
Superattracting extraneous fixed points and n-cycles for

Chebyshev’s method on cubic polynomials∗
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Abstract

In this work we provide analytic and graphic arguments to explain the behaviour of Cheby-
shev’s method applied to cubic polynomials in the complex plane. In particular, we study the
parameter plane related to this method and we compare it with other previously known, such
as Newton’s or Halley’s methods. Our specific interest is to characterize “bad” polynomials
for which Chebyshev’s method presents convergence to points distinct from the roots (i.e. the
root-finding algorithm fails). In particular, we prove the existence of polynomials for which
Chebyshev’s method has superattracting n-cycles and the existence of polynomials for which
Chebyshev’s method has superattracting extraneous fixed points. The first fact is shared with
other root-finding methods, such as Newton’s or Halley’s, but the second one is an established
dynamic feature of Chebyshev’s method. Here we go depth on the study of the dynamics
related to the superattracting n-cycles of Chebyshev’s method and its relationships with the
superattracting extraneous fixed points, providing some analytical and geometric arguments
to explain the related parameter plane. In particular, we prove the existence of a sequence of
parameters for which the corresponding Chebyshev’s iterative method has a superattracting
n-cycle.
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1 Introduction

The study of the dynamical behaviour of iterative methods for solving nonlinear equations in the
complex plane is a subject that has drawn the attention of researchers in the last decades. Papers
[1], [11], [16] or [18] and the references therein are a good evidence of this fact. The seminal works
of Cayley and Schröder at the end of the 19th century, dealing with Newton’s method applied to
quadratic polynomials, were the beginning of a theory (iteration of rational functions) that has been
in continuous evolution. The application of root-finding methods to polynomial equations leads to
rational maps defined in the extended complex plane. Therefore, the theory and concepts related
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with the iteration of rational maps (see [3, 7, 12, 15]) can be applied in this situation. We assume
that these concepts are known by the reader and we do not proceed to explain them in detail.

The dynamics of Newton’s method for complex polynomials, mainly with low degree, have been
profusely studied by different authors. One of the pioneer works in this field was the paper of Curry,
Garnett and Sullivan [7], that eventually led to many other future studies (see [16], [19] or [21] as
a sample). Other iterative methods, such as Halley’s method, has also been considered (see [16] or
[20], for instance). There is a plethora of iterative methods to be considered, each one with its own
properties and particularities. Not in vain, Halley’s and Chebyshev’s methods are members of the
well known families of Schröder iteration function of first and second kind respectively. The m-th
member of each of these families is an iterative method with order of convergence m.

In this paper, we have chosen Chebyshev’s method, a well-known third-order iterative method,
whose dynamical properties show some surprises. Actually, even for polynomials of low degree,
Chebyshev’s method presents a dynamical behaviour that differs from the aforementioned Newton’s
or Halley’s methods. Even for the simplest case of quadratic polynomials, Chebyshev’s method does
not satisfy the principle of nearest root principal, that holds for the other two methods (see [9], [10]
or [19]); this property, proved by Cayley for quadratic polynomials with Newton’s method, means
that the orbit of an initial seed converges to the closest root, leaving the perpendicular bisector
between the two roots as an invariant set where convergence fails. It is known [11] that in the case
of Chebyshev’s method applied to quadratics, the perpendicular bisector between the two roots is
still invariant and the convergence to the roots fails in it. Therefore it is strictly contained in the
Julia set. The Fatou set of Chebyshev’s method applied to quadratics has got infinite components.
This is another difference with Newton’s or Halley’s methods, where the Fatou set just has two
components.

But even more, unlike other classical iterative methods, such us Newton’s or Halley’s, we can
find polynomials with degree at least three for which Chebyshev’s method presents convergence
to situations different from the roots of the considered polynomial, such as attractive cycles of
attractive extraneous fixed points. This fact was first established by Vrscay (see [19] or [20] for
more details) and in this paper we are going to analyze in depth this subject; see, in particular, the
behavior described in Theorem 4.

For a given nonlinear equation of the form f(z) = 0 and for a given z0 ∈ C, Chebyshev’s method
is defined recursively by zn+1 = Cf (zn), where

Cf (z) = z −
(

1 +
1

2
Lf (z)

)
f(z)

f ′(z)
, (1)

with Lf (z) = f(z)f ′′(z)/f ′(z)2. Throughout this paper it will be convenient for us to introduce
the operator Lf that maps a function f into the quotient

Lf : f 7→ ff ′′

(f ′)2
. (2)

Under appropriate conditions for the initial point z0 and the involved functions f , the sequence
(zn)n≥0 defined by the iteration of Chebyshev’s map converges to a root of the equations f(z) = 0.
The numerical properties of this rootfinding method (local and semilocal convergence, order of
convergence, error estimates, computational efficiency and so on) have been profusely studied by
different authors (see [2] or [8] for instance). In addition, these studies have been carried out for
solving nonlinear equations not only defined in the complex plane, but also in the real line, in a
n-dimensional setting or even in Banach spaces.

2



In order to make the paper as self-contained as posible, we remind some concepts about the
iteration of a rational function R defined in the complex plane (see [3] for more details). It is said
that ζ ∈ C is a fixed point of R if R(ζ) = ζ. The fixed point ζ is classified as superattracting,
attracting or repelling if |R′(ζ)| is 0, belongs to the interval (0, 1) or is bigger than 1, respectively.
If |R′(ζ)| = 1, ζ is said indifferent.

It is said that ζ ∈ C is a periodic point of R if it is a fixed point of some iterated function Rm,
for m ∈ N. Moreover, we say that ζ has period n if and only if it is a fixed point of Rn but not of
Rk for any k < n. In this case, the set

{ζ,R(ζ), R2(ζ), . . . , Rn−1(ζ)}

is called an n-cycle of R. A periodic point ζ of R with period n can be classified as a fixed point of Rn

with the same criterium explained above. If there exist attracting (superattracting) periodic cycles,
then for initial data near the cycle the corresponding iteration of the rational function converge to
this cycle and no to a root.

Let us assume that R is a rational function related to a root-finding method for solving a
polynomial equation f(z) = 0. For instance, R could be the rational function Cf given in (1) for
Chebyshev’s method or for any other iterative method applied. We say that ζ is an extraneous
fixed point of R if is a fixed point of R but is not a root of f(z) = 0. The same classification in
superattracting, attracting, indifferent or repelling is also valid for extraneous fixed points.

It is well known ([11]) that the rational Newton map z − f(z)/f ′(z) has no extraneous fixed
points and Halley’s map z − (2/(2− Lf (z)))f(z)/f ′(z) has only repelling extraneous fixed points.
The existence of extraneous fixed points for Chebyshev’s method (1) was also pointed out by Kneisl
([11]), but it is said that its characterization is most often not satisfied. However, in this paper we
have been able to specify the cubical polynomials for which Chebyshev’s method has superattracting
extraneous fixed points.

A point ζ is said a critical point of a rational map R if R fails to be injective in any neighbourhood
of ζ. It is well known that if R is a rational map with degree d, it has 2d− 2 critical points counted
with multiplicities.

In this paper we follow the steps given by Roberts and Horgan-Kobelski ([16] for more details)
in the dynamical study of Newton’s and Halley’s methods. In fact, we provide analytic and graphic
arguments to explain the behaviour of Chebyshev’s method applied to cubic polynomials. Let
us denote Cpλ(z) to the rational map obtained by applying Chebyshev’s method (1) to cubic
polynomials in the form

pλ(z) = (z2 − 1)(z − λ), λ ∈ C. (3)

There are other one-parameter families of cubic polynomials that could be used for studying the
dynamics of iterative methods applied to cubic polynomilas, such as (z2 − z)(z − ρ), ρ ∈ C, or
z3 − (1 − µ)z + µ, µ ∈ C. The advantage of the family (3) is its symmetry about the imaginary
axis. This fact is very important to simplify our study.

We are interested in analyzing the space known as parameter space, obtained by following the
orbits of the two free critical points of Cpλ(z). The critical points of Cpλ(z) which do not correspond
to roots of pλ(z) are called free critical points of Cpλ(z). We color the λ-plane depending on the
convergence of these two free critical points to any of the three roots of the polynomial pλ, leading
to 32 = 9 possible color schemes. The strategy of following the orbits of the critical points is based
in the following classical theorem (see [3]):

Theorem 1 (Fatou-Julia). Every attracting cycle of a rational map attracts at least one critical
point.
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Our main goal is to find “bad” polynomials for Chebyshev’s method, that is, polynomials for
which this iterative method presents convergence to points different of the roots. We show the
existence of parameters λ such that polynomial (3) is a bad polynomial for Chebyshev’s method.
To be more precise, we characterize polynomials (3) that give rise to superattracting n-cycles, for
each n ∈ N, n ≥ 2, or to superattracting extraneous fixed points. The first fact is shared with other
root-finding methods, such as Newton’s or Halley’s, as it was proved in [16] or [20]. However, as it
was first pointed out by Vrscay [19] and next by Garćıa-Olivo et al [9], the existence of extraneous
fixed points is a dynamical behaviour that appears in Chebyshev’s method but not in Newton’s or
Halley’s method.

Before undertaking our study, we mention some important features related with Chebyshev’s
method. All of them are straightforward calculations.

1. (Scaling theorem). Let A(z) = αz + β with α 6= 0 be an affine map and let p and q two
polynomials related by q(z) = p(A(z)). Then Chebyshev’s iteration map Cp is conformal
conjugate to Cq, namely A ◦ Cq ◦A−1 = Cp.

2. Let ν(z) = z̄ be the usual complex conjugation. Suppose that p(z) =
∏
j(z − rj) and let us

define q(z) =
∏
j(z − r̄j). Then Cp is topologically conjugate to Cq, namely ν ◦ Cp = Cq ◦ ν.

3. Chebyshev’s method applied to polynomials of degree d gives rise to a rational function Cp,
with deg(Cp) ≤ 3d− 2. Note that a combination of the summands of Cp yields

Cp(z) =
2zp′(z)3 − 2p(z)p′(z)2 − p(z)2p′′(z)

2p′(z)3
.

For d ≥ 2, if p(z) and p′(z) have simple roots, the rational function Cp has degree 3d−2 because
the numerator is a sum of terms of degree 3d− 2 whereas the denominator has degree 3d− 3.
In addition, the leading coefficient of the numerator does not vanish. Indeed if we assume
without loss of generality that p(z) is monic, the leading coefficient is d(d − 1)(2d − 1) 6= 0.
The rational map Cp has degree less than 3d− 2 if p(z) or p′(z) have multiple roots.

4. Simple roots of p are superattracting fixed points of Cp. Even more, if z∗ is a simple root of
p, then C ′p(z

∗) = C ′′p (z∗) = 0, so the iterative root-finding algorithm is cubically convergent.

5. The derivative of Chebyshev’s iteration map (1) is

C ′p(z) =
(3− Lp′(z))Lp(z)2

2
, (4)

where Lp′(z) = p′(z)p′′′(z)/p′′(z)2, according the notation introduced in (2).

6. Chebyshev’s method has linear convergence for roots z∗ with multiplicity m > 1. In this case

C ′p(z
∗) =

(m− 1)(2m− 1)

2m2
∈ (0, 1).

7. Chebyshev’s method could have extraneous fixed points, i.e., fixed points of Cp that are not
roots of p; of course the appearance of these points may complicate the root-finding method,
because they may trap an iteration sequence giving false roots. The extraneous fixed points
are solutions of

Lp(z) = −2.
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In addition, they are attracting if

|6− 2Lp′(z)| < 1

and superattracting if Lp′(z) = 3. Note that these characterizations coincide with the ones
given by Kneisl [11, Theorem 2.6.4] and also by Vrscay [20, page 12], although for a different
parametrization of cubic polynomials and with different techniques and notation (we make
use of the functions Lp and Lp′).

8. The point at infinity is a repelling fixed point for Chebyshev’s method applied to polynomials
of degree d. Observe that in all the cases considered in the above third item, the degree of the
numerator of Cp is bigger than the degree of the denominator of Cp (just in a unit). So the
point at infinity is a fixed point of Cp, according the characterization given in [3, Sec. 2.6].
Even more, its multiplier is

1

C ′p(∞)
=

2d2

(d− 1)(2d− 1)
> 1.

Note that Lp(∞) = (d− 1)/d and Lp′(∞) = (d− 2)/(d− 1), so by (4) we have

1

C ′p(∞)
=

2d2

(d− 1)2(3− (d− 2)/(d− 1))
=

2d2

(d− 1)(2d− 1)
.

In particular, for cubic polynomials, ∞ is a repelling fixed point with multiplier 9/5.

9. Taking into account (4), the solutions of Lp′(z) = 3 are critical points of Cp. Consequently,
the solutions of Lp′(z) = 3 that are not roots of p are free critical points of Cp. It is important
to observe that the inflection points of p are not free critical points of Cp, in contrast with
Newton’s method. Actually, if z∗ satisfies p′′(z∗) = 0, then the pole of order 2 of Lp′(z) in
(4) cancels the double root from Lp(z)

2. Consequently, in this case

C ′p(z
∗) = −p(z

∗)2p′′′(z∗)

2p′(z∗)3
.

2 Chebyshev’s method applied to cubic polynomials

The dynamical study of Chebyshev’s method applied to quadratic polynomials with different roots
have been carried out in other previous works, as [5], [6] or [11]. Even in this first case, it is
established that the Julia set for the Chebyshev’s map is not the locus of points equidistant from
the roots, as it happens in Newton’s or Halley’s method. So, from the very beginning, we note that
the dynamics of Chebyshev’s method deserves a particular study.

In [9] we find a first glance on the dynamics of Chebyshev’s method in the cubic case. In [11] it
is proved that Chebyshev’s method is not generally convergent for cubics. General convergence of
an iterative method is a concept introduced by Smale [17] and later generalized by McMullen [13].
It means that for almost every initial point and for almost every polynomial of a given degree,
the method converges to a root of the considered polynomial. For instance, the map obtained by
applying method (1) to the polynomial p(z) = z3 + z2/2 + z/2 − 1/2 has a superatracting fixed
point at the origin, that is not any root of p.
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In the current paper we present a new perspective of the behaviour of Chebyshev’s method
applied to cubic polynomials with at least two different roots, following the steps given by Roberts
and Horgan-Kobelski for Newton’s or Halley’s methods [16]. As a first step, we highlight that the
use of the Scaling theorem reduces (see [1]) the problem to the study of Chebyshev’s method applied
to the one-parameter family of polynomials (3). That is, for any cubic polynomial q(z) with at
least two distinct roots, there exists a parameter λ ∈ C such that Chebyshev’s map for q, Cq, is
conformal conjugate to Cpλ , with pλ defined in (3).

Chebyshev’s map for polynomials pλ is a rational function of degree less than or equal to seven

Cpλ(z) =
Hλ(z)

(3z2 − 2λz − 1)
3 ,

where Hλ(z) = 15z7−26λz6+15λ2z5−6z5−3λ3z4−9λz4+18λ2z3−z3−6λ3z2+12λz2−9λ2z+λ3−λ.
Note that if λ 6=

√
3i, Cpλ has two free critical points. Actually, by (4) these free critical points

satisfy Lp′(z) = 3, that is p′(z)p′′′(z) = 3p′′(z)2 or, equivalently,

15z2 − 10λz + 1 + 2λ2 = 0.

This equation has two solutions:

ρ−(λ) =
5λ−

√
−5(λ2 + 3)

15
, ρ+(λ) =

5λ+
√
−5(λ2 + 3)

15
. (5)

In the above formulas, the squared root is defined with the principal argument.
If λ =

√
3i, Chebyshev’s iteration map applied to the polynomial (z2 − 1)(z −

√
3i) yields the

rational map

Cp√3i
(z) =

15z7 − 26i
√

3z6 − 51z5 − 55z3 + 30i
√

3z2 + 27z − 4i
√

3(√
3z − i

)6 .

In this case,

C ′p√3i
(z) =

15
(
z − i

√
3
)2 (

z2 − 1
)2(√

3z − i
)6 ,

then Chebyshev’s iteration map has no free critical points and the only attracting behaviours are
due to the three roots of the polynomial.

The strategy is to color the complex plane (that in this context is known as parameter plane)
depending on the behaviour of the orbits of the two free critical points defined in (5) under the
iteration of Cpλ ; that is, the color of the point λ in the complex plane depends on the behavior
of the orbit of ρ±(λ) for Cpλ . As there are two free critical points and three roots, we can find
32 = 9 possible convergence schemes, as shown in Table 1. For instance, λ is colored in blue when
the orbit of the critical point ρ−(λ) converges to the root −1 and the orbit of the critical point
ρ+(λ) converges to the root 1. Figure 1 shows a part of the parameter plane of Chebyshev’s method
applied to cubic polynomials (3). On the left figure, we can appreciate the symmetry about the
real axis, a question that could be deduced from the properties of the complex conjugation.

As in the case of other iterative methods, such as Newton’s or Halley’s methods, we can find
black zones in the parameter plane corresponding to points λ for which one of the two free critical
points does not converge to a root. These black zones are small Mandelbrot sets, as it is usual in
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Color (ρ−(λ), ρ+(λ))→ Color (ρ−(λ), ρ+(λ))→
Yellow (−1,−1) Blue (−1, 1)
Green (1,−1) Red (λ, λ)
Brown (−1, λ) Pink (λ,−1)
Orange (1, 1) Cyan (λ, 1)
Purple (1, λ)

Table 1: Coloring scheme for Chebyshev’s method applied to polynomials (z2 − 1)(z − λ), λ ∈ C,
according to the convergence of the two free critical points ρ−(λ) and ρ+(λ) defined in (5). For
example, λ is colored in blue if the orbit of ρ−(λ) converges to the root −1 and the orbit of ρ+(λ)
converges to the root 1.

-2.5 -1.25 0. 1.25 2.5

2.5

1.25

0.

-1.25

-2.5

-1.8 -0.9 0. 0.9 1.8

3.6

2.7

1.8

0.9

0.

Figure 1: On the left, a square [−2.5, 2.5] × [−2.5, 2.5] of the parameter plane for Chebyshev’s
method applied to cubic polynomials, colored according to the color scheme indicated in Table 1; it
shows the symmetry about the real axis. On the right, a square [−1.8, 1.8] × [0.0, 3.6] of the same
parameter plane.

the iteration of one-parameter families of rational maps where a bifurcation occurs (see [14] and
the recent paper [4] for more information about the universality of the Mandelbrot set). In the case
of Newton’s or Halley’s methods, these black zones are due to the existence of attracting n-cycles.
But in the case of Chebyshev’s method these black zones come from:

• The presence of attracting extraneous fixed points. Note that it is not possible to find at-
tracting extraneous fixed points in Newton’s or Halley’s methods. (As long as we know, the
existence of extraneous fixed points produced by root-finding methods has been found, by the
fist time, by Vrscay in [19], in the context of Schröder rational iteration functions.)

• The presence of attracting n-cycles. The presence of attracting n-cycles is a dynamical prop-
erty that also happens in Newton’s and Halley’s methods.
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We prove these two points in the following sections. It is complicated to find these black holes
in the parameter plane just by visual inspection (they are “small” regions). However after a few
calculations, we can find some of them, as we prove in the foregoing sections.

For each value of λ in a black hole of the parameter plane, the corresponding Chebyshev’s
iterative function Cpλ(z) fails from a root-finding point of view. To be more specific, there exists
open regions of initial seeds z0 ∈ C for which the iterative method zn+1 = Cpλ(zn) does not converge
to any of the roots, as it can be seen in the dynamical planes shown in Section 3 (see Figures 9
and 10, for instance).

2.1 Superattracting extraneous fixed points for Chebyshev’s method

According to the main properties of Chebyshev’s method we have listed above, superattracting
extraneous fixed points for Chebyshev’s method are solutions of the system of nonlinear equations{

Lp(z) = −2,
Lp′(z) = 3

that satisfy p′′(z) 6= 0. For polynomials defined in (3) this system reduces to{
12z4 − 16z3λ+ 5z2λ2 − 9z2 + 8zλ− λ2 + 1 = 0,

15z2 − 10zλ+ 2λ2 + 1 = 0
(6)

with λ 6= 3z (precisely this inequality comes from the case p′′(z) 6= 0). Although this system of
equations can be deduced from the conditions given by Kneisl [11] or Vrscay and Gilbert [20], we
go one step further, by solving it and by obtaining six different solutions (λ, z). By using Gröbner
bases, the following equivalent system of equations can be deduced:{

11532 + 16501λ2 + 7813λ4 + 1639λ6 + 147λ8 = 0,
74400z − 65396λ− 30179λ3 − 7754λ5 − 735λ7 = 0.

The first equation can be factorized as (3 + λ2)(4 + 3λ2)(31− 10λ+ 7λ2)(31 + 10λ+ 7λ2) = 0, so
their roots can be immediately computed. From the second equation we obtain z as a function of λ:

z =
λ
(
735λ6 + 7754λ4 + 30179λ2 + 65396

)
74400

.

Without considering the pairs (
√

3i,
√

3i/3) and (−
√

3i,−
√

3i/3), because λ = 3z in these cases,
we obtain the solutions (λ, z) given by

λ = ±2
√

3

3
i ≈ ±1.154701i, z = ±

√
3

3
i ≈ ±0.57735i (7)

and

λ =
±5± 8

√
3i

7
≈ ±0.714286± 1.979487i, z =

±3± 2
√

3i

7
≈ ±0.428571± 0.494872i.

As far as we know, this characterization of superattracting extraneous fixed points for Cheby-
shev’s method has not been previously done. Note that for each of these values of λ, the Chebyshev’s
map obtained for the polynomial pλ(z) defined in (3) has a superattracting extraneous fixed point
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at the related value of z. This fact gives rise to the emergence of black holes in the parameter plane.
Figure 2 shows two details of the the parameter plane of Chebyshev’s method for cubic polynomials.
In fact, we see the existence of Mandelbrot-like sets near two of these values of λ. In addition, in
Figure 9 we have plotted the dynamical plane (basins of attraction) of Chebyshev’s method applied
to the polynomial given in (3), with λ = (5 + 8

√
3i)/7. We can distinguish the basins of attraction

of the three roots together with the basin of the superattracting extraneous fixed point, colored in
white (see Section 3 for more details).

Finally, it is worth noting that the set of λ-values obtained previously as solutions of the system
(6) are related by some affine conjugacies. Actually, the map

T (z) =
−2z + λ− 1

1 + λ

is an affine map of the complex plane satisfying T (−1) = 1, T (λ) = −1 and T (1) = (λ − 3)/(λ +
1). Consequently T (z) is an affine conjugacy between Chebyshev’s method applied to pλ and
Chebyshev’s method applied to pλ∗ , where

λ∗ =
λ− 3

1 + λ
. (8)

Plugging in λ = ±2
√

3i/3 into equation (8) gives λ∗ = (−5± 8
√

3i)/7, which are also solutions of
the system (6).

A similar argument works by using the conjugacy map

S(z) =
−2z + λ+ 1

1− λ

that satisfies S(1) = −1, S(λ) = 1 and S(−1) = (λ + 3)/(1 − λ). In this case S(z) is an affine
conjugacy between Chebyshev’s method applied to pλ and Chebyshev’s method applied to pλ∗∗ ,
where

λ∗∗ =
λ+ 3

1− λ
. (9)

If we writte λ = ±2
√

3i/3 into equation (9), we obtain λ∗∗ = (5± 8
√

3i)/7, the rest of solutions of
the system (6).

2.2 Superattracting n-cycles for Chebyshev’s method

Now, let us analyze the existence of superattracting n-cycles for Chebyshev’s method Cpλ , that
is sets of n complex numbers {z0, z1, . . . , zn−1} such that zk = Cpλ(zk−1) for 1 ≤ k ≤ n − 1 and
z0 = Cpλ(zk), with (Cnpλ)′(z0) = 0 where Cnpλ is the composition of Cpλ with itself n times. The
length of the cycle is the least value of n that satisfies this property.

To do this, we restrict our study to the positive part of the imaginary axis, i.e. to Chebyshev’s
method applied to

pλ(z) = (z2 − 1)(z − λ), λ = βi, β ∈ R+.

Note that Chebyshev’s method leaves the imaginary axis invariant, so it is enough to study the
imaginary part of Cpβi(iy), y ∈ R, that is,

Rβ(y) =
q(β, y)

(3y2 − 2βy + 1)
3 , (10)
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Figure 2: On the left, a rectangle [−0.02, 0.02] × [1.14, 1.18] containing a black hole coming from

the superattracting extraneous fixed point related to the value λ = 2
√
3

3
i in the parameter plane.

On the right, a rectangle [−0.74,−0.68]× [1.95, 2.01] of the parameter plane containing a black hole

coming from the superattracting extraneous fixed point related to λ = −5+8
√
3i

7
.

where q(β, y) is a seventh-degree polynomial in y with coefficients that depend on β:

q(β, y) = 15y7−26y6β+15y5β2+6y5−3y4β3+9y4β−18y3β2−y3+6y2β3+12y2β−9yβ2+β3+β.

We simplify our study to the case β ≥ 0. A similar study could be done for β < 0. The map
Rβ defined in (10) has the following properties:

• Rβ(β) = β for all β ≥ 0.

• If β >
√

3, Rβ has two poles: 1
3

(
β ±

√
β2 − 3

)
.

• If β 6=
√

3, the derivative of the real valued function Rβ is

R′β(y) =
3
(
y2 + 1

)2
(β − y)2

(
15y2 − 10βy + 2β2 − 1

)
(3y2 − 2βy + 1)

4 . (11)

Consequently, if 0 ≤ β <
√

3, Rβ has two free critical points, the solutions of 15y2 − 10βy +
2β2 − 1 = 0. Let us denote them by

%−(β) =
1

15

(
5β −

√
5(3− β2)

)
, %+(β) =

1

15

(
5β +

√
5(3− β2)

)
. (12)

In fact, %−(β) and %+(β) are relative maximum and minimum of Rβ respectively.

• If β =
√

3, Rβ can be written in the form

R√3(y) =
5
√

3y6 − 21y5 + 10
√

3y4 + 10y3 − 15
√

3y2 + 15y − 4
√

3(√
3y − 1

)5 .

10



Consequently, there is just one pole at
√

3/3. In addition,

R′√
3
(y) =

15
(
y −
√

3
)2 (

y2 + 1
)2(√

3y − 1
)6

and there are not free critical points in this case.

• Rβ has an oblique asymptote: 5y/9 + 4β/27.

• Note that, from (7), if β = 2
√

3/3 ≈ 1.1547 the equation Rβ(y) = y has solutions different
from y = β (extraneous fixed points). Equivalently, we can say that for this value of β the
image by Rβ of the relative minimum %+(β) is under the diagonal. Actually, there is a value
λ̄ ≈ 1.15209851 for which the function Rβ has extraneous fixed point for β ≥ λ̄. The value λ̄
has been numerically obtained.

As a consequence, Rβ has free critical points when it has no vertical asymptotes. To simplify
our study, we reduce the domain of the parameter β to the case [0,

√
3), where the presence of

free critical points is guaranteed. We follow the orbits of these free critical points with the aim
of finding cycles. We summarize the main properties of the function Rβ for β ∈ [0,

√
3) in the

following lemma. A typical graph of Rβ for β ∈ [λ̄,
√

3) is shown on the left graphic of Figure 3.

-4 -2 2 4 6

-2

2

4

6

-4 -2 2 4 6

-2

2

4

6

Figure 3: On the left, graph or Rβ(y) for β = 1.28 (note that y is the horizontal axis). It
represents a typical graph of Rβ for λ̄ ≤ β <

√
3. We have also plotted the diagonal and the oblique

asymptote (dashed). In this case, we note the presence of two repelling fixed points (at y ≈ 0.5027
and y ≈ 0.8391) together with the attracting fixed point at y = β. On the right, the web diagram
showing the convergence of the free critical point %−(β) to the fixed point β.

Lemma 2. Let β be a parameter in the interval [0,
√

3) and Rβ the function defined in (10). Then
Rβ(y) is continuous for all y ∈ R, it is increasing for y ∈ (−∞, %−(β)) ∪ (%+(β),∞) and it is
decreasing for y ∈ (%−(β), %+(β)), where %−(β) and %+(β) are defined in (12). In addition, the
image by Rβ of the relative maximum %−(β) tends to ∞ when β →

√
3, whereas the image of the

relative minimum %+(β) tends to −∞ when β →
√

3.

11



Proof. The continuity of Rβ(y) and its increasing/decreasing properties follow immediately from
the definition (10) and the expression of the derivative (11). In addition, as

Rβ(%−(β)) = β +
β(661β2 + 117)

729(3− β2)
+

√
5

1458

23β6 + 468β4 + 1971β2 + 54

(3− β2)5/2
,

we deduce that lim
β→
√
3
− Rβ(%−(β)) =∞. Let us define

h(β) = Rβ(%+(β)). (13)

Then

h(β) = − 1

1458(3− β2)

(
8β(17β2 − 576) +

√
5(23β6 + 468β4 + 1971β2 + 54)

(3− β2)3/2

)
.

Note that h(β) is continuous in [0,
√

3) and lim
β→
√
3
− h(β) = −∞.

The situation shown in the right graphic of Figure 3 is not an isolated behaviour. Actually, we
can prove that the orbits of the free critical point %−(β) converge to the fixed point β, for a wide
range of values of β.

Lemma 3. For 1/
√

7 ≤ β <
√

3, the orbit of the free critical point %−(β) under iteration by Rβ
defined in (10) converges to the fixed point β, that is,

lim
n→∞

Rnβ(%−(β)) = β.

Proof. First note that Rβ(%−(β)) > β because of the inequality

Rβ(%−(β))− β =
β(661β2 + 117)

729(3− β2)
+

√
5

1458

23β6 + 468β4 + 1971β2 + 54

(3− β2)5/2
> 0

for 0 ≤ β <
√

3. Secondly, by (11), R′β(y) > 0 for all y > β. Note that this inequality happens for

y > %+(β), but %+(β) ≤ β because the inequality 1/
√

7 ≤ β holds from the hypothesis.
Finally, we have Rβ(y) < y for all y > β. Actually,

Rβ(y)− y = −
(
y2 + 1

)
(y − β)

(
12y4 − 16βy3 + 5β2y2 + 9y2 − 8βy + β2 + 1

)
(3y2 − 2βy + 1)

3 < 0

because all the factors that appear in this quotient are positive for y > β. Note that the polynomial
u(y) = 12y4− 16βy3 + 5β2y2 + 9y2− 8βy+β2 + 1 is strictly positive in the interval [β,∞). Indeed,
u(β) = (β2 + 1)2 and

u′(y) = 48y2(y − β) + 2(5β2 + 9)y − 8β > 0 if y > β.

Let us iterate yn+1 = Rβ(yn) starting with y0 = %−(β). Then y1 = Rβ(%−(β)) > β. It follows
that Rβ maps the interval [β,∞) into itself. In addition, as R′β(y) > 0 and Rβ(y) < y for y > β, the
sequence {yn}n≥0 is strictly decreasing and bounded below by β. So it converges to a certain limit
in [β,∞). As β is the only fixed point of the map Rβ in [β,∞), the sequence {yn}n≥0 converges
to β.

12



Remark 1. The behaviour of the orbit of the free critical point %−(β) for β ∈ [0, 1/
√

7) is
slightly different. In this case, β < %+(β) and the interval [β,∞) is mapped into the interval
[Rβ(%+(β)),∞) ⊃ [β,∞). There are not extraneous fixed points in this situation. The superat-
tracting character of β, the only real fixed point of Rβ , guarantees the convergence of the orbits
Rnβ(%−(β)) to β, although perhaps in a non strictly decreasing way.

As a consequence of Lemma 3, the only option for finding superattracting n-cycles is to follow
the orbits of the free critical point

%+(β) =
1

15

(
5β +

√
5(3− β2)

)
.

Actually, for each n ≥ 2, we define the function

gn(β) = Rnβ(%+(β))− %+(β). (14)

A root of gn(β) = 0 that is not a root of gk(β) = 0 for k < n gives rise to a superattracting n-cycle
of Rβ . Table 2 contains some approximate solutions, βn, of the equation gn(β) = 0 for different
values of n. The following result establishes the existence of an increasing sequence of values for βn.
This sequence converges to

√
3 ≈ 1.73205. Consequently, for each of these values βn, Chebyshev’s

method applied to polynomials in the form (z2 − 1)(z − βni) has superattracting n-cycles.

n 2 3 4 5 6 7 8 9 10
βn 1.28657 1.34015 1.38943 1.43776 1.48369 1.52557 1.56245 1.59405 1.62056

n 11 12 13 14 15 16 17 18 19
βn 1.64248 1.66038 1.67488 1.68656 1.69591 1.70338 1.70932 1.70932 1.71780

n 20 21 22 25 30 35 40 45 50
βn 1.72078 1.72313 1.72500 1.72856 1.73097 1.73172 1.73195 1.73202 1.73204

Table 2: Some (approximate) solutions of the equation gn(β) = 0, with gn defined in (14).

Theorem 4. For each integer n ≥ 2, there exists a parameter value βn, with βn > 1, such that the
orbit of the free critical point

%+(βn) =
1

15

(
5βn +

√
5(3− β2

n)
)

under iteration of Rβ defined in (10) forms a superattracting n-cycle. In addition, the sequence βn
is strictly increasing and limn→∞ βn =

√
3.

Proof. Let us consider the function h(β) defined in (13). In addition to the properties shown in
Lemma 2, we have that, for 0 ≤ β <

√
3,

h′′(β) = −
105

(
7β2 − 1

)2 (
β4 + 9β2 + 64

)2
2 (3− β2)

9/2
(

400β (β2 + 9) (3− β2)
3/2

+
√

5 (61β6 + 2826β4 + 8397β2 + 1728)
) ≤ 0,

so h(β) is a concave function in the interval [0,
√

3) with the shape shown in the left graphic of
Figure 4. Then, the equation h(β) = 0 has two solutions in the interval [0,

√
3). Let us denote

13



0.2 0.4 0.6 0.8 1.0 1.2 1.4

-8

-6

-4

-2

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-4

-2

2

4

Figure 4: On the left, graph of the function h(β) defined in (13). On the right, graph of the
function g2(β) defined in (14). We see that there are four solutions of g2(β) = 0.

β∗ ≈ 1.2424 the biggest one of these solutions (this value has been numerically obtained). So, if
β > β∗, h(β) < 0 and h(β) decreases monotonically to −∞ when β increases towards

√
3.

Let us consider the function g2(β) defined in (14) and whose graphic appears in the right side
of Figure 4. It has four zeros in the interval [0,

√
3): 0.37796, 1.15470, 1.16207 and 1.28657. Let us

take β2 as the biggest of these roots, i.e., β2 ≈ 1.28657. Note that β2 > β∗ and then h(β2) < 0.

It is possible to numerically approach some other values of βn for n ≥ 3. Some of them are
shown in Table 2. But we can also give a proof of the existence of these values. Figure 5 (left)
shows the graphs or Rβ for β = 1.28657, and Figure 6 (left) for β = 1.34015. These graphics show
a typical graph of a function Rβ defined in (10), for β ∈ (0,

√
3), with no asymptotes, a maximum

at %−(β) and a minimum at %+(β). When β →
√

3, the two free critical points collapse in the value√
3/3 that becomes an asymptote of the corresponding function Rβ .

Let us analyze in detail the left graphic in Figure 5. The orbit of the free critical point %+(β2)
gives rise to a superattracting 2-cycle. As the function h(β) defined in (13) is decreasing in the
interval (β∗,

√
3), if we consider a value β > β2 > β∗, we have that the image of the corresponding

critical point moves down, that is, Rβ(%+(β)) < Rβ2(%+(β2)). In addition, R2
β(%+(β)) < %+(β2).

So the value of R2
β(%+(β)) has moved to the left, avoiding to close the 2-cycle. If we continue

increasing β, the value of R2
β(%+(β)) keeps moving to the left. This process can be seen in Figure 5.

Taking into account the shape of the functions Rβ(y) shown in Lemma 2, we claim that there exists

a value of β̂2 for which R2
β̂2

(%+(β̂2)) reaches the other free critical point, %−(β̂2). For this value, we

have

R3
β̂2

(%+(β̂2)) = Rβ̂2
(%−(β̂2)) > β̂2 > %+(β̂2).

Then g3(β̂2) > 0. But g3(β) is a continuous function in [0,
√

3) that satisfies

lim
β→
√
3
−
g3(β) = −∞,

consequently there exists at least one value β3 such that β2 < β̂2 < β3 <
√

3 and g3(β3) = 0. If
there exist several solutions of g3(β) = 0, we choose β3 as the biggest one.

We can reproduce this reasoning to inductively establish that if βn is a solution of gn(β) = 0,

there exists a solution βn+1 of gn+1(β) = 0, just by establishing the existence of β̂n such that

14
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Figure 5: On the left, graph or Rβ(y) for β = β2 ≈ 1.28657 together with the web diagram proving
the existence of a superattracting 2-cycle containing the free critical point %+(β2). In the middle,
graph or Rβ(y) for β = 1.2885. We see that the 2-cycle is broken and the point R2

β(%+(β)) has been
slightly moved to the left. On the right, graph or Rβ(y) for β = 1.30. In this case, the image of
R2
β(%+(β)) is near the maximum of the function Rβ(y).

Rn
β̂n

(%+(β̂n)) = %−(β̂n). Then

Rn+1

β̂n
(%+(β̂n)) = Rβ̂n(%−(β̂n)) > β̂n > %+(β̂n)

and gn+1(β̂n) > 0. Once again, this process can be seen in Figures 5 and 6. The continuity of
gn+1(β) on [0,

√
3) and the fact

lim
β→
√
3
−
gn+1(β) = −∞,

guarantee the existence of βn+1. As in the previous cases, we always choose βn+1 as the biggest of
the solutions of gn+1(β) = 0.

The last part of the theorem follows from the fact that the image by Rβ(y) of the critical point
%+(β) is strictly decreasing for β > β∗. In addition, for values of y negative and large in magnitude,
Rβ(y) can be approximated by the asymptote 5y/9 + 4β/27, so the orbit of the free critical point
%+(βn+1) needs more and more iterates to return back near itself. Therefore, the larger is the
period of the superattracting n-cycle, the more negative must be the image of Rβ(%+(β)) and the
closer β must be to

√
3.

Remark 2. If we define λn = βni, with βn given in Theorem 4, then Chebyshev’s method applied
to (z2 − 1)(z − λn) has a superattracting n-cycle. This cycle is obtained by following the orbit of
the free critical value ρ+(λn). In addition, as a direct consequence of Lemma 3, the orbit of the
other free critical point, ρ−(λn) converges in these cases to the root λn = βni.

The values in Table 2 give rise to a “channel” of superattracting n-cycles in the parameter
plane showed in Figure 1, moving around the imaginary axis towards the point

√
3i ≈ 1.73205i. In

Figure 7 we show this channel, together a magnification around β2i ≈ 1.28657i.
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Figure 6: On the left, graph or Rβ(y) for β = β3 ≈ 1.34015 together with the web diagram proving
the existence of a superattracting 3-cycle containing the free critical point %+(β3). In the middle,
graph or Rβ(y) for β = 1.342. We see that the 3-cycle is broken and the point R3

β(%+(β)) has been
slightly moved to the left. On the right, graph or Rβ(y) for β = 1.348. In this case, the image of
R3
β(%+(β)) is near the maximum of the function Rβ(y).
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Figure 7: On the left, a channel of black holes (around the imaginary axis) created by the pres-
ence of superattracting n-cycles, in the rectangle [−0.22, 0.22]× [1.13, 1.57] of the parameter plane
(note that the black hole on the bottom is just the one that appears on Figure 2-left, coming

from the superattracting extraneous fixed point 2
√
3

3
i). On the right, a detail in the rectangle

[−0.0006, 0.0006]× [1.2861, 1.2873] showing a black hole coming from a superattracting 2-cycle.
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Remark 3. In this section, we have only studied in detail the above channel of superattracting
n-cycles associated to βni, n ≥ 2. This case is easier, because the βni lie on the imaginary axis and
thus it can be analyzed as an 1-dimensional problem. However, other channels of superattracting
n-cycles exist in the parameter plane. For instance, three channels of superattracting n-cycles arise
from the central point

√
3i of Figure 1-right, between adjacent pairs of “petals” in the central

“flower”. The channel that goes downwards is associated to the points βni, n ≥ 2, and we have
seen it in Figure 7. There is another channel of superattracting n-cycles associated to λn, n ≥ 2,
that goes leftwards (and, of course, there is a third channel that goes rightwards).

Note that there is an inherent symmetry in the structure of the parameter plane showed in
Figure 1 that can be explained by means of the two affine conjugacies introduced in Section 2.1.
We can see the channel that goes leftwards in Figure 8. It is formed by the images of βni under
the map defined in (8), that is λn = (βni − 3)/(1 + βni). The first values of the corresponding
λn are λ2 ≈ −0.506445 + 1.93814i, λ3 ≈ −0.430614 + 1.91724i, λ4 ≈ −0.364954 + 1.89650i,
λ5 ≈ −0.304138 + 1.87504i and λ6 ≈ −0.249473 + 1.85384i.

In a similar way the channel that goes rightwards in Figure 8 is formed by the images of βni
under the map defined in (9), that is λn = (βni+3)/(1−βni). In this way we obtain a list of values
of λ that are the complex conjugated of the listed above.

As a final conclusion, we see that each channel of superattracting n-cycles can be found by
applying a linear fractional transformation (e.g., equations (8) or (9)) to the main channel running
along the imaginary axis.
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1.93835
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Figure 8: On the left, a channel of black holes created by the presence of superattracting n-cycles,
in the rectangle [−0.76,−0.20]× [1.67, 2.23] of the parameter plane (note that the black hole on the
left is just the one that appears on Figure 2-right, coming from the superattracting extraneous fixed

point −5+8
√

3i
7

). On the right, a detail in the rectangle [−0.5068,−0.5058]× [1.9376, 1.9386] showing
a black hole coming from a superattracting 2-cycle.
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3 Dynamical planes

We end this paper showing the dynamical planes related to Chebyshev’s method applied to a couple
of polynomials pλ(z) that belong to the classes mentioned in the previous section. In these dynamical
planes we show, for each polynomial, the Julia and Fatou sets associated with the rational map
Cpλ(z) defined in (1). In particular, the basins of attraction of the roots of pλ(z) are represented,
as a part of the Fatou set. These basins are the sets of initial points z0 ∈ C such that the orbit of z0
under iteration by Cpλ(z) converges to a root of pλ(z). We see that in the considered polynomials,
other kind of sets appear in the Fatou set in addition to the basins of the roots.

Firstly, we have chosen λ1 = (−5 + 8
√

3i)/7. In this case, Chebyshev’s method applied to
pλ1

(z) = (z2 − 1)(z − λ1) has a superattracting extraneous fixed point at ρ−(λ1) =
(
5λ1 −√

−5(λ21 + 3)
)
/15 ≈ −0.428571 + 0.494872i (we have already shown the parameter plane around

this point in Figure 2-right). There are other extraneous fixed points, but they are repelling. In
the left side of Figure 9 we show the dynamical plane of Chebyshev’s map Cpλ1 (z). Together with
the basins of attraction of the three roots 1, −1 and λ1 (coloured in yellow, magenta and cyan
respectively, and with black assigned to the points such that the iterative method starting in them
does not converge), a white region appears. Actually, this white region is contained in the basin of
attraction of the superattracting extraneous fixed point ρ−(λ1). In fact, it is its immediate basin
of attraction. Notice that the boundary of this basin does not present a fractal structure, as in the
case of the boundaries of the basins of the roots. Other components of the basin of ρ−(λ1) can be
also seen in the left side of Figure 9 (tiny white zones). In the right side of this same figure we
show a magnification of the dynamical plane around one of these components of the same basin of
attraction.
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Figure 9: On the left, a detail of the dynamical plane of Chebyshev’s map Cpλ1 (z), where λ1 =(
−5 + 8

√
3i
)
/7. It is plotted in the rectangle [−0.7,−0.2]× [0.25, 0.75] of the complex plane. A part

of the basin of attraction of the superattracting extraneous fixed point ρ−(λ1) =
(
−3 + 2

√
3i
)
/7 ≈

−0.428571 + 0.494872i is coloured in white. On the right, a zoom around another component of the
same basin of attraction, namely the rectangle [−0.38,−0.34]× [0.66, 0.70].
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Figure 10: On the left, a detail of the dynamical plane of Chebyshev’s map Cpλ2 (z), where λ2 = β2i
and β2 ≈ 1.28657 (see Table 2). It is plotted in the rectangle [−0.08, 0.08]×[0.52, 0.68] of the complex
plane. A part of the basin of attraction of the superattracting 2-cycle around ρ+(λ2) ≈ 0.601724i is
coloured in white. On the right, the dynamical plane on the rectangle [−0.08, 0.08]× [−0.64,−0.48],
that contains another component of the superattracting 2-cycle.

Secondly, we consider Chebyshev’s method applied to pλ2(z) = (z2 − 1)(z− λ2) where λ2 = β2i
and β2 ≈ 1.28657 (see Table 2). In this case, Chebyshev’s map Cpλ2 (z) has a superattracting
2-cycle, as we have already shown in the parameter plane around this point in Figure 7-right. In
the left side of Figure 10 we have plotted the dynamical plane of Chebyshev’s map Cpλ2 (z). We
see the basins of attraction of the three roots 1, −1 and λ2 (coloured again in yellow, magenta and
cyan respectively, and black for non-convergent points), and a white region that corresponds in this
case with a part of the basin of attraction of the 2-cycle generated by the orbit of the free critical
point ρ+(λ2) =

(
5λ2 +

√
−5(λ22 + 3)

)
/15 ≈ 0.601724i. As in the previous situation, we note that

the boundary of this basin has the shape of a simple closed curve, not as in the case of the intricate
boundaries of the basins of the roots. Note that in the study of dynamical planes with 2-cycles,
each basin has a “twin component” corresponding to the other element of the 2-cycle, in this case,
around −0.563617i. This “twin component” is shown in the right side of Figure 10.

We have seen that Chebyshev’s method applied to pλ1(z) has a superattracting fixed point, and
that Chebyshev’s method applied to pλ2

(z) has a superattracting 2-cycle. It is interesting to note
that, for values of λ close enough to λ1 or λ2, we obtain attracting but not superattracting fixed
points or 2-cycles.

Let us first analyze the case of λ close enough to λ1 = (−5 + 8
√

3i)/7 ≈ −0.714286 + 1.97949i,
for instance λ = −0.71 + 1.98i. Now, Chebyshev’s method applied to pλ(z) = (z2 − 1)(z − λ) has
an attracting (but not superattracting) extraneous fixed point at −0.42019 + 0.504969i with

|C ′pλ(−0.42019 + 0.504969i)| = 0.484302.

As in the previous case, Cpλ has other extraneous fixed points, but all of them are repelling. The
dynamical plane of this case appears in the left side of Figure 11 (observe that the picture is very
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similar to the one that appears in the left side of Figure 9, although we have now used a smaller
rectangle).

For values of λ close enough to λ2 = β2i ≈ 1.28657i, for instance λ = 1.2866i, Chebyshev’s
method applied to pλ(z) = (z2 − 1)(z − λ) has an attracting (but not superattracting) 2-cycle:
{−0.564038i, 0.60089i} with multiplier C ′pλ(−0.564038i)C ′pλ(0.60089i) = −0.259423. A part of the
dynamical plane of this situation is shown in the right side of Figure 11 (observe that the picture
is very similar to the one that appears in the left side of Figure 10, but with a smaller rectangle).
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Figure 11: On the left, the dynamical plane of Chebyshev’s map Cpλ(z) for λ = −0.71 + 1.08i.
It is plotted in the rectangle [−0.6,−0.3]× [0.35, 0.65] of the complex plane. A part of the basin of
attraction of the attracting extraneous fixed point −0.42019 + 0.504969i is coloured in white. On
the right, the dynamical plane of Chebyshev’s map Cpλ(z) for λ = 1.2866i. It is plotted in the
rectangle [−0.05, 0.05] × [0.55, 0.65] of the complex plane. A part of the basin of attraction of the
attracting 2-cycle {−0.564038i, 0.60089i} is coloured in white.
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