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Abstract. We prove two-weight norm inequalities for Cesàro means of gen-

eralized Hermite polynomial series and for the supremum of these means. A
result about weak boundedness and an almost everywhere convergence result

are also obtained.

1. Introduction

Given a real number µ > −1/2, let {H{µ}
n }∞n=0 be the so-called generalized

Hermite polynomials of order µ; see [2, Ch. V, § 2 (G), p. 156]. These polynomials
are orthogonal on L2(R, |x|2µe−x2

dx), and they are uniquely defined by requiring
that the leading coefficient of the polynomial H

{µ}
n (x) be 2n. The sequence of

generalized Hermite functions {H{µ}
n }∞n=0 is defined by

H{µ}
n (x) := 2−n

([n

2

]
!
)−1/2

Γ
([n + 1

2

]
+ µ +

1
2

)−1/2

|x|µe−x2/2H{µ}
n (x),

where, as usual, [ · ] denotes the greatest integer function. The system {H{µ}
n }∞n=0

is orthonormal on L2(R, dx). Of course, these polynomials and functions are gener-
alizations of the “ordinary” Hermite polynomials and functions, which correspond
to the case µ = 0. They play an important role as eigenfunctions of the Dunkl
transform.

When we have an orthogonal system and a function, we can consider its Fourier
series with respect to the system. An interesting problem is the study of the
convergence of such Fourier expansions. If the system is complete, this is always true
for functions in the appropriate L2 space, but not always for functions in Lp, p 6= 2;
also, we cannot ensure almost everywhere convergence. It is well known the relation
between the uniform boundedness of partial sum operators and the convergence of
the series, a crucial fact in this problem. When studying the uniform boundedness,
extra weights can be added, and this leads to convergence in different weighted Lp

spaces. If the convergence of the Fourier series fails, another summation methods
can be considered; in particular, the convergence of Cesàro means.

These kind of questions have been widely studied for the classical Hermite sys-
tem [1, 5, 8, 7], but not for the generalized Hermite system. This is the aim of this
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paper. In particular, we are going to extend the results of [7] concerning Cesàro
means of Hermite expansions to generalized Hermite expansions.

For a function f , let σ
{µ}
δ,n (f, x) be the nth Cesàro mean of order δ > 0 of the

expansion of f in orthonormalized generalized Hermite functions {H{µ}
n }∞n=0 of

order µ > −1/2. Also, let us use ‖ · ‖p to denote the unweighted Lp norm on
(−∞,∞). We prove inequalities of the form

sup
n≥0

∥∥∥|x|a(1 + |x|)b−aσ
{µ}
δ,n (f, x)

∥∥∥
p
≤ C

∥∥∥|x|A(1 + |x|)B−Af(x)
∥∥∥

p

for 1 ≤ p ≤ ∞ (Theorem 1), and∥∥∥|x|a(1 + |x|)b−a sup
n≥0

|σ{µ}δ,n (f, x)|
∥∥∥

p
≤ C

∥∥∥|x|A(1 + |x|)B−Af(x)
∥∥∥

p

for 1 < p ≤ ∞ (Theorem 2), where C is independent of f . A result about weak
boundedness for the supremum when p = 1 (Theorem 3), and an almost everywhere
convergence result (Theorem 4) are also proved.

An important point in the study of this question is to obtain estimates for the
kernel of σ

{µ}
δ,n . This can be done in a direct way, such as it is done in [4] for the case

µ = 0 and δ = 0 (i.e., the Fourier series itself). On the other hand, the kernel can
be written in terms of Cesàro-Laguerre kernels, and so previously known results for
Laguerre can be applied.

If the order of summation, δ, is an integer, this is simple since the generalized
Cesàro-Hermite kernel is a linear combination of a fixed finite number of Cesàro-
Laguerre kernels. This fact was used for the first time in [8], for the case µ = 0
and δ = 1. In [10, Chapter 6], this is done for the general case µ > −1/2, both for
δ = 0 and δ = 1.

For arbitrary δ > 0, obtaining the estimate for the kernel of σ
{µ}
δ,n is more com-

plicated, because the expression that relates Hermite kernels with Laguerre kernels
contains n+1 terms. When µ = 0, this decomposition is shown in [7, Lemma (3.8)];
and the generalization for the arbitrary µ > −1/2 is not difficult. Combining the
decomposition with the precise estimates for Laguerre kernels of [11], an estimate
for classical Hermite kernels is given in [7, Theorem (4.5)]. Then, because of the
similarity of the estimate to the Laguerre case, the norm inequalities are established
using the methods and the results of [6].

In this paper, we extend the aforementioned studies to the general case µ > −1/2.
But this is not the only purpose of the paper, but also to show a different approach:
we make use of the results in [6], but in a way different to the way in [7].

Instead of using Cesàro means of generalized Hermite series, we will use a differ-
ent summation method, whose means we will denote by σ̃

{µ}
δ,n (see (2) for details).

Actually, it will be a Nørlund method, according to the name given in [3, Chap-
ter IV] (also Cesàro means are particular cases of Nørlund methods). We will see
that σ̃

{µ}
δ,n can be decomposed as a sum of two Cesàro-Laguerre means (see the for-

mula (3)); i.e, we have only two summands in the relation between Laguerre and
Hermite, instead of the n + 1 summands that appear when using Cesàro-Hermite.
As a consequence of the fixed number of summands, the uniform boundedness of
σ̃
{µ}
δ,n follows immediately from the uniform boundedness of Cesàro-Laguerre: con-

trary to [7], it is not necessary the cumbersome process of finding bounds for the
kernel of σ̃

{µ}
δ,n . Also, we completely eliminate the part corresponding to the use of
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the bounds of the kernel to study the uniform boundedness of the operators σ
{µ}
δ,n

(this would require to mimic the process in [6], as explained in [7]).
Finally, we prove that the uniform boundedness for σ̃

{µ}
δ,n imply the uniform

boundedness for the Cesàro-Hermite means σ
{µ}
δ,n ; this is the most technical part

of the paper. In practice, due to the similarity to the Laguerre case, the norm
inequalities, necessity results and convergence results in this paper are essentially
corollaries of the results in [6] for Laguerre expansions with parameter α = µ−1/2.
This happens because the hypotheses over the other parameter involved, µ + 1/2,
are weaker.

Throughout this paper C will be a positive constant independent of f , n, x and
y, but it assumes different values in different occurrences.

2. Generalized Hermite in terms of Laguerre

In the introduction, we have already described generalized Hermite polynomi-
als and functions. Let us now describe Laguerre polynomials and functions. To
clearly differentiate between Hermite and Laguerre (in polynomials, functions, se-
ries, Cesàro means, kernels, bounds, . . . ), we will always use superscripts {·} to
indicate the parameter for Hermite, and superscripts (·) for Laguerre parameters.

Given a real number α > −1, let {L(α)
n }∞n=0 be the Laguerre polynomials of

order α; see, for instance, [2, Ch. V, § 2 (A), p. 144]. These polynomials are or-
thogonal on L2((0,∞), xαe−x dx), and they are uniquely defined by requiring that
the leading coefficient of L

(α)
n (x) be (−1)n/n!. The sequence of Laguerre functions

{L(α)
n }∞n=0 is defined by

L(α)
n (x) := Γ(α + 1)−1/2(Aα

n)−1/2xα/2e−x/2L(α)
n (x),

where Aα
n =

(
n+α

n

)
. The system {L(µ)

n }∞n=0 is orthonormal on L2((0,∞), dx).
It is interesting to note that, for Hermite polynomials, only the case µ = 0 is

“classical”, according to the characterizations of the classical orthogonal polynomi-
als; see [2, Ch. V, § 2 (D), p. 150]. However, Laguerre polynomials are considered
as classical for every α > −1, although only the case α = 0 was originally studied
by Laguerre.

The generalized Hermite polynomials are related to the Laguerre polynomials
by the identities

H
{µ}
2n (x) = (−1)n22nn!L(µ−1/2)

n (x2),

H
{µ}
2n+1(x) = (−1)n22n+1n!xL(µ+1/2)

n (x2)

(we must comment that in [2, Ch. V, § 2 (G), p. 156] there is a misprint in the
second identity, the factor x was omitted). Then, each H{µ}

n can be expressed in
terms of some L(α)

n ; namely, given a nonnegative integer n and a real number x,

(1)
H{µ}

2n (x) = (−1)n|x|1/2L(µ−1/2)
n (x2),

H{µ}
2n+1(x) = (−1)n sgn(x)|x|1/2L(µ+1/2)

n (x2).

The generalized Hermite expansion of a function f is
∞∑

k=0

H{µ}
k (x)

(∫ ∞

−∞
f(y)H{µ}

k (y) dy

)
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provided that the integrals (i.e., the Fourier coefficients) exist. For δ > 0, the nth
(C, δ)-Cesàro mean of this expansion is

σ
{µ}
δ,n (f, x) :=

1
Aδ

n

n∑
k=0

Aδ
n−kH

{µ}
k (x)

(∫ ∞

−∞
f(y)H{µ}

k (y) dy

)
.

It follows that

σ
{µ}
δ,n (f, x) =

∫ ∞

−∞
f(y)K{µ}δ,n (x, y) dy,

where

K{µ}δ,n (x, y) :=
1

Aδ
n

n∑
k=0

Aδ
n−kH

{µ}
k (x)H{µ}

k (y).

Similarly, the nth (C, δ)-Cesàro mean for a Laguerre expansion satisfies

σ
(α)
δ,n (f, x) =

∫ ∞

0

f(y)K(α)
δ,n (x, y) dy,

where

K(α)
δ,n (x, y) :=

1
Aδ

n

n∑
k=0

Aδ
n−kL

(α)
k (x)L(α)

k (y).

The main tool to prove the results in this paper will be the use of another
summation method. For a generalized Hermite expansion, the nth (C̃, δ) mean is
defined by

(2) σ̃
{µ}
δ,n (f, x) :=

1
Aδ

[ n
2 ]

n∑
k=0

Aδ
[ n−k

2 ]
H{µ}

k (x)
(∫ ∞

−∞
f(y)H{µ}

k (y) dy

)
.

The point of the (C̃, δ) summation method is that we can express it easily in terms
of the Cesàro means of two Laguerre expansions. So, norm inequalities for σ̃

{µ}
δ,n can

be deduced from the results in [6] for Cesàro-Laguerre expansions. This will be done
in Proposition 1. Moreover, as we will show in Proposition 2, norm inequalities for
σ
{µ}
δ,n follow from the norm inequalities for σ̃

{µ}
δ,n .

Proposition 1. Let 1 ≤ p ≤ ∞, µ > −1/2 and δ > 0.
a) If

sup
n≥0

∥∥∥∥w(x)
∫ ∞

−∞
f(y)|xy|1/2K(µ±1/2)

δ,n (x2, y2) dy

∥∥∥∥
p

≤ C‖W (x)f(x)‖p

then
sup
n≥0

∥∥∥w(x)σ̃{µ}δ,n (f, x)
∥∥∥

p
≤ C‖W (x)f(x)‖p.

b) If∥∥∥∥w(x) sup
n≥0

∣∣∣∣∫ ∞

−∞
f(y)|xy|1/2K(µ±1/2)

δ,n (x2, y2) dy

∣∣∣∣∥∥∥∥
p

≤ C‖W (x)f(x)‖p

then ∥∥∥∥w(x) sup
n≥0

∣∣∣σ̃{µ}δ,n (f, x)
∣∣∣∥∥∥∥

p

≤ C‖W (x)f(x)‖p.
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The proof of this result follows immediately from the identity

(3) σ̃
{µ}
δ,n (f, x) =

∫ ∞

−∞
f(y)|xy|1/2K(µ−1/2)

δ,[ n
2 ] (x2, y2) dy

+
∫ ∞

−∞
f(y) sgn(xy)|xy|1/2K(µ+1/2)

δ,[ n−1
2 ]

(x2, y2) dy,

which can be easily obtained by using (1).

Remark 1. Actually, we can prove the reverse condition both in parts (a) and (b).
For this, it suffices to take even and odd functions. Then, one of the two summands
in (3) vanishes, and so the boundedness of σ̃

{µ}
δ,n is equivalent to the boundedness of

Cesàro-Laguerre means. In particular, this would ensure that, in the situation of
Theorem 1, the sufficient conditions are also necessary for the uniform boundedness
of σ̃

{µ}
δ,n , because this is what happens in the Laguerre case [6].

Proposition 2. Let 1 ≤ p ≤ ∞, µ > −1/2 and δ > 0.

a) If

sup
n≥0

∥∥∥w(x)σ̃{µ}δ,n (f, x)
∥∥∥

p
≤ C‖W (x)f(x)‖p

then

sup
n≥0

∥∥∥w(x)σ{µ}δ,n (f, x)
∥∥∥

p
≤ C‖W (x)f(x)‖p.

b) If ∥∥∥∥w(x) sup
n≥0

∣∣∣σ̃{µ}δ,n (f, x)
∣∣∣∥∥∥∥

p

≤ C‖W (x)f(x)‖p

then ∥∥∥∥w(x) sup
n≥0

∣∣∣σ{µ}δ,n (f, x)
∣∣∣∥∥∥∥

p

≤ C‖W (x)f(x)‖p.

Proof. The proof of these results relies on the ideas of [3, § 4.3] about the inclusion
of different Nørlund methods. Let us begin writing σ

{µ}
δ,n in terms of σ̃

{µ}
δ,n . By using

the identity Aδ
m −Aδ

m−1 = Aδ−1
m , it is clear that

σ
{µ}
δ,n (f, x) =

1
Aδ

n

n∑
k=0

Aδ−1
n−kS

{µ}
k (f, x),

where

S
{µ}
k (f, x) =

k∑
i=0

H{µ}
i (x)

(∫ ∞

−∞
f(y)H{µ}

i (y) dy

)
are the partial sums of the Fourier series. In a similar way, we can show that

σ̃
{µ}
δ,n (f, x) =


1

Aδ
m

m∑
k=0

Aδ−1
m−kS

{µ}
2k (f, x), if n = 2m,

1
Aδ

m

m∑
k=0

Aδ−1
m−kS

{µ}
2k+1(f, x), if n = 2m + 1.
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From this point on, we will consider n = 2m. The case n = 2m + 1 is similar. It is
easy to verify that

σ
{µ}
δ,2m(f, x) =

1
Aδ

2m

m∑
j=0

Aδ−1
2(m−j)S

{µ}
2j (f, x) +

1
Aδ

2m

m−1∑
j=0

Aδ−1
2(m−j)−1S

{µ}
2j+1(f, x)

=: σ
{µ,1}
δ,2m (f, x) + σ

{µ,2}
δ,2m (f, x).

Now, we claim that

σ
{µ,1}
δ,2m (f, x) =

1
Aδ

2m

m∑
j=0

Aδ
j

(
δ

2(m− j)

)
σ̃
{µ}
δ,2j(f, x)(4)

and

σ
{µ,2}
δ,2m (f, x) =

1
Aδ

2m

m−1∑
j=0

Aδ
j

(
δ

2(m− j)− 1

)
σ̃
{µ}
δ,2j+1(f, x).(5)

Then, the proof can be concluded using two facts: for a constant C independent
of m and 0 ≤ j ≤ m, the binomial coefficients satisfy Aδ

j ≤ CAδ
2m; and, finally,∑∞

j=0 |
(
δ
j

)
| < ∞.

Now, let us check our claim. We only prove (4), because the identity (5) follows
in the same way. Taking the power series (which are absolutelly convergent for |t|
small enough)

s(t) =
∞∑

m=0

S
{µ}
2m (f, x)tm, p(t) =

∞∑
m=0

Aδ−1
2m tm and q(t) =

∞∑
m=0

Aδ−1
m tm,

it is clear that

s(t)p(t) =
∞∑

m=0

Aδ
2mσ

{µ,1}
δ,2m (f, x)tm and s(t)q(t) =

∞∑
m=0

Aδ
mσ̃

{µ}
δ,2m(f, x)tm.

Moreover,

p(t) =
(1 +

√
t)δ + (1−

√
t)δ

2(1− t)δ
, q(t) =

1
(1− t)δ

and
p(t)
q(t)

=
1
2
((1 +

√
t)δ + (1−

√
t)δ) =

∞∑
m=0

(
δ

2m

)
tm.

In this way,
∞∑

m=0

Aδ
2mσ

{µ,1}
δ,2m (f, x)tm =

p(t)
q(t)

s(t)q(t) =
∞∑

m=0

(
δ

2m

)
tm ·

∞∑
m=0

Am
δ σ̃

{µ}
δ,2m(f, x)tm

=
∞∑

m=0

 m∑
j=0

Aδ
j

(
δ

2(m− j)

)
σ̃
{µ}
δ,2j(f, x)

 tm

and so we have (4). �

Remark 2. In general, the converse results are not true. If we try to prove them, a
problem arises: the series

∑∞
j=0 |

(−δ
j

)
| does not converge.
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3. Norm inequalities and convergence results

Here, we establish the main results of the paper. Most of their proofs are im-
mediate by applying [6] together with Propositions 1 and 2; only the necessary
conditions will require some extra comments. Analogs of other results in [6] or [7]
could be obtained similarly; in particular, the theorems corresponding to the case
a = A = b = B = r.

Definition 1. Let 1 ≤ p ≤ ∞, µ > −1/2 and δ > 0. We say that parameters
(a, b, A,B, µ, δ) satisfy the HNp conditions if

a ≥ −δ − 1/p,(6)

a > −µ− 1/p (≥ if p = ∞),(7)

A− a ≤ 0,(8)

A ≤ 1 + δ − 1/p,(9)

A < 1 + µ− 1/p (≤ if p = 1),(10)

a + B ≥ −1− 2δ − 2/(3p),(11)

a + B ≥ −2δ − 2/p,(12)

A + b ≤ 2 + 2δ − 2/p,(13)

A + b ≤ 5/3 + 2δ − 2/(3p),(14)

b ≤ 1 + 2δ − 1/p,(15)

b ≤ 2/3 + 2δ + 1/(3p),(16)

b−B ≤ 1 + 2δ − 4/(3p),(17)

b−B ≤ 0,(18)

b−B ≤ −1/3 + 2δ + 4/(3p),(19)

B ≥ −1− 2δ + 1/(3p),(20)

B ≥ −2δ − 1/p,(21)

and in at least one of each of the following pairs the inequality is strict: (6) and
(8) except for p = 1, (6) and (12), (8) and (9) except for p = ∞, (9) and (13), (11)
and (12), (11) and (20), (12) and (21) except for p = ∞, (13) and (14), (13) and
(15) except for p = 1, (14) and (16), (15) and (16), (16) and (19), (17) and (20),
(20) and (21).

Theorem 1. Let 1 ≤ p ≤ ∞, µ > −1/2, δ > 0, and suppose (a, b, A,B, µ, δ) satisfy
the HNp conditions. Then

(22) sup
n≥0

∥∥∥|x|a(1 + |x|)b−aσ
{µ}
δ,n (f, x)

∥∥∥
p
≤ C

∥∥|x|A(1 + |x|)B−Af(x)
∥∥

p

with C independent of f . Conversely, let us suppose that (22) holds; thus, if µ ≤ δ,
then (a, b, A,B, µ, δ) satisfy the HNp conditions; and, if µ > δ, then (a, b, A,B, µ, δ)
satisfy the HNp conditions except for, perhaps, (6), (9) and their pair conditions.

For p 6= ∞, it is a corollary that, under the conditions of the previous theorem,
we have lim

n→∞
σ
{µ}
δ,n f = f in the Lp((−∞,∞), |x|ap(1 + |x|)(b−a)p dx)-norm for every

f ∈ Lp((−∞,∞), |x|Ap(1 + |x|)(B−A)p dx).
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Definition 2. Let 1 ≤ p ≤ ∞, µ > −1/2 and δ > 0. We say that parameters
(a, b, A,B, µ, δ) satisfy the HSp conditions if they satisfy inequalities (7)–(12), (18),
(20)–(21),

a > −δ − 1/p (≥ if p = ∞),(23)

A + b ≤ 5/3 + 2δ − 2/p,(24)

b < 2/3 + 2δ − 1/p (≤ if p = ∞),(25)

b−B ≤ −1/3 + 2δ,(26)

and in at least one of each of the following pairs the inequality is strict: (8) and
(9) except for p = ∞, (8) and (10), (8) and (23), (10) and (24), (11) and (12), (11)
and (20), (12) and (21) except for p = ∞, (12) and (23), (20) and (21), (20) and
(26) for p = 1, (24) and (25), (25) and (26).

Theorem 2. Let 1 < p ≤ ∞, µ > −1/2, δ > 0, and suppose (a, b, A,B, µ, δ) satisfy
the HSp conditions. Then

(27)
∥∥∥∥|x|a(1 + |x|)b−a sup

n≥0
|σ{µ}δ,n (f, x)|

∥∥∥∥
p

≤ C
∥∥|x|A(1 + |x|)B−Af(x)

∥∥
p

with C independent of f .

Note that since (27) implies (22), the necessary conditions of Theorem 1 are also
necessary for (27). On the other hand, the condition (26) is not necessary: following
the method of [6, § 10], some hypotheses that guarantee (27) with b−B > 2δ− 1/3
can be found.

Theorem 3. If µ > −1/2, δ > 0, (a, b, A,B, µ, δ) satisfy the HS1 conditions and
Eλ is the set where |x|a(1 + |x|)b−a supn≥0

(∣∣σ{µ}δ,n (f, x)
∣∣) > λ, then

|Eλ| ≤ (C/λ)
∥∥|x|A(1 + |x|)B−Af(x)

∥∥
1

holds with C independent of f and λ.

Theorem 4. If 1 ≤ p ≤ ∞, µ > −1/2, δ > 0, (9), (10), (20) and (21) are satisfied
with equality in at most one of (20) and (21), and∥∥|x|A(1 + |x|)B−Af(x)

∥∥
p

< ∞,

then lim
n→∞

σ
{µ}
δ,n (f, x) = f(x) for almost every x ∈ R.

Theorem 4 is proved by choosing an a large enough and a b small enough that
a, A, b and B satisfy the conditions of Theorem 2 if p > 1 or Theorem 3 if p = 1.
The conclusions of those theorems then imply the almost everywhere convergence
by a standard argument.

To prove the sufficiency of the conditions in Theorem 1, applying Propositions 1
and 2, and using that the kernel and the weight functions are even in both x and
y, it is enough to show that∫ ∞

0

xap(1 + x)(b−a)p

∣∣∣∣∫ ∞

0

f(y)(xy)1/2K(µ±1/2)
δ,n (x2, y2) dy

∣∣∣∣p dx

≤ C

∫ ∞

0

xAp(1 + x)(B−A)p|f(x)|p dx.
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With the change of variables x =
√

z, y =
√

u, and taking g(u) = u−1/4|f(
√

u)|,
this is equivalent to∫ ∞

0

z(2a+1)p/4−1/2(1 + z)(b−a)p/2|σ(µ±1/2)
δ,n (g, z)|p dz

≤ C

∫ ∞

0

z(2A+1)p−1/2(1 + z)(B−A)p/2|g(z)|p dz.

But this inequality holds provided that the parameters

(28)
(

a

2
+

1
4
− 1

2p
,

b

2
+

1
4
− 1

2p
,

A

2
+

1
4
− 1

2p
,

B

2
+

1
4
− 1

2p
, µ± 1

2
, δ

)
satisfy the corresponding Np conditions for Laguerre, defined on [6, p. 1125–1126].
It is now a routine procedure to show that these parameters satisfy the Np condi-
tions for Laguerre if (a, b, A,B, µ, δ) satisfy the hypotheses of Theorem 1, i.e., our
HNp conditions of Definition 1. This completes the sufficiency part of Theorem 1.

Theorems 2 and 3 are proved in the same way as the sufficiency proof of Theo-
rem 1. The same change of variables will reduce the proof to the sufficiency part
of Theorems (2.30) and (2.31) of [6], and it is simple to show that the resulting
parameters (28) satisfy the corresponding Sp conditions for Laguerre (defined on [6,
p. 1126]).

Now, let us analyze the necessity of the conditions in Theorem 1. First, it is clear
that the orthogonal functions must satisfy H{µ}

n (x)|x|a(1+ |x|)b−a ∈ Lp(R, dx); this
is equivalent to (7). Second, we must ensure that the Fourier coefficients exist for
every function f such that f(x)|x|A(1 + |x|)B−A ∈ Lp(R, dx); by duality, this is
equivalent to H{µ}

n (x)|x|−A(1 + |x|)A−B ∈ Lp′(R, dx) (being 1/p + 1/p′ = 1), and
so we get the necessity of (10).

In addition, for a fixed δ > 0 and r > 0, Theorem 4 implies that |σ{µ}δ,n (χ[r,2r], x)|
converges almost everywhere to χ[r,2r](x). From Fatou’s lemma and (22) it follows
that ∥∥xa(1 + x)b−aχ[r,2r](x)

∥∥
p
≤ C

∥∥xA(1 + x)B−Aχ[r,2r](x)
∥∥

p
;

(8) and (18) follow from this. Next, a standard argument as given on [6, p. 1141]
or [9, p. 113] shows that (22) implies∥∥∥|x|a(1 + |x|)b−aH{µ}

n (x)
∥∥∥

p

∥∥∥|x|−A(1 + |x|)A−BH{µ}
n (x)

∥∥∥
p′
≤ C(n + 1)δ.

The necessity of the rest of the HNp conditions in Theorem 1, except (6), (9) and
the pair restrictions for these inequalities, follow from this and the following lemma:

Lemma 1. Let 1 ≤ p ≤ ∞, µ > −1/2 and n ≥ 2. Then,∥∥∥|x|a(1 + |x|)b−aH{µ}
2n (x)

∥∥∥
p

≥ C
(
n−1/4 + n−a/2−1/4−1/(2p) + nb/2−1/4+1/(2p) + nb/2−1/12−1/(6p)

)
.

Moreover, if a = −1/p or b = −1/p, then∥∥∥|x|a(1 + |x|)b−aH{µ}
2n (x)

∥∥∥
p
≥ Cn−1/4(log n)1/p;

and, for p = 4, we have∥∥∥|x|a(1 + |x|)b−aH{µ}
2n (x)

∥∥∥
4
≥ Cnb/2−1/8(log n)1/4.
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To prove Lemma 1, use H{µ}
2n (x) = (−1)n

√
|x|L(µ−1/2)

n (x2) and make a change
of variables to show that∥∥∥|x|a(1 + |x|)b−aH{µ}

2n (x)
∥∥∥

p
≥ C

∥∥∥xa/2+1/4−1/(2p)(1 + x)(b−a)/2L(µ−1/2)
n (x)

∥∥∥
p
,

where the norm on the right is taken over [0,∞). Then, the result follows immedi-
ately from [6, Lemma (7.2), p. 1142].

To complete the proof of Theorem 1, it is enough to prove that (6) and (9) are
also necessary when µ ≤ δ. This is clear because they are implied by (7) and (10).
In the case µ > δ, by applying Lemma 1, instead of the conditions (6) and (9), we
get the necessity of a ≥ −2δ − 1− 1/p and A ≤ 2δ + 2− 1/p, that are weaker.

Finally, let us comment the necessity (or not) of conditions (6) and (9) (and the
pair restrictions involving them). When, in [7], Cesàro-Laguerre series are studied,
the proof of the necessity of the conditions corresponding to (6) and (9) is based
on the lower bounds for K(α)

δ,n (x, y) of [6, Lemma (8.1)] that, moreover, are strongly
dependent on [11]. As stated, it does not seem possible to apply them to get lower
bounds for K{µ}δ,n (x, y). However, it seems reasonable that these lower bounds exist.
It seems feasible to find them, but this would not be a direct consequence of the
Laguerre result; instead, this would require to reproduce a big part of [11, 6], which
is outside of the purposes of the paper.
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