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Abstract

The Dirichlet series associated to the Fibonacci sequence {Fn},
∞∑

n=1

F−s
n ,

converges for s ∈ C with Re s > 0. The analytic function φ(s) it defines on the right half-
plane is known as the Fibonacci zeta function. Here we consider its logarithmic derivative
φ′(s)/φ(s), which formally corresponds to the Dirichlet series

−
∞∑
l=1

ΛF (l)l
−s,

where the arithmetical function ΛF (l) can be considered analogous to the classical von
Mangoldt function Λ(s), which is defined by ζ ′(s)/ζ(s) = −

∑∞
n=1 Λ(n)n

−s where ζ(s) is
the Riemann zeta function. This paper studies some properties of the function ΛF (l) along
with the domain of convergence of this Dirichlet series.
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1 Introduction and main results

Let us denote the golden ratio by ϕ = 1+
√
5

2 . It is well known that the nth Fibonacci number,
Fn, defined by the recurrence relation

Fn+2 := Fn+1 + Fn, n ≥ 1, F1 = 1, F2 = 1,
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can be expressed in terms of ϕ and ψ := 1− ϕ = −1/ϕ = 1−
√
5

2 by means of Binet’s formula

Fn =
ϕn − ψn

ϕ− ψ
=
ϕn − (−ϕ)−n

√
5

, n ≥ 1.

The Fibonacci zeta function is defined by the Dirichlet series

φ(s) :=

∞∑
n=1

F−s
n , s ∈ C, Re s > 0 (1)

(the convergence for Re(s) > 0 is clear from the asymptotic relation Fn ≈ ϕn/
√
5 when n →

∞). Around the turn of the millennium Egami [5] and Navas [13] independently obtained the
meromorphic continuation of (1) to the complex plane, via the series

φ(s) = 5s/2
∞∑
k=0

(
−s
k

)
1

ϕs+2k + (−1)k+1
,

which exhibits simple poles at the points

s = −2k +
πi(2m+ k)

log ϕ
, k,m ∈ Z, with k ≥ 0.

Later, Ram Murty [11] easily derived the analytic continuation of (1) by using a technique
that he had previously developed jointly with Sinha [12]. See also the recent paper [14] for
the analytic continuation of general Dirichlet

∑∞
n=1 a

−s
n where an satisfies a linear recurrence of

arbitrary degree with integer coefficients.
As for the zeros of φ(s), in [10, Corollary 7] it was proved that φ(s) ̸= 0 for all s in the

half-plane
Hη = {s ∈ C : Re s > η},

where η is the unique positive real number satisfying φ(η) = 4, and whose approximate value is

η = 0.7570549496906548985355124 . . .

(see [10, Theorem 13]). Thus φ′(s)
φ(s) is analytic on Hη. We are interested in the formal Dirichlet

series associated to this function, which we will denote by

−
∞∑
l=1

ΛF (l)l
−s, (2)

where the arithmetical function
ΛF : N → C

is, in this context, analogous to the classical von Mangoldt function, defined by

Λ(l) :=

{
log(p), if l = pk, p prime, k ≥ 1,

0, otherwise,

and which is determined by the formal relation (see, for instance, [8, p. 3])

ζ ′(s)

ζ(s)
= −

∞∑
l=1

Λ(l)l−s, Re s > 1.
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We will study the values ΛF (l) and the convergence of (2).
Since φ′(s) = −

∑∞
n=1 log(Fn)F

−s
n , the relation

φ′(s) = φ(s) · φ
′(s)

φ(s)

means that
∞∑
n=1

log(Fn)F
−s
n =

( ∞∑
n=1

F−s
n

)( ∞∑
l=1

ΛF (l)l
−s

)
. (3)

Recall that the formal product of two Dirichlet series f(s) =
∑∞

n=1 a(n)n
−s and g(s) =∑∞

n=1 b(n)n
−s corresponds to the Dirichlet series h(s) = f(s)g(s) =

∑∞
n=1 c(n)n

−s of the
Dirichlet convolution c(n) = (a ∗ b)(n) =

∑
rs=n a(r)b(s) of their coefficients (and moreover,

if f(s) is absolutely convergent for Re(s) > σf and g(s) for Re(s) > σg, then h(s) is absolutely
convergent for Re(s) > max{σf , σg}); see, for instance, [1, Chapter 11]. In the case of (3),
this allows us to recursively compute the coefficients ΛF (l) using (3). In particular, the formal
relation

φ′(s)

φ(s)
= −

∞∑
l=1

ΛF (l)l
−s (4)

will be valid analytically if the right-hand-side series converges in some half-plane. The main
goal of this paper is to determine σ0 > 0 such that this series converges absolutely for Re(s) > σ0.
Along the way, we will prove some interesting properties of the function ΛF (l). As far as we
know, these functions have not been previously considered in the mathematical literature; see
[6], which collects many interesting Dirichlet series, as well as [7, Chapters 16 and 17] and [9,
Chapters 1 and 2].

Since we will be considering only the multiplicative structure of the Fibonacci numbers, we
only need the those that are greater than 1, that is,

F = {Fn : n ≥ 3} = {2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . . }.

We denote the multiplicative semigroup generated by F by

FP := {finite products of powers of numbers in F}; (5)

and we assume 1 ∈ FP , by thinking of it as the empty product. In particular, F ⊆ FP .
To generate all the numbers in (5), it is not necessary to use F6 = 8 and F12 = 144,

because they can be written as product of other Fibonacci numbers, namely F6 = 8 = F 3
3 and

F12 = 144 = 24 · 32 = F 4
3F

2
4 (besides F1 = F2 = 1, these are also the unique Fibonacci numbers

that are perfect powers, a non-trivial result proved in [3]).
Furthermore, Carmichael’s Theorem (see [4, Theorem 23, p. 61] or, for a simpler proof,

[15, Theorem 3]) states that, if n ̸= 1, 2, 6, 12, the Fibonacci number Fn contains at least one
primitive divisor, defined as a prime divisor p such that p does not divide any Fm for 0 < m < n.
Hence, F6 and F12 are the only Fibonacci numbers expressible as a power or as a product of
powers of smaller Fibonacci numbers, so that

FP =
{
l = Fm1

n1
Fm2
n2

· · ·Fmkl
nkl

: mj > 0, 3 ≤ n1 < n2 < · · · < nkl , nj ̸= 6, 12
}
, (6)

where kl is the number of different Fibonacci numbers in F \ {8, 144} that appear in the
decomposition of l; again, we assume 1 ∈ FP is the product of zero factors.

By imitating the standard proof of unique factorization of natural numbers, it is a straight-
forward exercise to check that Carmichael’s Theorem implies unique factorization in FP . When
we refer to “the” factorization of a number in FP , this is the one we mean.
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We now present our list of results concerning the function ΛF (l) and the convergence of the
Dirichlet series (4). The corresponding proofs will be given in the following sections.

The first result concerns the support of ΛF (l):

Proposition 1. Let ΛF (l) be the arithmetical function defined in (3). Then, ΛF (1) = 0 and
ΛF (l) = 0 when l /∈ FP .

As a consequence of this result, the Dirichlet series (4) can be written as

φ′(s)

φ(s)
= −

∑
l∈FP

ΛF (l)l
−s. (7)

For l equal to a product of powers of (ordered) Fibonacci numbers excluding F3 = 2, or
including F3 but raised to a power less than 3, the expression for ΛF (l) is the following:

Proposition 2. Let ΛF (l) be the arithmetical function defined in (3). Then, if

l = Fm1
n1
Fm2
n2

· · ·Fmkl
nkl

∈ FP

(with a factorization as in (6), which is in fact unique) with Fn1 ̸= 2 or Fn1 = 2 and m1 < 3,
one has

ΛF (l) = (−1)rl−1 1

2rl
(rl − 1)!

m1!m2! · · ·mkl !
log(l), (8)

where rl := m1 +m2 + · · ·+mkl.

As we will see later in this paper ((17) and (18), or Table 1), ΛF (8) = 13
24 log(8) and

ΛF (144) = 35
128 log(144). It can then be checked that (8) is not valid for l = 8 = F 3

3 and
l = 144 = F 4

3F
2
4 .

Proposition 2 allows us to compute ΛF (l) for l = Fm
n with m ≥ 1 when n ̸= 3, 6, 12 (i.e.,

Fn ̸= 2, 8, 144), namely

ΛF (F
m
n ) =

(−1)m−1

2m
log(Fn), n ̸= 3, 6, 12, m ≥ 1.

The Fibonacci numbers 8 and 144 do not appear as basic factors in the decompositions (6), but
F3 = 2 does. This proposition gives a closed expression for ΛF (2

m):

Proposition 3. For m ≥ 1, one has

ΛF (2
m) =

(
(−1)m+1 − 2−2m(1 + i

√
7)m − 2−2m(1− i

√
7)m

)
log(2) (9)

=
(
(−1)m+1 − 21−m/2 cos(m arctan

√
7)
)
log(2) (10)

=

(
(−1)m+1 − 21−2m

⌊m/2⌋∑
k=0

(−1)k
(
m

2k

)
7k
)
log(2). (11)

For l equal to 2m times a Fibonacci number, we have the following:

Proposition 4. For m ≥ 1, and a Fibonacci number Fk ≥ 3, different from 8 and 144, one has

ΛF (2
mFk) =

1

22+m/2

(
2m/2(−1)m + cos(m arctan

√
7)− 1√

7
sin(m arctan

√
7)

)
log(2mFk)

∼ (−1)m

4
log(2mFk) when m→ ∞.
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m1 = 0 m1 = 1 m1 = 2 m1 = 3 m1 = 4 m1 = 5 m1 = 6 m1 = 7 m1 = 8

m2 = 0 − 1
2 −1

8
13
24 −17

64
21
160 − 73

384
141
896 − 225

2048

m2 = 1 1
2 −1

4
1
8 − 5

16
9
32 −13

64
33
128 − 69

256
121
512

m2 = 2 −1
8

1
8 − 3

32
3
16

35
128 − 5

128 − 71
512 0 − 81

2048

m2 = 3 1
24 − 1

16
1
16 −11

96 − 11
128

17
256

19
384

9
128 − 209

2048

m2 = 4 − 1
64

1
32 − 5

128
9

128
13

1024 − 11
256 − 9

1024 − 77
1024

475
16384

m2 = 5 1
160 − 1

64
3

128 − 11
256

3
256

47
2560 − 3

1024
123
2048 − 205

8192

Table 1: The value of ΛF (2
m13m2)/ log(2m13m2) for small values of m1 and m2.

Notice that, as in (11), cos(m arctan
√
7) and 1√

7
sin(m arctan

√
7) can be rewritten as ex-

pressions without trigonometric functions or squared roots, indeed as rational numbers that
depend on m, see (22).

And, this is what happens when l is 2m times two Fibonacci numbers:

Proposition 5. For m ≥ 1, and two different Fibonacci numbers Fk, Fq ≥ 3, also different
from 8 and 144, one has

ΛF (2
mFkFq) =

−1

25+m/2

(
2m/2(−1)m(2m+ 5) +

3

7
(2m+ 7) cos(m arctan

√
7)

− 1

7
√
7
(14m+ 41) sin(m arctan

√
7)

)
log(2mFkFq)

∼ (−1)m+1

16
m log(2mFkFq) when m→ ∞.

Propositions 4 and 5 suggest that, for general values of l, it is not that easy to find closed
expressions for ΛF (l). In Table 1 we can see the values of ΛF (2

m13m2) for 0 ≤ m1 ≤ 8 and
0 ≤ m2 ≤ 5, obtained with a computer algebra system (actually, we list the coefficients without
the factor log(2m13m2)).

For general values of l, we can find some bounds. Note that in the following proposition we
have introduced two numbers p, q and in fact p = 1; the notation is intended to allow speculation
about what the effect of changing the values of p, q would be.

Proposition 6. Let ΛF (l) be the arithmetical function defined in (3), and

l = 2m13m2Fm3
n3

· · ·Fmkl
nkl

∈ FP

(factorization as in (6), which is unique). Then, for a constant C independent of l, one has

|ΛF (l)| ≤
C

2rl−pm1−qm2

(rl − 1)!

m1!m2!m3! · · ·mkl !
log(l), (12)

where rl := m1 +m2 +m3 + · · ·+mkl (notice that m1 and m2 can be = 0) with

p = 1 and q = log2

(
1

2
+

3

10

√
5

)
= log

(
1

2
+

3

10

√
5

)
/ log(2) = 0.22752 . . . (13)
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This is the final result of the paper:

Theorem 7. The Dirichet series (7) diverges for

Re(s) <
7 log(7/2)

log(3 · 5 · 13 · 21 · 34 · 55 · 89)
= 0.431141 . . . (14)

and converges absolutely for Re(s) > σ0, where σ0 is the unique positive real number that satisfies
φ∗(s) = 1, with

φ∗(s) :=
1

21−p2s
+

1

21−q3s
+

1

2
φ(s)− 1− 1

2 · 2s
− 1

2 · 3s
− 1

2 · 8s
− 1

2 · 144s
.

With p and q as in (13), its approximate value is σ0 = 0.905556 . . .

2 Expressions for the function ΛF(l): Proofs of Propositions 1
up to 5

From (3), the coefficients ΛF (l) can be calculated by means of the formal relation(
(log 2)2−s + (log 3)3−s + (log 5)5−s + · · ·

)
=
(
1 + 1 + 2−s + 3−s + 5−s + · · ·

)
×
(
ΛF (1) + ΛF (2)2

−s + ΛF (3)3
−s + ΛF (4)4

−s + ΛF (5)5
−s + ΛF (6)6

−s + · · ·
)
.

It is clear that ΛF (1) = 0, so we may rewrite this as(
(log 2)2−s + (log 3)3−s + (log 5)5−s + · · ·

)
=
(
2 + 2−s + 3−s + 5−s + · · ·

)
×
(
ΛF (2)2

−s + ΛF (3)3
−s + ΛF (4)4

−s + ΛF (5)5
−s + ΛF (6)6

−s + · · ·
)
.

(15)

Consider an integer l ≥ 2 and let Fd1 , . . . , Fdpl
be the proper Fibonacci divisors of l (as

usual, a proper divisor of a number is a divisor that is not equal to the number itself). Then,
directly from (15), we deduce that ΛF (l) can be recursively determined by means of the formula

ΛF (l) =


−1

2(ΛF (j1) + · · ·+ ΛF (jpl)− log l), if l ∈ F , pl ≥ 1,

−1
2(ΛF (j1) + · · ·+ ΛF (jpl)), if l /∈ F , pl ≥ 1,

1
2(log l), if l ∈ F , pl = 0,

0, if l /∈ F , pl = 0,

(16)

where

j1 =
l

Fd1

, . . . , jpl =
l

Fdpl

, pl ≥ 1.

Let us illustrate the use of (16) with a couple of examples that have special interest. For
instance, 8 ∈ F has 2 ∈ F as its unique Fibonacci proper divisor. Therefore, p8 = 1 and, by
(16), one has ΛF (8) = −1

2(ΛF (4)−log(8)). Now, since 4 /∈ F and 2 is a Fibonacci proper divisor
of 4, p4 = 1 and then, by (16), ΛF (4) = −1

2ΛF (2). Thus we get ΛF (8) =
1
2

(
log(8) + 1

2ΛF (2)
)
.

Finally, 2 ∈ F but 2 has no Fibonacci proper divisor greater than 1, so p2 = 0 and then
ΛF (2) =

1
2 log(2). Therefore

ΛF (8) =
13

24
log(8). (17)

A more cumbersome example is 144 = 24 · 32 ∈ F . Its Fibonacci proper divisors are 2, 3 and 8.
By (16), we have

ΛF (144) = −1

2
(ΛF (72) + ΛF (48) + ΛF (18)− log(144)),

6



and again we use (16) to compute ΛF (72), ΛF (48), ΛF (18), and so on. This recursive process
finally yields

ΛF (144) =
35

128
log(144). (18)

This method can be used to find all the values that appear in Table 1. Of course, it can be
implemented in any computer algebra system.

Remark 8. It is important to observe the following regarding the practical application of (16).
Let l ∈ FP , with factorization

l = Fm1
n1
Fm2
n2

· · ·Fmkl
nkl

as in (6) (i.e., with Fni ̸= 8, 144), which is unique. If Fd > 1 is a Fibonacci number that divides
l, we cannot ensure that Fd is one of the Fni that appear in the above decomposition. This
happens often, due to the well-known property gcd(Fa, Fb) = Fgcd(a,b) of the Fibonacci numbers.
But, if a proper divisor Fd is not 8, 144, or one of the Fni , then in fact l/Fd /∈ FP : indeed, if
l′ = l/Fd ∈ FP , then let

l

Fd
= l′ = F

m′
1

n′
1
F

m′
2

n′
2
· · ·F

m′
kl′

n′
kl′

be its factorization. This leads to two different factorizations of l,

l = Fm1
n1
Fm2
n2

· · ·Fmkl
nkl

= Fd · F
m′

1

n′
1
F

m′
2

n′
2
· · ·F

m′
kl′

n′
kl′

,

which contradicts uniqueness.
Moreover, also by unique factorization, l/8 /∈ FP if Fd = 8 is a proper divisor of l and the

factorization of l does not contain Fn1 = 2 with m1 ≥ 3; and l/144 /∈ FP if Fd = 144 is a proper
divisor of l and l does not have the factor Fn1 = 2 with m1 ≥ 4 and Fn2 = 3 with m2 ≥ 2.
On the other hand, Proposition 1 shows that ΛF (l) = 0 when l /∈ FP . Thus, after we prove
this result, we do not need, in (16), to take all the Fd that divide l, only the proper divisors
that are 8, 144 (if Fn1 = 2 with m1 ≥ 3, or if Fn1 = 2 with m1 ≥ 4 and Fn2 = 3 with m2 ≥ 2,
respectively), or one of the Fibonacci numbers Fni that appear in the decomposition of l in
FP because, otherwise, the corresponding summand ΛF (l/Fd) is null. This will be tacitly used
many times in the forthcoming proofs.

Using (16), let us now prove Propositions 1, 2, 3, 4, and 5.

2.1 Proof of Proposition 1

We will prove that FP(l) = 0 when l /∈ FP by complete induction on l. The first l that does not
belong to FP is l = 7, and ΛF (7) = 0 by (16) (the case l /∈ F and pl = 0). Let us now assume
that ΛF (l

′) = 0 for any l′ < l such that l′ /∈ FP . We want to prove that also ΛF (l) = 0. Let us
write (15) as

∞∑
k=2

log(Fk)F
−s
k =

( ∞∑
n=1

ann
−s

)( ∞∑
n=1

ΛF (n)n
−s

)
=

∞∑
n=1

∑
k|n

akΛF (n/k)

n−s, (19)

where a1 = 2, ak = 1 if k = Fj for some j ≥ 3 (starting with k = F3 = 2) and ak = 0
otherwise. Comparing the coefficients of l−s in (19), the coefficient on the left-hand side is 0
because l /∈ FP , so l is not a Fibonacci number; then if on the right-hand side we separate the
summand corresponding to k = 1, we have

0 = a1ΛF (l) +
∑

k|l, k>1

akΛF (l/k).

7



Here, ak = 0 except when k = Fj . And, since l /∈ FP , also l/Fj /∈ FP , so, by the inductive
hypothesis, ΛF (l/k) = 0 for every k = Fj > 1. Consequently, ΛF (l) = 0, and the proof is
concluded.

Remark 9. This raises the question of whether we can have ΛF (l) = 0 with l ∈ FP . In light
of (8), this can only happen when l ∈ FP does not satisfy the hypotheses of Proposition 2. In
fact ΛF (2

732) = 0 is the only l in the range 1 < l ≤ 108 such that l ∈ FP and ΛF (l) = 0.

2.2 Proof of Proposition 2

If l is a number of FP with rl = 1 that fulfills the hypothesis, l is necessarily a Fibonacci number
distinct from F6 = 8 and F12 = 144 (observe that r8 = 3, r144 = 6). Then, directly by (16) one
has

ΛF (l) =
1

2
log(l),

so formula (8) is true if rl = 1.
To prove the validity of (8) in general we use complete induction on rl. Let l = Fm1

n1
Fm2
n2

· · ·Fmkl
nkl

be an element of FP (with Fn1 ̸= 2 or Fn1 = 2 and m1 < 3) having rl > 1 and assume that (8)
is true for any

l′ = F
m′

1

n′
1
F

m′
2

n′
2
· · ·F

m′
kl′

n′
kl′

∈ FP

with rl′ := m′
1+m

′
2+ · · ·+m′

kl′
< rl (and such that Fn′

1
̸= 2 or Fn′

1
= 2 and m′

1 < 3). By [2, 4],

l /∈ F and l/Fj /∈ FP if Fj is a Fibonacci proper divisor of l that is not one of the Fni . Then,
by applying (16) and Proposition 1, we have

ΛF (l) = −1

2

(
ΛF (F

m1−1
n1

· · ·Fmkl
nkl

) + ΛF (F
m1
n1
Fm2−1
n2

· · ·Fmkl
nkl

) + · · ·+ ΛF (F
m1
n1

· · ·Fmkl
−1

nkl
)
)
.

(20)
Since the sum of exponents of each summand of the right-hand side of (20) is rl−1, the induction
hypothesis applies and we obtain

ΛF (l) = −1

2
(−1)rl−2 1

2rl−1
(rl − 2)!

×
(

1

(m1 − 1)! · · ·mkl !
log(l/Fn1) + · · ·+ 1

m1! · · · (mkl − 1)!
log(l/Fnkl

)

)
= (−1)rl−1 1

2rl
(rl − 1)!

m1! · · ·mkl !
log(l),

which proves (8).

2.3 Proof of Proposition 3

We have already seen that ΛF (2) =
1
2 log(2), ΛF (2

2) = −1
4 log(2) and ΛF (2

3) = 13
8 log(2). For

m ≥ 4, the Fibonacci proper divisors of l = 2m are 2 and 8, so (16) gives

ΛF (2
m) = −1

2

(
ΛF (2

m−1) + ΛF (2
m−3)

)
.

For simplicity, let us write am = ΛF (2
m), which satisfies the linear homogeneous recurrence

am +
1

2
am−1 +

1

2
am−3 = 0, (21)

8



whose characteristic equation is λ3 + 1
2λ

2 + 1
2 = 0. The roots of the characteristic equation are

λ1 = −1 and λ2,3 =
1

4

(
1± i

√
7
)
=

1√
2

(
cos(arctan

√
7)± i sin(arctan

√
7)
)
.

Thus, the solution of (21) can be written as

am = Aλm1 +Bλm2 + Cλm3

or also as

am = Aλm1 +B′
(

1√
2

)m

cos(m arctan
√
7) + C ′

(
1√
2

)m

sin(m arctan
√
7),

where the constants A,B,C or A,B′, C ′ must be chosen to satisfy the initial values a1 =
1
2 log(2),

a2 = −1
4 log(2) and a3 =

13
8 log(2). It is a simple task to find the values of these constants, and

thus we get (9) and (10). Finally,

(1 + i
√
7)m + (1− i

√
7)m =

m∑
k=0

(
m

k

)
ik(

√
7)k +

m∑
k=0

(
m

k

)
(−i)k(

√
7)k = 2

⌊m/2⌋∑
k=0

(
m

2k

)
(−1)k7k,

which becomes (11).

2.4 Proof of Proposition 4

By using the recurrence (16), we easily get

ΛF (2Fk) = −1

4
log(2Fk), ΛF (2

2Fk) =
1

8
log(22Fk), ΛF (2

3Fk) = − 5

16
log(23Fk).

Also, for m ≥ 3,

ΛF (2
mFk) = −1

2

(
ΛF (2

m−1Fk) + ΛF (2
m−3Fk) + ΛF (2

m)
)
.

For simplicity, let am = ΛF (2
mFk), and b(m) = −1

2ΛF (2
m), which is given by (9). Then we

have the linear recurrence

am +
1

2
am−1 +

1

2
am−3 = b(m),

a1 = −1

4
log(2Fk), a2 =

1

8
log(22Fk), a3 = − 5

16
log(23Fk),

with b(m) = c1p
m
1 + c2p

m
2 + c3p

m
3 for certain constants c1, c2, c3 and p1, p2, p3. Solving this

recurrence by standard methods, we get

am =
1

22+m/2

(
2m/2(−1)m + cos(m arctan

√
7)− 1√

7
sin(m arctan

√
7)

)
log(2mFk).

Finally, it is clear from this expression that am ∼ (−1)m

4 log(2mFk) when m→ ∞.

Remark 10. Let us see how the expressions cos(m arctan
√
7) and 1√

7
sin(m arctan

√
7) that

appear, among other places, in Proposition 4, can be rewritten without trigonometric functions
or square roots. We start with De Moivre’s formula

cos(mθ) + i sin(mθ) = (cos(θ) + i sin(θ))m.

9



Applying the binomial formula and equating real and imaginary parts, we obtain

cos(mθ) =

⌊m/2⌋∑
r=0

(−1)r
(
m

2r

)
cosm−2r(θ) sin2r(θ) = cosm(θ)

⌊m/2⌋∑
r=0

(−1)r
(
m

2r

)
tan2r(θ)

and

sin(mθ) =

⌊(m−1)/2⌋∑
r=0

(−1)r
(

m

2r + 1

)
cosm−2r−1(θ) sin2r+1(θ)

= cosm(θ)

⌊(m−1)/2⌋∑
r=0

(−1)r
(

m

2r + 1

)
tan2r+1(θ).

Now, using cos2(θ) = 1/(1 + tan2(θ)), we get

cos(mθ) =
1

(1 + tan2(θ))m/2

⌊m/2⌋∑
r=0

(−1)r
(
m

2r

)
tan2r(θ),

sin(mθ) =
1

(1 + tan2(θ))m/2

⌊(m−1)/2⌋∑
r=0

(−1)r
(

m

2r + 1

)
tan2r+1(θ).

Finally, taking θ = arctan(
√
7), we obtain

cos(m arctan(
√
7)) =

1

8m/2

⌊m/2⌋∑
r=0

(−1)r7r
(
m

2r

)
,

1√
7
sin(m arctan(

√
7)) =

1

8m/2

⌊(m−1)/2⌋∑
r=0

(−1)r7r
(

m

2r + 1

)
.

(22)

2.5 Proof of Proposition 5

By using the recurrence (16), we easily get

ΛF (2FkFq) =
1

4
log(2FkFq), ΛF (2

2FkFq) = − 3

16
log(22FkFq), ΛF (2

3FkFq) =
3

8
log(23FkFq).

In addition, for m ≥ 3,

ΛF (2
mFkFq) = −1

2

(
ΛF (2

m−1FkFq) + ΛF (2
m−3FkFq) + ΛF (2

mFk) + ΛF (2
mFq)

)
.

Let am = ΛF (2
mFkFq) and bk(m) = −1

2ΛF (2
mFk), given in Proposition 4. Then we have the

linear recurrence

am +
1

2
am−1 +

1

2
am−3 = bk(m) + bq(m),

a1 =
1

4
log(2FkFq), a2 = − 3

16
log(22FkFq), a3 =

5

8
log(23FkFq).

Solving the recurrence, we get the value for am. In this case solving the recurrence is a cum-
bersome process (it can be done with the help of computer algebra software). But, after the
expression for am has been found, checking that it satisfies the recurrence is not difficult. Finally,
the asymptotic formula for am follows immediately from its expression.
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2.6 Some additional expressions

It is easy to verify on a case by case basis that ΛF (l) is always a rational number multiplied by
log(l). In addition, we observe that the value of ΛF (l), with l ∈ FP factored as in (6), exhibits
symmetry with respect to those factors different from 2 and 3. Namely, for m1 ≥ 0, m2 ≥ 0,
and different Fibonacci numbers Fnj ≥ 5, also different from 8 and 144, let us denote

Λ̂F (m1,m2, J) :=
ΛF

(
2m13m2

∏J
j=1 Fnj

)
log
(
2m13m2

∏J
j=1 Fnj

) , with m1 +m2 + J > 0.

Then, for l = 2m13m2Fm3
n3
Fm4
n4

· · ·Fmkl
nkl

> 1 (factored uniquely as in (6)), one has

ΛF (2
m13m2Fm3

n3
· · ·Fmkl

nkl
)

log(2m13m2Fm3
n3 · · ·Fmkl

nkl
)
=

1

m3!m4! · · ·mkl !
Λ̂F (m1,m2,m3 +m4 + · · ·+mkl).

3 Bounds for the function ΛF(l): Proof of Proposition 6

Clearly, the bound (12) in Proposition 6 holds for l satisfying the hypotheses of Proposition 2
(in that case, p and q do not play any role). For l ∈ FP in general, the idea is to give an
inductive proof using the recurrence (16). If l = 2m13m2Fm3

n3
· · ·Fmkl

nkl
, then p and q in (12) can

be considered as functions
p := p(m1, rl), q := q(m2, rl),

with values in the interval [0, 1], which must be chosen in such a way that (12) holds.
As we shall see in the following proof, this is easy if we are satisfied with p = q = 1; however,

this choice yields a poor bound. The smaller p and q are, the better the bound is for use in
the proof of Theorem 7, but the effort that must be made to obtain these improved bounds is
proportionally greater. In addition, note that if we want to use (12) to prove Theorem 7, then
we need global bounds where p and q are independent from m1, m2 and rl.

In light of Propositions 3, 4 and 5, the bound (12) cannot hold for p = q = 0; furthermore,
for such a bound to hold for all l ∈ FP , it must necessarily be the case that p = 1. This does
not exclude the possibility that bounds of a different type could exist. For example, numerical
experiments seem to point to the existence of a bound of the form

|ΛF (l)| ≤
C

2rl−m1+tmin(m1,m2)

(rl − 1)!

m1!m2!m3! · · ·mkl !
log(l),

where t is very close to 1. However, we have not been able to prove such a bound, and even if
we had, it does not seem straightforward to use it to improve Theorem 7).

In fact, when we bound |ΛF (l)| via (16), we are taking absolute values in all the summands,
which of course discards possible cancelation due to alternating signs in ΛF (l). Proposition 2
suggests that ΛF (l) changes sign each time that a Fibonacci proper divisor is extracted from l;
however, this is not always the case, as one can see in Table 1, which makes any proof based on
cancelation difficult, since one needs to take advantage of a phenomenon which happens often,
but not always, and not in a controlled or localized manner.

Hence, we are convinced that |ΛF (l)| has better bounds than those which we will discuss
here, as supported by numerical experiments, although obtaining proofs does not seem easy.

Let us then turn to the proof of Proposition 6. We have set it up so as to exhibit the
difficulties that arise if we want p, q ∈ [0, 1] to be small. In Remark 11 we discuss the possibility
of finding bounds for |ΛF (l)| with p < 1, by dropping the requirement that they hold for all l
and instead impose restrictions, such as rl ≥ 2m1.
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Proof of Proposition 6. We want to prove that, for a certain constant Cp,q (that depends only
on p and q),

|ΛF (l)| ≤
Cp,q

2rl−pm1−qm2

(rl − 1)!

m1!m2!m3! · · ·mkl !
log(l), (23)

where rl := m1 +m2 +m3 + · · ·+mkl (note that m1 and m2 can be = 0).
To deal with the case l = 2m1 (recall Proposition 3), it is enough to take p = 1 and Cp,q a

little larger than 1, for example Cp,q = 7/4 (note that if the bound holds for q = 0, then it also
holds for any q ∈ [0, 1]); for the moment, though, let us forget about l = 2m1 . We will see that
even when we look for a bound not covering that case, we also need to take p = 1.

Thus, we are going to prove (23) for

l = 2m13m2Fm3
n3

· · ·Fmkl
nkl

∈ FP

(factorization as usual as in (6)) by induction on m1. We will not bother with checking in detail
what the exact value of Cp,q is; when the argument requires discarding a finite number of values,
it might be necessary to make Cp,q bigger. In fact from now on we work with a global value of
C = 7/4.

Proposition 2 shows that (23) is true when m1 ∈ {0, 1, 2} (in this case, the bound is valid
for p = q = 0, hence also for any p, q ∈ [0, 1]), so it is enough to see what happens when m1 ≥ 3.
Indeed, this is the starting point of the inductive process.

In order to avoid dealing with many separate cases, and to allow us to express summands
which do not actually form part of some expressions, we will use the following notation:

IFcondition(a) =

{
a if “condition” is true,

0 if “condition” is false.

Note that, in the following arguments, we always bound IFcondition(a) by a positive constant,
so the bound can also be used when IFcondition(a) = 0. We will use two different “conditions”,
namely

(m2 ≥ 1) and (m1 ≥ 4 and m2 ≥ 2)

which, for simplicity, will be denoted by IF3 and IF144. Observe that if they do not hold, the
corresponding summand ΛF (l/3) or ΛF (l/144) in (16) is absent.

Under the inductive hypothesis, we assume that the bound (23) holds for all l′ whose corre-
sponding m′

1 is less than m1. By the recursive formula (16), we have

|ΛF (l)| ≤
1

2

∣∣∣ΛF (2
m1−13m2Fm3

n3
· · ·Fmkl

nkl
)
∣∣∣+ 1

2

∣∣∣ΛF (2
m1−33m2Fm3

n3
· · ·Fmkl

nkl
)
∣∣∣

+
1

2
IF3

(∣∣∣ΛF (2
m13m2−1Fm3

n3
· · ·Fmkl

nkl
)
∣∣∣)+ 1

2
IF144

(∣∣∣ΛF (2
m1−43m2−2Fm3

n3
· · ·Fmkl

nkl
)
∣∣∣)

+
1

2

∣∣∣ΛF (2
m13m2Fm3−1

n3
· · ·Fmkl

nkl
)
∣∣∣+ · · ·+ 1

2

∣∣∣ΛF (2
m13m2Fm3

n3
· · ·Fmkl

−1
nkl

)
∣∣∣

=:
1

2
S1 +

1

2
S2 +

1

2
S3 +

1

2
S4 +

1

2
S5 +

1

2
S6.

By induction,

S1 ≤
C

2rl−1−p(m1−1)−qm2

(rl − 2)!

(m1 − 1)!m2!m3! · · ·mkl !
log(l/2)

=
C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !
21−pm1 log(l/2) (24)
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and again by induction,

S2 ≤
C

2rl−3−p(m1−3)−qm2

(rl − 4)!

(m1 − 3)!m2!m3! · · ·mkl !
log(l/8)

=
C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !

m1(m1 − 1)(m1 − 2)

(rl − 2)(rl − 3)
23−3p log(l/8) (25)

(if needed, we can use that log(l/8) ≤ log(l/2)). By induction (noting the summand is absent
if IF3 is false)

S3 ≤
C

2rl−1−pm1−q(m2−1)

(rl − 2)!

m1! (m2 − 1)!m3! · · ·mkl !
log(l/3)

=
C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !
21−qm2 log(l/3). (26)

By induction (noting that this summand is absent if IF144 is false),

S4 ≤
C

2rl−6−p(m1−4)−q(m2−2)

(rl − 7)!

(m1 − 4)! (m2 − 2)!m3! · · ·mkl !
log(l/144)

=
C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !

m1(m1 − 1)(m1 − 2)(m1 − 3)m2(m2 − 1)

(rl − 2)(rl − 3)(rl − 4)(rl − 5)(rl − 6)
26−4p−2q log(l/144)

(27)

(and if needed, here we can use that log(l/144) ≤ log(l/3)). Once more, by induction

S5 ≤
C

2rl−1−pm1−qm2

(rl − 2)!

m1!m2! (m3 − 1)! · · ·mkl !
log(l/Fn3)

=
C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !
2m3 log(l/Fn3)

up to

S6 ≤
C

2rl−1−pm1−qm2

(rl − 2)!

m1!m2!m3! · · · (mkl − 1)!
log(l/Fnkl

)

=
C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !
2mkl log(l/Fnkl

).

The strategy at this point is to combine the coefficients of (24) and (25) and to choose p
so as to obtain the inequality ≤ 2m1, then do the same with (26) and (27), choosing q so as
to obtain the inequality ≤ 2m2. Specifically, suppose that after using log(l/8) ≤ log(l/2) and
log(l/144) ≤ log(l/3), we are able to obtain in (24) and (25), that

21−pm1 +
m1(m1 − 1)(m1 − 2)

(rl − 2)(rl − 3)
23−3p ≤ 2m1 (28)

and likewise, that in (26) and (27) we are able to obtain

21−qm2 +
m1(m1 − 1)(m1 − 2)(m1 − 3)m2(m2 − 1)

(rl − 2)(rl − 3)(rl − 4)(rl − 5)(rl − 6)
26−4p−2q ≤ 2m2. (29)
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If we achieve this, then we would have (possibly with m2 = 0)

|ΛF (l)| ≤
1

2

C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !

×
(
2m1 log(l/2) + 2m2 log(l/3) + 2m3 log(l/Fn3) + · · ·+ 2mkl log(l/Fnkl

)
)

=
1

2

C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !
log

(
l2m1+2m2+2m3+···+2mkl

22m132m2F 2m3
n3 · · ·F 2mkl

nkl

)

=
1

2

C

2rl−pm1−qm2

(rl − 2)!

m1!m2!m3! · · ·mkl !
log(l2rl−2)

=
C

2rl−pm1−qm2

(rl − 1)!

m1!m2!m3! · · ·mkl !
log(l),

and we could conclude.
Let us then deal with (28) and (29). In (28), rl ≥ m1 + 1, unless l = 2m1 , in which case we

are in the situation of Proposition 3 and there is nothing to prove; on top of this we already
said that we need to take p = 1 even if we discard that case, hence

(m1 − 1)(m1 − 2)

(rl − 2)(rl − 3)
≤ 1, (30)

and what we need is to find p ∈ [0, 1] such that 21−p + 23−3p ≤ 2, or equivalently,

f(p) := 2−p + 22−3p ≤ 1. (31)

The function f(p) is decreasing on [0, 1], with f(0) = 5 and f(1) = 1, which leaves us only with
the choice p = 1. We could choose a value p < 1 if m1 and r1 were restricted in such a way as
to yield a smaller bound in (30), although then we would not have the same function f(p) as
above in (31) (Remark 11, goes into more detail regarding this possibility).

In general we cannot do this, since if m1 and rl both go to ∞ in such a way that their
quotient goes to 1, it is impossible to obtain a smaller bound in (30). However, it would be
possible if we assume a relation along the lines of rl ≥ 2m1 (see again Remark 11).

In any case, with p = 1, after canceling 2m2, (29) can be rewritten as

2−q +
2m1(m1 − 1)(m1 − 2)(m1 − 3)(m2 − 1)

(rl − 2)(rl − 3)(rl − 4)(rl − 5)(rl − 6)
2−2q ≤ 1. (32)

Since this bound involves IF144, we have m1 ≥ 4 y m2 ≥ 2, so that we may assume that rl ≥ 7
(if rl = 6 then l = 188 and one has to verify separately that this case also satisfies the bound).
Now, with m1 ≥ 4, m2 ≥ 2, rl ≥ 7, it is easy to check that, except when rl = m1 +m2, with

(m1,m2) ∈
{
(5, 2), (6, 2), (7, 2), (4, 3), (5, 3), (6, 3)

}
, (33)

we have
2m1(m1 − 1)(m1 − 2)(m1 − 3)(m2 − 1)

(rl − 2)(rl − 3)(rl − 4)(rl − 5)(rl − 6)
≤ 1

2
. (34)

Since the exceptions in (33) are a finite number of cases, we can simply consult Table 1
to check that in each of these cases the bound is satisfied with C = 7/4 as we stated at the
beginning. Thus, what we need to do now is to find q ∈ [0, 1] such that

g(q) := 2−q + 2−2q−1 ≤ 1. (35)
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This is a decreasing function on [0, 1], with g(0) = 3/2 and g(1) = 5/8; to obtain g(q) ≤ 1 it is
enough to take

q = log2

(
1 +

√
3

2

)
= log

(1 +√
3

2

)
/ log(2) = 0.449984 . . .

or anything larger.
Without going into all the details, let us see how this method can be improved to obtain

a smaller q. If in (34) we substitute ≤ 1/2 for ≤ 2/5, a finite number of exceptions appear:
we need to add (7, 3), (8, 2) y (8, 3) to those in (33)); the inequality which replaces (35) is now

g(q) := 2−q + 2−2q−1/5 ≤ 1, and we can lower q down to q = log2

(
5+

√
65

10

)
= 0.3854 . . . .

With ≤ 1/4 in (34), somewhat more than 30 exceptions arise; this time, there are 3 excep-
tions with rl = m1+m2+1, which are easily dealt with with a computational algebra package.

Thus leads to q = log2

(
1+

√
2

2

)
= 0.271553 . . .

With ≤ 1/5 now there are a bit more than 100 exceptions, and we continue lowering the
value of q. This time we have the inequality g(q) := 2−q + 2−2q/5 ≤ 1, and we arrive at

q = log2

(
1

2
+

3

10

√
5

)
= 0.22752 . . . ,

which concludes the proof of the theorem. Note that with ≤ 1/6, an infinite number of excep-
tions arise, so we cannot continue.

Remark 11. If we look for bounds under the condition that rl ≥ 2m1, then instead of (30) we
have

(m1 − 1)(m1 − 2)

(rl − 2)(rl − 3)
≤ 1

4
,

which leads to finding p ∈ [0, 1] such that 21−p + 21−3p ≤ 2, i.e.

f(p) := 2−p + 2−3p ≤ 1.

The unique solution f(p) = 1 with p ∈ [0, 1] is

p = − log2

(
3

√
1

18
(
√
93 + 9)− 3

√
1

18
(
√
93− 9)

)
= 0.551463 . . .

Note however that this does not just consist of a slight variation on the proof, since the condition
rl ≥ 2m1 doesn’t play well with our inductive steps. Other ideas are needed to get it to work.
In addition, this would also affect q in (29) and would not lead to the same expression as in (32).

4 Proof of Theorem 7

We prove that the Dirichlet series (4) does not converge when s satisfies (14), by showing that
the general term ΛF (l)l

−s does not tend to 0. Without loss of generality, we can consider that
s is a positive real number.

The idea is to take l a product of consecutive Fibonacci numbers greater than 2 (excluding
F6 and F12 of course) to a power m, get the value ΛF (l) applying Proposition 2, estimate it by
using Stirling’s formula, and obtain the condition for ΛF (l)l

−s, as a function of m, to tend to
0 when m → ∞. We have checked that the most demanding condition on s is obtained with
seven Fibonacci factors, so we will limit ourselves to this case.
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Let l = (3 · 5 · 13 · 21 · 34 · 55 · 89)m, with m ≥ 1. By Proposition 2,

ΛF (l) = (−1)7m−1 1

27m
(7m− 1)!

(m!)7
m log(3 · 5 · 13 · 21 · 34 · 55 · 89).

Stirling’s formula leads to

ΛF (l)l
−s ∼ (−1)7m−1

(
7

2

)7m 1

8
√
7π3m3

log(3·5·13·21·34·55·89)·(3·5·13·21·34·55·89)−sm, m→ ∞.

Convergence of the series
∑

l ΛF (l)l
−s implies that

1

m3

(
7

2

)7m

(3 · 5 · 13 · 21 · 34 · 55 · 89)−sm → 0 when m→ ∞

and it is an easy exercise to check that this is not true when

s <
7 log(7/2)

log(3 · 5 · 13 · 21 · 34 · 55 · 89)
= 0.431141 . . . ,

so that (4) does not converge in this case.
We will now find an abscissa σ0 such that

∑
l ΛF (l)l

−s converges absolutely for Re(s) > σ0,
necessarily to φ′(s)/φ(s). To achieve this, we use the bound in Proposition 6, which will show
how the resulting value of σ0 depends on the numbers p, q which appear in (12). The smaller
we can take p and q, the smaller the value of σ0.

Considering
∑

l
ΛF (l)
log(l) l

−s instead of
∑

l ΛF (l)l
−s does not change the abscissa of absolute

convergence (it can change what happens on the boundary, but this doesn’t affect our argument),
hence we can drop the factors of log(l). In addition, since our bounds are absolute, we are
actually dealing with

∑
l |ΛF (l)|l−s for positive real s.

With this in mind, consider the function

ξ(s) =
∑
l∈FP

1

2rl−pm1−qm2

1

rl

rl!

m1!m2!m3! · · ·mkl !
l−s

where l ∈ FP has the factorization l = Fm1
n1
Fm2
n2
Fm3
n3

· · ·Fmkl
nkl

given in (6). Since∑
l∈FP

|ΛF (l)/ log(l)|l−s ≤ ξ(s),

the convergence of ξ(s) implies the absolute convergence of
∑

l ΛF (l)l
−s to φ′(s)/φ(s).

For a positive integer M , consider the set of l ∈ FP whose factorization (6) contains only
Fibonacci numbers from F3 = 2 up to FM (some may be absent in the factorization), in other
words,

FP(M) :=
{
l = Fm1

n1
Fm2
n2
Fm3
n3

· · ·FmM
M : mj ≥ 0,

3 = n1 < n2 < · · · < nkl =M,nj ̸= 6, 12, nj ≤M
}
.

Assuming M > 12, we have

n1 = 3, n2 = 4, n3 = 5, n4 = 7, n5 = 8, n6 = 9, n7 = 10, n8 = 11, n9 = 13,

nj = j + 4 for j > 9, up to nkl =M − 4.
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Consider the summands of the series ξ(s) corresponding to l ∈ FP(M),

ξM (s) =
∑

l∈FP (M)

1

2rl−pm1−qm2

1

rl

rl!

m1!m2!m3! · · ·mkl !

(
Fm1
n1
Fm2
n2
Fm3
n3

· · ·Fmkl
nkl

)−s

=
∑

l∈FP (M)

1

rl

rl!

m1!m2!m3! · · ·mkl !

(
(21−pF−s

n1
)m1(21−qF−s

n2
)m2(2F−s

n3
)m3 · · · (2F−s

nkl
)mkl

)
.

We then have ξ(s) = limM→∞ ξM (s). For fixed r, let

SM,r(s) =
1

r

∑
l∈FP (M)

rl=r

rl!

m1!m2!m3! · · ·mkl !

(
(21−pF−s

n1
)m1(21−qF−s

n2
)m2(2F−s

n3
)m3 · · · (2F−s

nkl
)mkl

)
.

The multinomial expansion

(x1 + x2 + · · ·+ xk)
r =

∑
m1+m2+···+mk=r,

mj≥0

r!

m1!m2! · · ·mk!
xm1
1 xm2

2 · · ·xmk
k

leads directly to

SM,r(s) =
1

r

(
1

21−pF s
3

+
1

21−qF s
4

+
1

2F s
5

+ · · ·+ 1

2F s
nkl

)r

=:
1

r

(
S∗
M (s)

)r
,

where the Fj appearing in this expression are all those Fj ≤ FM with j /∈ {1, 2, 6, 12}
Since all the terms involved are positive for s > 0, Tannery’s Theorem, which is a special

case of the Dominated Convergence Theorem, shows that

ξ(s) = lim
M→∞

ξM (s) = lim
M→∞

∞∑
r=1

SM,r(s) =
∞∑
r=1

lim
M→∞

SM,r(s) =
∞∑
r=1

1

r

(
lim

M→∞
S∗
M (s)

)r
,

where the limit is exchanged with raising to the rth power is justified by continuity. Finally,

lim
M→∞

S∗
M (s) =

1

21−pF s
3

+
1

21−qF s
4

+
1

2F s
5

+ · · ·+ 1

2F s
M

+ · · ·

=
1

21−pF s
3

+
1

21−qF s
4

+
1

2

∞∑
j=5

1

F s
j

− 1

2F s
6

− 1

2F s
12

=
1

21−p2s
+

1

21−q3s
+

1

2
φ(s)− 1− 1

2 · 2s
− 1

2 · 3s
− 1

2 · 8s
− 1

2 · 144s
=: φ∗(s).

Recall that
∑∞

r=1 a
r/r = − log(1− a) for |a| < 1. Hence, if φ∗(s) < 1, then

ξ(s) =
∞∑
r=1

1

r

(
φ∗(s)

)r
= − log(1− φ∗(s))

and we will be done. Since φ∗(s) is clearly decreasing, φ∗(s) < 1 will hold for s > σ0 for that σ0
satisfying φ∗(σ0) = 1; the concrete value depends on p and q. With p = 1 and q = 0.22752 . . .
as in Proposition 6, we find σ0 = 0.905556 . . . , which concludes the proof.

Remark 12. As we saw in the proof of Proposition 6, the bound in (12) with p = q = 0 is
false, but, if it were valid, the corresponding solution of φ∗(s) = 1 would be s = 0.686895 . . . .
The bound above is probably not optimal, and we can speculate that the abscisa of absolute
convergence of (7) is some number between our σ0 = 0.905556 . . . , obtained in the proof of
Theorem 7, and the value 0.686895 . . . which would result if the bound (12) with p = q = 0
held.
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