation of ζα(s, x) for Re(s) < 1, and we will
give some consequences that involve the zeros of Jα+1(x).

It is well known (see [35, Chapter 15] or [28, § 10.21]) that, for any α > −1, the
zeros of the Bessel function Jα(x)/x

α can be written as jm,α, m ∈ Z \ {0}, with
jm,α = −j−m,α and 0 < jm,α < jm+1,α, m ≥ 1. Moreover, jm,α ∼ (m + α/2 −
1/4)π + o(1/m) when m → ∞ (see, for instance, [28, 10.21.19]).

Now, we are interested in the zeros of Jα+1(x)/x
α+1 so, to avoid confusion, we

will denote sm,α = jm,α+1; in this way, we will often use sm for sm,α. Again, with
this notation we have sm,α = −s−m,α and 0 < sm,α < sm+1,α, m ≥ 1, where
ism,α, m ∈ Z \ {0}, are the zeros of Iα+1(x) (or the zeros of Jα+1(ix)/(ix)

α+1).
For α = −1/2 we have sm,−1/2 = πm. Let us also note that Iα(ism,α) provides a
generalization of the sign sequence (−1)m because I−1/2(ism,−1/2) = (−1)m.

The first result is the following, which is similar to the classical case that can
be found, for instance, in [4, § 12.4, Theorem 12.3], and the proof follows the same
scheme. However, we have now the functions Eα(t), which are much more com-
plicated than et, and then the proof needs some additional details. In particular,
we require the use of our Lemma 7.1. Actually, the zeros sm,α do not explicitely
appear in the statement of this theorem, but they will be crucial in the proof of the
lemma.

Theorem 5.1. Let x ∈ (−1, 1) and define

(5.1) I(s, x) =
1

2πi

∫
C

Eα(xt)

Eα(−t)− Eα(t)
ts−1 dt,

where C is the contour shown in Figure 1. Then I(s, x) is an entire function of s
and satisfies

(5.2) ζα(s, x) = Γ(1− s)I(s, x) if Re(s) > 1,

where ζα(s, x) is the function defined in (4.13).

0• C2

C1

C3

Figure 1. The contour C from Theorem 5.1.
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Taking into account that (5.1) is valid in the entire s-plane, and that ζα(s, x)
satisfies (5.2) for Re(s) > 1, we can define the following analytic continuation for
ζα(s, x) in the entire s-plane:

(5.3) ζα(s, x) = Γ(1− s)I(s, x),

valid for −1 < x < 1. Of course, the analytic continuation of a function is unique,
so this function ζα(s, x) is the same that we defined in (4.14). From this and by
Cauchy’s residue theorem it is also possible to prove Theorems 5.2 and 5.3.

Theorem 5.2. The function ζα(s, x) defined in (5.3) is analytic for s ∈ C except
for a simple pole at s = 1 with residue α+ 1.

Taking α = −1/2 and x 7→ 2x − 1, since ζ−1/2(s, 2x − 1) = ζ(s, x)/2s we get
that ζ(s, x) has a simple pole at s = 1 with residue 1, which is what happens in
the classical case (see [4, § 12.5, Theorem 12.4]).

The next result was already proved in Proposition 4.6, but later we provide
another way to show it, this time starting from (5.3) and using Cauchy’s residues
theorem:

Theorem 5.3. The function ζα(s, x) defined in (5.3) satisfies, for x ∈ (−1, 1),

(5.4) ζα(−n, x) = −Bn+1(x)
n! (α+ 1)

γn+1,α
, n = 0, 1, 2, . . .

Another classical result in analytic number theory is the so-called Hurwitz for-
mula (see [4, § 12.7, Theorem 12.6] or [5, 25.13.3]), namely

(5.5) ζ(1− s, x) =
Γ(s)

(2π)s

(
e−πsi/2F (x, s) + eπsi/2F (−x, s)

)
,

where

(5.6) F (x, s) =

∞∑
n=1

e2πinx

ns
, Re(s) > 1,

is known as the Lerch (or periodic) zeta function (see [4, § 12.7, equation (9), p. 257]
or [5, 25.13.1]).

In the Dunkl context, this formula can be generalized as follows. The convergence
of the series (5.6) is clear, but to prove the convergence of the corresponding series
F(x, s), which we will use in the Dunkl context, will require some effort.

Theorem 5.4 (Hurwitz-Dunkl formula). Let α > −1 and {sm}∞m=1 be the positive
zeros of Jα+1. For Re(s) > 1, the function

(5.7) F(x, s) =

∞∑
m=1

Eα(xism)

Iα(ism)

1

ssm

converges for every x ∈ R. Moreover, for x ∈ (−1, 1) and Re(s) > 1, the Hurwitz-
Dunkl zeta function ζα(s, x) satisfies

(5.8) ζα(1− s, x) =
Γ(s)

2

(
e−πsi/2F(x, s) + eπsi/2F(−x, s)

)
.

We call F(x, s) the Lerch-Dunkl zeta function since it plays a similar role as the
Lerch zeta function F (x, s) (but F(x, s) is not periodic). In fact, when α = −1/2
and x 7→ 2x− 1, we have F(2x− 1, s) = π−sF (x, s), so (5.8) becomes (5.5).

Now, although the identity (5.8) is valid only for x ∈ (−1, 1), the right hand side
is valid for x ∈ R, so we can extend the definition of ζα(1− s, x) for Re(s) > 1 by
taking

(5.9) ζα(1− s, x) =
Γ(s)

2

(
e−πsi/2F(x, s) + eπsi/2F(−x, s)

)
, x ∈ R.
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Replacing 1− s by s, we can also define, for Re(s) < 0,

ζα(s, x) =
Γ(1− s)

2

(
−ieπsi/2F(x, 1− s) + ie−πsi/2F(−x, 1− s)

)
, x ∈ R.

The Hurwitz-Dunkl formula gives us an expression for ζα(s, x) and x ∈ R free of
the intricate integrals. With that, we can easily prove a “reflection formula” (but
in this case that isn’t a suitable name) for ζα(s) in a Dunkl sense that can be seen
as a generalization of the reflection formula for ζ(s).

Using the notation ζ(s) = ζ(s, 1), the reflection formulas of the classical zeta
function (also known as “Riemann’s functional equation”)

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s), s ∈ C,

ζ(s) = 2(2π)s−1Γ(1− s) sin
(πs

2

)
ζ(1− s), s ∈ C,

can be proved by taking x = 1 in the Hurwitz formula (5.5) (see, for instance, [4,
§ 12.8, Theorem 12.7]); for the first formula, the result is clear for Re(s) > 1, and
is then valid for s ∈ C by analytic continuation. Actually, many properties of ζ(s)
and ζ(s, x) can be seen as consequences of (5.5).

In our case, taking x = ±1 in (5.7), we get F(±1, s) =
∑∞

m=1 1/s
s
m, since

Eα(±ism) = Iα(ism). Thus, we can define, for Re(s) > 1,

(5.10) ζα(1− s) = ζα(1− s, 1),

where ζα(1− s, 1) is given in (5.9); of course, the same can be done for ζα(s) with
Re(s) < 0 (with this notation, ζ−1/2(s) = ζ−1/2(s, 1) = ζ(s, 1)/2s = ζ(s)/2s).
Then, we have the following:

Theorem 5.5. Let α > −1 and {sm}∞m=1 be the positive zeros of Jα+1. For
Re(s) > 1 we have

(5.11) ζα(1− s) = Γ(s) cos
(πs

2

) ∞∑
m=1

1

ssm
,

or equivalently, for Re(s) < 0,

(5.12) ζα(s) = Γ(1− s) sin
(πs

2

) ∞∑
m=1

1

s1−s
m

.

When α = −1/2, we get
∑∞

m=1 1/s
s
m = π−s

∑∞
m=1 1/m

s = π−sζ(s) so, in fact,∑∞
m=1 1/s

s
m is playing the role of ζ(s). Hence, when α = −1/2, Theorem 5.5

provides a generalization in a Dunkl sense of classical reflection formulas. However,
there is an important difference if we compare Theorem 5.5 with the classical case:
the sums

∑∞
m=1 in (5.11) and (5.12) are not the functions ζα(1 − s) and ζα(s),

respectively.
Finally, by taking s = n+ 1 in (5.9) we have

ζα(−n, x) =
n!

2

(
e−π(n+1)i/2F(x, n+ 1) + eπ(n+1)i/2F(−x, n+ 1)

)
, x ∈ R;

and, on the other hand, by Theorem 5.3,

ζα(−n, x) = −Bn+1(x)
n! (α+ 1)

γn+1,α
, x ∈ (−1, 1).

Then, for x ∈ (−1, 1),

−Bn+1(x)
(α+ 1)

γn+1,α
=

1

2

(
e−π(n+1)i/2F(x, n+ 1) + eπ(n+1)i/2F(−x, n+ 1)

)
.
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Since the above function is a polynomial, the limit as x → 1− exists and we have

−Bn+1(1)
(α+ 1)

γn+1,α
= cos

(
π(n+ 1)

2

) ∞∑
m=1

1

sn+1
m

.

Letting n = 2k − 1, we have the following:

Corollary 5.6. Let α > −1 and {sm}∞m=1 be the positive zeros of Jα+1. Then,

∞∑
m=1

1

s2km
=

B2k(1)(−1)k+1

22kk! (α+ 2)k−1
, k = 1, 2, 3, . . .

The previous expression for
∑∞

m=1 1/s
2k
m in terms of B2k(1) was proved in [13,

Theorem 4.1] by other methods.

Corollary 5.7. The function ζα(s) defined in Theorem 5.5 satisfies

(5.13) ζα(−n) = −Bn+1(1)
n! (α+ 1)

γn+1,α
, n = 1, 2, . . .

Proof. Taking s = n = 2k, k = 1, 2, . . . , in (5.11) and using Corollary 5.6 we get
(5.13) for n odd. Taking s = n = 2k − 1, k = 1, 2, . . . in (5.11) we then get
cos (πs/2) = 0 and hence ζα(1−n). Since −Bn+1(1) = 0 for n even, this completes
the proof. □

5.2. Theorems for ζE,α(s, x) and ζE,α(s). Here, we are going state some results
for ζE(s, x), that will be similar to the results for ζE(s, x) in Subsection 5.1. Let us
recall that jm = jm,α, m ∈ Z \ {0}, are the zeros of the Bessel function Jα(x)/x

α,
and that they can be ordered so that jm,α = −j−m,α and 0 < jm,α < jm+1,α, m ≥ 1.
Moreover, ijm,α, m ∈ Z \ {0}, are the zeros of Iα(x) and for α = −1/2, jm,−1/2 are
the zeros of I−1/2(it), namely the zeros of the cosine. Hence, jm,−1/2 = (m−1/2)π
for m ≥ 1.

We begin with a result that is similar to Theorem 5.1:

Theorem 5.8. Let x ∈ (−1, 1) and

IE(s, x) =
1

2πi

∫
C

h(t)ts−1 dt =
1

2πi

∫
C

Eα(xt)

Eα(−t) + Eα(t)
ts−1 dt,

where C is again the contour shown in Figure 1 of Theorem 5.1. Then IE(s, x) is
an entire function of s and satisfies

ζE,α(s, x) = Γ(1− s)IE(s, x) if Re(s) > 0,

where ζE,α(s, x) is the function defined in (4.22).

Of course, this theorem again allows us to give the analytic extension for ζE,α(s, x)
to the entire s-plane, valid for −1 < x < 1.

Now, the “Hurwitz-Dunkl formula of Euler type” is the following:

Theorem 5.9. Let α > −1 and {jm}∞m=1 be the positive zeros of Jα. For Re(s) > 1,
the function

FE(x, s) =

∞∑
m=1

Eα(ijmx)

Iα+1(ijm)

1

js+1
m

converges for every x ∈ R. Moreover, for x ∈ (−1, 1) and Re(s) > 1 we have

(5.14) ζE,α(1− s, x) = −(α+ 1)Γ(s)
(
e−

πi
2 (s+1)FE(x, s) + e

πi
2 (s+1)FE(−x, s)

)
.
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In the particular case α = −1/2, we get jm = (m − 1/2)π for m ≥ 1. Also,

J1/2(x) =
√

2/(πx) sin (x), which leads to I1/2(ijm) = (−1)m+1/jm. That means,
when taking x 7→ 2x− 1, we have that

FE(2x− 1, s) =
2s

πs
i

∞∑
m=1

e(2m−1)iπx

(2m− 1)s
=

2s

πs
iℓE(s, x),

where the notation ℓE(s, x) for the above series has already been used in [22, (7.1)].
Furthermore, with these changes, and noticing that FE(−x, s) = −FE(1 − x, s),
(5.14) transforms into

1

21−s
ζE(1−s, x) = ζE,−1/2(1−s, 2x−1) =

2sΓ(s)

πs

(
e−

iπs
2 ℓE(s, x)− e

iπs
2 ℓE(s, 1− x)

)
,

which is just [22, (7.2)].
As in the case of ζα, we can use (5.14) to define ζα(1 − s, x) for Re(s) > 1 and

x ∈ R, as well as ζα(s, x) for Re(s) < 0 and x ∈ R. In particular, taking x = 1 and
defining ζE,α(s) = ζE,α(s, 1), we have the following:

Theorem 5.10. Let α > −1 and {jm}∞m=1 be the positive zeros of Jα. For Re(s) >
1 we have

(5.15) ζE,α(1− s) = −Γ(s) cos
(πs

2

) ∞∑
m=1

1

jsm

or equivalently, for Re(s) < 0,

ζE,α(s) = −Γ(1− s) sin
(πs

2

) ∞∑
m=1

1

j1−s
m

.

When α = −1/2, (5.15) transforms into (see [22, (7.4)])

ζE(1− s) = −2π−sΓ(s) cos
(πs

2

) ∞∑
m=1

1

(2m− 1)s
.

Finally, the equivalent result of Corollary 5.6 for
∑∞

m=1 1/j
2k
m is the following:

Corollary 5.11. Let α > −1 and {jm}∞m=1 be the positive zeros of Jα. Then,

∞∑
m=1

1

j2km
=

E2k−1(1)(−1)k+1

22k(k − 1)! (α+ 1)k
, k = 1, 2, 3, . . .

This can be easily proved from (5.15), as in Subsection 5.1. Note that this result
was also proved in [18] in a different way.

Corollary 5.12. The function ζE,α(s) defined in Theorem 5.10 satisfies

ζE,α(−n) =
1

2
En(1)

n!

γn,α
, n = 1, 2, . . .

6. Analytic continuation of ζα(s) and ζE,α(s)

Finally, let us define, for α > −1,

(6.1) Zα(s) =

∞∑
m=1

1

jsm
, Re(s) > 1.

Of course, in a like manner we get

Zα+1(s) =

∞∑
m=1

1

ssm
, Re(s) > 1,
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hence, Zα(s) is related with ζE,α(s) and Zα+1(s) with ζα(s). This function is
similar to the classical Riemann zeta function

∑∞
m=1 1/m

s where the positive zeros
{πm}∞m=1 of the sine have been changed by the zeros of the positive zeros of a
Bessel function. Then, we will call Zα+1(s) the “Riemann-Bessel zeta function”.

In his thesis [21], Hawkins provides an analytic continuation of Zα(s). To do
so, he first gets easily the analytic continuation for Re(s) > 0 by integration by
parts, and repeating the process he is able to continue the function to Re(s) > −1.
However, he does not go forward by this method and, instead, uses other tools. He
ends up proving that there exists an analytic continuation of Zα(s) to the entire
s-plane with simple poles at s = 1,−1,−3,−5, . . . but he didn’t get an explicit
formula. Due to its simplicity, we now show how to continue Zα(s) to the region
Re(s) > 0.

Theorem 6.1. The function Zα(s)− π−s

s−1 extends analytically to the region Re(s) >
0.

Proof. We start from (6.1), valid for Re(s) > 1, and decompose

Zα(s)−
π−s

s− 1
=

∞∑
m=1

1

jsm
−
∫ ∞

1

π−s dx

xs
=

∞∑
m=1

1

jsm
−

∞∑
m=1

∫ m+1

m

dx

(πx)s

=

∞∑
m=1

(
1

jsm
−
∫ m+1

m

dx

(πx)s

)
=

∞∑
m=1

∫ m+1

m

(
1

jsm
− 1

(πx)s

)
dx,

again valid for Re(s) > 1. Now, let us denote

fm(s) =

∫ m+1

m

(
1

jsm
− 1

(πx)s

)
dx.

If we prove that
∑∞

m=1 fm(s) is analytic in Re(s) > 0, we will have the analytic
extension of Zα(s)− π−s/(s− 1).

Every function fm(s) is analytic in Re(s) > 0, so it is enough to see that the
series converges uniformly on compacts in that region. Now, let us recall that the
zeros {jm}∞m=1 of Jα(t) satisfy jm ∼ (m+α/2−1/4)π+o(1/m) (see [28, 10.21.19]),
so πm−c ≤ jm ≤ πm+c for a positive constant c independent of m. Then, because∫ πx

jm

u−s−1 du =
1

s

(
1

jsm
− 1

(πx)s

)
,

we have∣∣∣∣∫ m+1

m

(
1

jsm
− 1

(πx)s

)
dx

∣∣∣∣ = ∣∣∣∣s∫ m+1

m

∫ πx

jm

du

us+1
dx

∣∣∣∣
≤ |s|

∫ m+1

m

∫ πm+c2

πm−c1

du

|us+1|
dx = |s|

∫ m+1

m

∫ πm+c2

πm−c1

du

u1+Re(s)
dx

≤ |s|
(sm − c2 − c1)1+Re(s)

∫ m+1

m

∫ πm+c2

πm−c1

du dx =
(c2 + c1)|s|

(jm − c2 − c1)1+Re(s)
.

Consequently,
∞∑

m=1

∣∣∣∣∫ m+1

m

(
1

jsm
− 1

(πx)s

)
dx

∣∣∣∣ ≤ ∞∑
m=1

C|s|
j
1+Re(s)
m

< ∞ for Re(s) > 0,

and the Weierstrass M-test ensures the uniform convergence on compacts in Re(s) >
0. □

Using the analytic continuation in the entire s-plane [21], some of the above
identities can also be analytically continued to the entire s-plane; see also [32].
Since Hawkins didn’t get any explicit formula for Zα(s), we won’t get an explicit
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formula for ζα(s) either. Furthermore, in this way we do not obtain ζα(s) as our
ζα(s, 1), because ζα(s, x) does not exist for x = 1 in the half-plane Re(s) ≥ 1 (see
Definition 4.4). In the same way, contrary to what happen in the classical case, we
do not have ζα(s, 1) = Zα+1(s) for s ≥ 1.

Hawkins also computed the residues of Zα(s) at s = 1,−1,−3, . . . and the values
of Zα(−2k) for k = 0, 1, 2, . . . They are given by (see [21, Theorem 3.5])

Res
s=−2k−1

(Zα(s)) =
(−1)k+1

π
c2k, Zα(−2k) =

(−1)k

2
c2k−1,

where ck := ck,α are given by the identity

(6.2)

( ∞∑
k=0

(−1)k

(2x)k
(α, k)

)( ∞∑
k=0

ck
xk+2

)
=

∞∑
k=0

(−1)k

(2x)k+1
(α, k),

with (α, k) = Γ(α+ k+ 1/2)/(k! Γ(α− k+ 1/2)) (see [21, Lemma 3.4]). To extend
ζα(s), we need to change α 7→ α+ 1 in order to correspond the coefficients ck with
our Zα+1(s). Finally, Hawkins proved that ck are polynomials of α which vanish
at α = −1/2 and α = 1/2 (see, for instance, [21, Proposition 4.2]).

With all this, we can now study the poles of ζα(s) with s ∈ C and −1/2 ̸= α >
−1.

Theorem 6.2. We get

(6.3) ζα(1− s) = Γ(s) cos
(πs

2

)
Zα+1(s), s ∈ C,

or equivalently

(6.4) ζα(s) = Γ(1− s) sin
(πs

2

)
Zα+1(1− s), s ∈ C.

In particular, ζα(s) can be analytically continued to the entire s-plane with simple
poles at s = n = 1, 2, 3, . . . (for α ̸= −1/2) whose residues are equal to dn−1/(2n!),
where dn := dn,α = cn,α+1 with the notation of (6.2). Moreover, ζα(0) = −1/2.

Proof. We can analytically continue equations (5.11) and (5.12) by considering
the analytic continuation of Zα+1(s). From the equation (6.3) the only possible
poles are the ones of Γ(s), at s = 0,−1,−2, . . . , and the ones of Zα+1(s), at
s = 1,−1,−3, . . . It is straighforward to see that when s = −2k = 0,−2,−4, . . . we
get cos(−πk)Zα+1(−2k) ̸= 0 and Γ(−2k) has a pole. Hence, at those values there
are simple poles. The residue at s = −2k is

lim
s→−2k

(s+ 2k)Γ(s) cos
(πs

2

)
Zα+1(s) =

(−1)k

(2k)!
Zα+1(−2k) =

d2k−1

2(2k)!
.

When s = −(2k + 1) = −1,−3,−5, . . . we prove that ζα(1− s) has a pole at those
values by a little trick and the L’Hôpital rule as follows:

lim
s→−2k−1

Γ(s) cos
(πs

2

)
Zα+1(s)

= lim
s→−2k−1

(s+ 2k + 1)Γ(s)(s+ 2k + 1)Zα+1(s)
cos
(
πs
2

)
(s+ 2k + 1)2

= Res
s=−2k−1

(Γ(s)) Res
s=−2k−1

(Zα+1(s)) lim
s→−2k−1

−π

4

sin
(
πs
2

)
s+ 2k + 1

.
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Hence, there is a pole at those values. To calculate its residues we compute

lim
s→−2k−1

(s+ 2k + 1)Γ(s) cos
(πs

2

)
Zα+1(s)

= lim
s→−2k−1

(s+ 2k + 1)Γ(s)(s+ 2k + 1)Zα+1(s)
cos
(
πs
2

)
s+ 2k + 1

= Res
s=−2k−1

(Γ(s)) Res
s=−2k−1

(Zα+1(s)) lim
s→−2k−1

−π

2
sin
(πs

2

)
=

(−1)k+1

(2k + 1)!

π

2
Res

s=−2k−1
(Zα+1(s)) =

d2k
2(2k + 1)!

.

Finally, we consider the case s = 1. We use Ress=1(Zα+1(s)) = 1/π. So,

lim
s→1

Γ(s) cos
(πs

2

)
Zα+1(s) = lim

s→1
(s− 1)Zα+1(s)Γ(s)

cos
(
πs
2

)
s− 1

= Res
s=1

(Zα+1(s)) lim
s→1

cos
(
πs
2

)
s− 1

= −1/2. □

Once we have extended ζα(s) to the entire s-plane (with simple poles at s =
1, 2, 3, . . . ), we use the continuations of equations (6.3) and (6.4), both valid for
s ∈ C, in order to get

(6.5) Zα+1(s)Zα+1(1− s) =
ζα(1− s)ζα(s)

Γ(1− s)Γ(s) sin(πs/2) cos(πs/2)
=

2

π
ζα(1− s)ζα(s).

From that, a simple verification leads us to the following functional equation.

Corollary 6.3. The function

Φ(s) =

√
2

π

ζα(s)

Zα+1(s)

satisfies the functional equation Φ(s) = 1/Φ(1− s).

Next we study the analytic continuation of ζE,α(s) which is rather similar to
ζα(s).

Theorem 6.4. We get

(6.6) ζE,α(1− s) = −Γ(s) cos
(πs

2

)
Zα(s), s ∈ C,

or equivalently

(6.7) ζE,α(s) = −Γ(1− s) sin
(πs

2

)
Zα(1− s), s ∈ C.

In particular, ζE,α(s) can be analytically continued to the entire s-plane with simple
poles at s = n = 1, 2, 3, . . . (for α ̸= ±1/2) whose residues are equal to −cn−1/(2n!).
Moreover, ζE,α(0) = −1/2.

Finally, let us mention that, having Zα(s) defined in 0 < Re(s) < 1 (Theorem 6.1,
whose proof provides a convergent series to evaluate Zα(s) in this region), one can
wonder where the zeros of these functions are. Hawkins did an analysis of the zeros
of Zα(s) and provided some results involving zero free regions [21, Section 2] (see
also [1]). In addition, many of the graphical or numerical methods for finding the
zeros of ζ(s) in the critical strip (see, for instance, [6, 7] and the references therein)
can be adapted to the case of Zα(s). It is then easy to find zeros of Zα(s) that do
not satisfy Re(s) = 1/2. However, as far as we know, a further analysis of the zeros
of Zα(s) is yet to be done, but doesn’t seem to be straighforward at first glance. Is
there a deeper theory behind this problem?
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7. Proofs of the results of Section 5

In this section we prove the theorems of Subsections 5.1 and 5.2. In Subsec-
tion 7.1, we begin by proving results concerning the Hurwitz-Dunkl zeta function
ζα(s, x) stated in Subsection 5.1; in Subsection 7.2, and with less details, we prove
the corresponding results for ζE,α(s, x) stated in Subsection 5.2.

7.1. The Dunkl zeta function case. Our goal is to prove Theorem 5.1, and then
use it to prove Theorems 5.2, 5.4 and 5.5. For that, some preliminary results are
needed.

Lemma 7.1. Let {sm}∞m=1 be the positive zeros of Jα+1(t) and let S = C\{0,±is1,
±is2, . . . } denote the region that remains when we remove from the t-plane the
origin and all zeros of Iα+1(t), as in Figure 2. Then for x ∈ [−1, 1] \ {0}, the
function

g(t) =
Eα(xt)

Eα(−t)− Eα(t)

is bounded on compact subsets of S and compact subsets of x ∈ [−1, 1] \ {0}. Fur-
thermore, if α < 1 + 1/2, then for x = 0 the function g(t) is bounded on compact
subsets of S.

Proof. We use arguments similar to those of [18, § 2], and reproduce most of them
for the sake of completeness (actually, here it is somewhat simpler because [18] uses
α ∈ C and here we have the standard α > −1 of the Dunkl context). To get started,
let us take a large circle D = {z ∈ C : |z| = A} of radius A with the condition that
none of the points ism, m ∈ Z \ {0}, must lie on D. The poles of g(t) inside D are
ism, with |sm| < A, and all of them are simple. Now, we prove that the value of
A can be chosen arbitrarily large and such that there exists some constant c > 0
independent of A (but depending on α) satisfying

(7.1) |Jα(t)| ≥ c eIm(t)/|t|1/2

for t ∈ D. For that, we proceed based on what is done in [35, § 15.41, p. 498]. First,
we denote H

(1)
α (t) and H

(2)
α (t) as the Bessel functions of the third kind. We use

the equality

(7.2) 2Jα(t) = H(1)
α (t) +H(2)

α (t),

and, in addition, the fact that the Bessel functions of the third kind satisfy the
estimates

H(1)
α (t) =

(
2

πt

)1/2

ei(t−
1
2απ−

1
4π)
(
1 + η1,α(t)

)
,(7.3)

H(2)
α (t) =

(
2

πt

)1/2

e−i(t− 1
2απ−

1
4π)
(
1 + η2,α(t)

)
,(7.4)

0

is1

−is1

is2

−is2

Figure 2. A compact subset of the region S from Lemma 7.1.
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were η1,α(t) and η2,α(t) are functions of order O(1/t) for large |t| (see [35, § 15.4,
p. 496]). Therefore,

1

2

(
2

π|t|

)1/2

e− Im(t) ≤
∣∣∣H(1)

α (t)
∣∣∣ ≤ 2

(
2

π|t|

)1/2

e− Im(t),

1

2

(
2

π|t|

)1/2

eIm(t) ≤
∣∣∣H(2)

α (t)
∣∣∣ ≤ 2

(
2

π|t|

)1/2

eIm(t),

for |t| large enough. This, together with (7.2), gives

2|Jα(t)| ≥
1

2

(
2

π|t|

)1/2

e| Im(t)| − 2

(
2

π|t|

)1/2

e−| Im(t)|

=
1

2

(
2

π|t|

)1/2

e| Im(t)|
(
1− 4e−2| Im(t)|

)
for |t| large enough, which proves (7.1) if | Im(t)| ≥ 1. On the two arcs of D with
| Im(t)| ≤ 1, according to (7.2), (7.3) and (7.4), the problem reduces essentially to
get a lower bound for | cos(t− 1

2απ−
1
4π)|, which can be done by simply choosing A so

that to avoid the zeros of the cosine function. This proves (7.1). Furthermore, (7.2),
(7.3) and (7.4) also give

|Jα(t)| ≤ C e| Im(t)|/|t|1/2

for |t| large enough, with a constant C > 0 depending only on α. Therefore, for
any compact set K ⊂ [−1, 1] \ {0} the radius A can be chosen with the additional
property that there exists C > 0 such that, for any t ∈ D and any x ∈ K,

|Jα(tx)| ≤ C e| Im(tx)|/|tx|1/2,(7.5)

|Jα+1(tx)| ≤ C e| Im(tx)|/|tx|1/2.(7.6)

Using (7.1), (7.5) and (7.6), we get, for x ∈ K and t ∈ D,∣∣∣∣ Eα(xt)

Eα(−t)− Eα(t)

∣∣∣∣ = ∣∣∣∣Eα(tx) (α+ 1)

Iα+1(t)t

∣∣∣∣ = ∣∣∣∣ (α+ 1)Iα(tx)
Iα+1(t)t

+
xIα+1(tx)

2Iα+1(t)

∣∣∣∣
=

∣∣∣∣Jα(itx)i+ Jα+1(itx)

2xαJα+1(it)

∣∣∣∣ ≤ c̃
e| Im(xit)|/|xit|1/2

|x|αe| Im(it)|/|it|1/2
= c̃

e(|x|−1)|Re(t)|

|x|α−1/2

for some constant c̃ depending only on α and K. This proves the result for x ∈
[−1, 1] \ {0}. Finally, let us study the particular case x = 0. As Eα(0) = 1, it
follows that

|g(t)| =
∣∣∣∣ α+ 1

Iα+1(t)t

∣∣∣∣ ≤ c̃
|t|α−1−1/2

e|Re(t)| .

Since we can choose t such as |t| → ∞ and Re(t) is constant, to ensure that g(t) is
bounded at x = 0 on compact subsets of S we have to consider that α < 1+1/2. □

We now have the tools for the next step:

Proof of Theorem 5.1. For simplicity, let us denote

g(t) =
Eα(xt)

Eα(−t)− Eα(t)
.

The contour C in Figure 1 is composed of three parts, C1, C2 and C3. We take
C2 as a positively oriented circle of radius 0 < c < s1 (where s1 is the first zero of
Jα+1(x)/x

α+1) about the origin. This avoids C2 passing through a zero of g(t). On
the other hand, C1 and C3 are the lower and upper edges of a “cut” in the t-plane
along the negative real axis, traversed as shown in Figure 1. Then,

(7.7) 2πiI(s, x) =

(∫
C1

+

∫
C2

+

∫
C3

)
g(t)ts−1 dt.
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We consider an arbitrary compact disk |s| ≤ M and prove that the integrals along
C1 and C3 converge uniformly on every such disk. Since the integrand is an entire
function of s, this will prove that I(s, x) is entire.

We have t = re−πi on C1, t = reπi on C3 (with r varying from c > 0 to ∞) and
g(t) = g(−r). Also, let us denote σ = Re(s). Along C1 and C3, for r ≥ 1,

|ts−1| = rσ−1|e±πi(σ−1+iy)| = rσ−1e±πy ≤ rM−1eπM .

Hence on either C1 or C3, for r ≥ 1,∣∣g(t)ts−1
∣∣ ≤ rM−1eπM |g(−r)| .

Following the proof of Lemma 7.1, we find that g(−r) is bounded by

c̃
e(|x|−1)r

|x|α−1/2
.

That means |g(t)ts−1| ≤ ArMe(|x|−1)|r| for some constant A depending on M and x.
Since the integral

∫∞
c

rMe(|x|−1)r dr converges when c > 0 and −1 < x < 1, this
shows the convergence along C1 and C3 and hence, I(s, x) is entire.

Now, we compute I(s, x) by (7.7), taking into account that t = ceiθ (with −π ≤
θ ≤ π) on C2. Let us take

2πiI(s, x) =

∫ c

∞
rs−1e−πisg(−r) dr

+

∫ π

−π

cs−1eiθ(s−1)g(ceiθ)iceiθ dθ +

∫ ∞

c

rs−1eπisg(−r) dr.

The sum of the integrals along C1 and C3 is equal to∫ ∞

c

rs−1g(−r)(eπis − e−πis) dr = 2i sin(sπ)

∫ ∞

c

rs−1g(−r) dr

=: 2i sin(sπ)I1(s, c),

and the integral along C2 is equal to

ics
∫ π

−π

eiθsg(ceiθ) dθ =: icsI2(s, c).

Dividing by 2i, we get

πI(s, x) = sin(sπ)I1(s, c) +
cs

2
I2(s, c).

If we take c → 0, we notice that I1(s, c) → Γ(s)ζα(s, x) if σ > 1, where ζα(s, x)
is the function defined in (4.13), so it only remains to prove that I2(s, c) → 0 as
c → 0.

Notice that g(t) is analytic in |t| < s1 except on the simple pole at t = 0. Hence
g(t)t is analytic everywhere on |t| < s1 and so it is bounded here, say g(t) ≤ A/|t|
for some constant A > 0 and |t| = c > 0. Therefore we have

|I2(s, c)| ≤
cσ

2

∫ π

−π

e−yθ A

c
dθ ≤ Aeπ|y|cσ−1.

If σ > 1 and c → 0, we find I2(s, c) → 0. In conclusion, for σ > 1,

πI(s, x) = sin(sπ)Γ(s)ζα(s, x),

and finally, using that Γ(s)Γ(1− s) = π/ sin(πs), we get (5.2). □

Let us give the proof of Theorem 5.2, where we show that the unique singularity
of ζα(s, x), such as defined in (5.3), is a simple pole at s = 1.
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Proof of Theorem 5.2. Since I(s, x) is entire, the only possible singularities of ζα(s, x)
are the poles of Γ(1− s), that is, the points s = 1, 2, 3, . . . But ζα(s, x) is analytic
for s > 1, so s = 1 is the only possible pole of ζα(s, x).

If s is any integer, say s = n, the integrand in the contour integral for I(s, x)
takes the same values on C1 as on C3, and hence the integrals along C1 and C3

cancel, leaving, by Cauchy’s residue theorem,

I(n, x) =
1

2πi

∫
C2

Eα(xt)

Eα(−t)− Eα(t)
tn−1 dt = Res

t=0

( Eα(xt)

Eα(−t)− Eα(t)
tn−1

)
.

In particular, when s = 1 we have

I(1, x) = Res
t=0

( Eα(xt)

Eα(−t)− Eα(t)

)
= − lim

t→0

tEα(xt)(α+ 1)

Iα+1(t)t
= −(α+ 1).

To find the residue of ζα(s, x) at s = 1 we compute the limit

lim
s→1

(s− 1)ζα(s, x) = − lim
s→1

(1− s)Γ(1− s)I(s, x) = −I(1, x) lim
s→1

Γ(2− s) = α+ 1.

This proves that ζα(s, x) has a simple pole at s = 1 with residue α+ 1. □

Now that Theorem 5.1 is proved, we can obtain the expression of ζα(−n, x), for
n = 0, 1, 2, . . . related to the Bernoulli-Dunkl polynomials:

Proof of Theorem 5.3. Evaluating at s = −n in (5.1) we get ζα(−n, x) = n! I(−n, x).
Applying Cauchy’s residue theorem, we have

I(−n, x) = Res
t=0

(
Eα(xt)

Eα(−t)− Eα(t)
t−n−1

)
= Res

t=0

(
−(α+ 1)

Eα(xt)

Iα+1(t)
t−n−2

)
= −(α+ 1)Res

t=0

(
t−n−2

∞∑
m=0

Bm,α(x)

γm,α
tm

)

= −(α+ 1) lim
t→0

(
t−n−1

∞∑
m=0

Bm,α(x)

γm,α
tm

)
= −(α+ 1)

Bn+1,α(x)

γn+1,α
. □

Now we are ready to prove the convergence of the Lerch-Dunkl zeta function
F(x, s) defined in (5.7), and the Hurwitz-Dunkl formula:

Proof of Theorem 5.4. We begin by proving the convergence of (5.7), with Re(s) >
1, for x ∈ R. For real values of the variable, we have

Jα(t)
2 + Jα+1(t)

2 =
2

πt
(1 + o(1)), t → ∞,

so limn s
1/2
n |Jα(sn)| =

√
2/π, and consequently

|Iα(ism)| ∼ Cs−α−1/2
m , t → ∞.

Moreover, |Eα(xism)| ≤ C|xsm|−α−1/2 by (4.2). Then,∣∣∣∣Eα(xism)

Iα(ism)

1

ssm

∣∣∣∣ ≤ C|x|−α−1/2s−s
m ,

and this guarantees the absolute convergence of (5.7).
To prove (5.8), let us consider the contour integral

(7.8) IN (s, x) =
1

2πi

∫
C(N)

Eα(xt)

Eα(−t)− Eα(t)
ts−1 dt,

where C(N) is the loop shown in Figure 3. We now denote σ = Re(s).
First we prove that limN→∞ IN (s, x) = I(s, x) if σ < 0. For this it suffices to

show that the integral along the outer circle tends to 0 as N → ∞.
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0•

isN•
isN+1•

−isN•
−isN+1•

Figure 3. The contour C(N) from (7.8).

On the outer circle we have t = Reiθ, −π ≤ θ ≤ π, hence

|ts−1| = |Rσ−1eπi(σ+iy)| = Rσ−1e−yπ ≤ Rσ−1eπ|y|.

Since the outer circle lies in the set S of Lemma 7.1, the integrand is bounded
by ARσ−1eπ|y|, where A is the bound for g(t) implied by Lemma 7.1; hence, the
integral is bounded by 2πARσeπ|y|. This tends to 0 as R → ∞ if σ < 0. Therefore,
replacing s by 1− s, we see that

lim
N→∞

IN (1− s, x) = I(1− s, x), if σ > 1.

Since
Eα(xt)

Eα(−t)− Eα(t)
t−s = −Eα(xt)(α+ 1)

Iα+1(t)
t−s−1,

the poles of g(t)t−s are just the zeros of Iα+1(t), say ism, m ∈ Z \ {0} (we don’t
take into account the pole at t = 0 because C(N) doesn’t contain it). We compute
IN (1− s, x) explicitely by Cauchy’s residue theorem. We have

(7.9) IN (1− s, x) = −
m=N∑
m=−N
m ̸=0

R(m) = −
m=N∑
m=−N
m ̸=0

Res
t=ism

(
Eα(xt)

Eα(−t)− Eα(t)
t−s

)
.

Now, if m > 0,

−R(m) = lim
t→ism

(t− ism)
Eα(xt)(α+ 1)

Iα+1(t)
t−s−1

= Eα(xism)(ism)−s−1(α+ 1) lim
t→ism

(t− ism)

Iα+1(t)

= Eα(xism)(ism)−s−1(α+ 1)
1

I ′
α+1(ism)

.

Now, we compute I ′
α+1(ism) as follows. First, let us write Iα(z) = 2αΓ(α +

1)Iα(z)/z
α, where Iα is the modified Bessel function of the first kind and order α,

see [35, 28]. We will use the identities (see, for instance, [28, 10.29.2])

(7.10) I ′α(z) = Iα+1(z) +
α

z
Iα(z)

and

(7.11) I ′α(z) = Iα−1(z)−
α

z
Iα(z).

By (7.10) we have

(7.12) I ′
α(z) = 2αΓ(α+ 1)

(
I ′α(z)

zα
− α

Iα(z)

zα+1

)
=

z

2(α+ 1)
Iα+1(z),
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and by (7.11) (with α+ 1 instead of α) we deduce that

I ′
α+1(z) = 2α+1Γ(α+ 2)

(
I ′α+1(z)

zα+1
− (α+ 1)

Iα+1(z)

zα+2

)
= 2α+1Γ(α+ 2)

(
Iα(z)

zα+1
− 2(α+ 1)

Iα+1(z)

zα+2

)
=

2(α+ 1)

z
(Iα(z)− Iα+1(z)).

Hence, I ′
α+1(ism) = 2(α+1)

ism
Iα(ism). Therefore we get, for m = 1, 2, . . . ,

(7.13) −R(m) =
1

2

Eα(xism)

Iα(ism)
(ism)−s.

Analogously, for m = −1,−2, . . . , we can compute −R(m) the same way as before,
but taking into account that s−m = −sm and knowing that Iα(t) is an even function
of t. In this case, we get

(7.14) −R(m) =
1

2

Eα(−xism)

Iα(ism)
(−ism)−s.

By (7.13) and (7.14) we are able to compute (7.9). Indeed,

IN (1− s, x) =
i−s

2

N∑
m=1

Eα(xism)

Iα(ism)ssm
+

(−i)−s

2

N∑
m=1

Eα(−xism)

Iα(ism)ssm
.

Writing i−s = e−πs/2 and (−i)−s = eπs/2 and taking N → ∞ we get

I(1− s, x) =
1

2

(
e−πsi/2

∞∑
m=1

Eα(xism)

Iα(ism)ssm
+ eπsi/2

∞∑
m=1

Eα(−xism)

Iα(ism)ssm

)
.

Since ζα(1− s, x) = Γ(s)I(1− s, x), if we call F(x, s) =
∑∞

m=1
Eα(xism)
Iα(ism)ssm

we finally

get the Hurwitz-Dunkl formula (5.8). □

The Hurwitz-Dunkl formula gives us an expression for ζα(s, x) free of the intricate
integrals. With it, we can easily prove Theorem 5.5.

Proof of Theorem 5.5. Taking x = 1 in the Hurwitz-Dunkl formula (5.8), we get
F(1, s) =

∑∞
m=1 1/s

s
m, since Eα(±ism) = Iα(ism). Hence,

ζα(1−s) = ζα(1−s, 1) =
Γ(s)

2

∞∑
m=1

1

ssm

(
e−πsi/2 + eπsi/2

)
= Γ(s) cos

(πs
2

) ∞∑
m=1

1

ssm
.

Changing 1− s for s we get the equivalent expression in terms of sin(x). □

7.2. The Euler-type Dunkl zeta function case. Now we prove the analogous
results for ζE,α(s, x) and ζE,α(s).

Lemma 7.2. Let {jm}∞m=1 be the positive zeros of Jα(t) and let S = C \ {0,±ij1,
±ij2, . . . }. Then for x ∈ [−1, 1] \ {0}, the function

h(t) =
Eα(xt)

Eα(−t) + Eα(t)

is bounded on compact subsets of S and compact subsets of x ∈ [−1, 1] \ {0}. Fur-
thermore, if α < 1/2, then for x = 0 the function h(t) is bounded on compact
subsets of S.
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Proof. We start again by taking a large circle D = {z ∈ C : |z| = A} of radius
A with the only condition that none of the points jm, m ∈ Z \ {0}, must lie
on D. The poles of h(t) inside D are jm, with |jm| < A, and all of them are
simple. For any compact set K ⊂ [−1, 1] \ {0} the radius A can be chosen with the
additional property that there exist c, C > 0 such that, for any t ∈ D and x ∈ K,
equations (7.1), (7.5) and (7.6) are satisfied. Hence, we have∣∣∣∣ Eα(xt)

Eα(−t) + Eα(t)

∣∣∣∣ = ∣∣∣∣Eα(tx)

2Iα(t)

∣∣∣∣ = ∣∣∣∣Iα(tx)2Iα(t)
+

xtIα+1(tx)

4(α+ 1)Iα(t)

∣∣∣∣
=

∣∣∣∣Jα(itx)i+ Jα+1(itx)

2xαJα(it)

∣∣∣∣ ≤ c̃
e(|x|−1)|Re(t)|

|x|α−1/2

for some constant c̃ depending only on α and K. This proves the result for x ∈
[−1, 1] \ {0}. Finally, we consider the particular case x = 0. As Eα(0) = 1, it
follows that

|h(t)| =
∣∣∣∣ 1

2Iα(t)

∣∣∣∣ ≤ c̃
|t|α+1/2

e|Re(t)| ,

which is bounded, when |t| ≥ A, if α < 1/2. Hence, for x = 0, h(t) is bounded on
S if α < 1/2. □

Proof of Theorem 5.8. The proof is identical to the one of Theorem 5.1 but using
the bound of Lemma 7.2 instead. □

Proof of Theorem 5.9. The convergence of FE(x, s), for x ∈ R, can be proved as in
the case of Theorem 5.4, this time with |Iα+1(jm)| ∼ C|jm|−α−1−1/2, so∣∣∣∣ Eα(ijmx)

Iα+1(ijm)

1

js+1
m

∣∣∣∣ ≤ C|x|−α−1/2j−s
m ,

and the converges is again for Re(s) > 1.
To prove (5.14), let us now consider

IN (s, x) =
1

2πi

∫
C(N)

Eα(xt)

Eα(−t) + Eα(t)
ts−1 dt

with C(N) the loop of Figure 3. On the outer circle the integrand is bounded
by ARσ−1eπ|y|, where A is the bound for h(t) implied by Lemma 7.2; hence, the
integral is bounded by 2πARσeπ|y|. If σ < 0 the integral IN (s, x) → 0 along
the outer circle of C(N) when R → ∞. Hence, replacing s for 1 − s, we get
limN→∞ IN (1−s, x) = IE(1−s, x) for σ > 1. We compute IN (1−s, x) by Cauchy’s
residue theorem. Let m = 1, 2, . . . We compute the residue at t = ijm using (7.12):

−R(m) = − Res
t=ijm

(
Eα(xt)

2Iα(t)
t−s

)
= − lim

t→ijm
(t− ijm)

(
Eα(xt)

2Iα(t)
t−s

)
= −Eα(ijmx)

2I ′
α(ijm)

(ijm)−s = − (α+ 1)Eα(ijmx)

Iα+1(ijm)
(ijm)−s−1.

Also, when m = −1,−2, . . . , we have

−R(m) = − (α+ 1)Eα(−ijmx)

Iα+1(−ijm)
(−ijm)−s−1.

Then,

IN (1− s, x) = −
N∑

m=−N
m̸=0

R(m) = −
N∑

m=−N
m̸=0

(α+ 1)Eα(ijmx)

Iα+1(ijm)
(ijm)−s−1.

Letting N → ∞, we get (5.14). □
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[13] Ó. Ciaurri, A. J. Durán, M. Pérez and J. L. Varona, Bernoulli-Dunkl and Apostol-Euler-
Dunkl polynomials with applications to series involving zeros of Bessel functions, J. Approx.

Theory 235 (2018), 20–45.
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