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APPROXIMATING INVERSE OPERATORS
BY A FOURTH–ORDER ITERATIVE METHOD
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Abstract

From a known uniparametric family of one–point third–order iterative methods, we
obtain a fourth–order iterative method to approximate inverse operators without using
inverse operators, analyse the convergence of the method and illustrate the analysis
with two numerical examples.

Keywords: inverse operator, iterative method, convergence, integral equation

AMS Subject Classification: 65J17, 65J22.

1. INTRODUCTION

When we are interested in solving a nonlinear equation F (x) = 0, where F : Ω ⊆ X → Y
is an operator defined on a nonempty open convex domain Ω of a Banach space X with
values in a Banach space Y , we usually turn to one–point iterative methods, which are of
form

xn+1 = Φ(xn), n ≥ 0, for given x0, (1)

and, among these, we generally use the well–known Newton’s method,

xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0, for given x0, (2)

since it is an efficient method as a consequence of its quadratic order of convergence and
its low operational cost.
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When choosing an iterative method, we must pay special attention to two aspects: the
speed of convergence, which is measured through the order of convergence, and the opera-
tional cost of the method. For one–point iterative methods of form (1), it is well–known that
the order of convergence depends explicitly on the derivatives of the operator F involved,
so that if iteration (1) has order of convergence p, (1) depends on the first p− 1 derivatives
of F (p. 98 of [1], Theorem 5.3). As a consequence of this fact, when we want to solve
nonlinear systems or infinite dimensional problems, the operational cost of using deriva-
tives of high orders is high, so that it is common to resort to Newton’s method because of
its efficiency. However, for certain operators F , we may be interested in using iterative
methods with higher order of convergence, as, for example, in solving quadratic equations
([2, 3]).

If we now pay attention to one–point third–order iterative methods and, in particular, to
Chebyshev’s method,

xn+1 = xn −
(
I +

1

2
LF (xn)

)
[F (xn)]−1F (xn), n ≥ 0, for given x0,

where I is the identity operator on X and LF (x) = [F ′(x)]−1F ′′(x)[F ′(x)]−1F (x), x ∈
X , provided that [F ′(xn)]−1 exists at each step, we see that the only inverse operator that we
have to calculate in each step is [F ′(xn)]−1, which is the same inverse that calculate in each
step of Newton’s method. However, the algorithm of other third–order one–point iterative
methods, as for example the Halley and super-Halley methods, involves the calculation
of other different inverse operators. So, from this point of view, we can see Chebyshev’s
method as the third–order one–point iterative method with less operational cost.

Following the last two ideas, it is introduced in [4] and used in [5] the following uni-
parametric family of one-point iterative methods

xn+1 = xn −
(
I +

1

2
LF (xn) + αLF (xn)2

)
[F (xn)]−1F (xn), n ≥ 0, for given x0,

(3)
with α ∈ [0, 1/2], that only needs the calculation of the inverse [F (xn)]−1 in each step
and has an important peculiarity: for the value of the parameter α = 1/2, the order of
convergence is four when it is applied to solve quadratic equations. Observe that (3) is
reduced to Chebyshev’s method for α = 0. In [4], we can see that iterations of (3) have a
faster convergence than Chebyshev’s method.

The origin of iterations given in (3) is a Gander’s result [6] on third–order one–point
iterative methods in the real case. In [6], Gander proves that, for a real function f of real
variable, the iteration of form

xn+1 = xn − ψ (Lf (xn))
f(xn)

f ′(xn)
, n ≥ 0, for given x0,

with Lf (x) = f(x)f ′′(x)
f ′(x)2 , is of order three if ψ is a function such that ψ(0) = 1, ψ′(0) =

1/2 and |ψ′′(0)| < +∞. For (3), we consider ψ(t) =
(
1 + 1

2Lf (t) + αLf (t)2
)

with a
finite Taylor’s series and its generalization to Banach spaces. It is obvious that there are
other functions ψ that led to third–order one–point iterative methods. But, for instance,
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the functions that originate the Halley or super–Halley methods does not have a non finite
Taylor’s series, so that the operational cost is higher.

On the other hand, as we can see in [7], approximation of inverse operators often ap-
pears in mathematics, mechanics, physics, electronics, meteorology, geophysics, and other
branches of the natural sciences. Also, they play an important role in solving nonlinear
evolution equations of mathematical physics and its interest is increasing permanently. In
this work, we ask if in the same way that we obtain a method of order four of family (3)
to solve quadratic equations, we can obtain a method of order four to approximate inverse
operators with the important characteristic of not using inverse operators. The answer is
yes and we see that (3) with α = 1/4 has order of convergence four when it is applied to
the approximation of inverse operators without using inverse operators.

2. PRELIMINAIRES

We consider operator equations Tz = ϕ for operators between Banach spaces X and Y .
We are interested in approximating solutions of Tz = ϕ, so that there is a solution x =
T−1(ϕ) if ϕ is in the domain of T−1, by means of iterative methods that do not use inverse
operators in their algorithms. To approximate the inverse operator T−1 we use the well-
known Newton and Chebyshev methods and iteration (3).

For the last, we consider the set GL(X,Y ) = {T ∈ L(X,Y ) : T−1 exists}, where
L(X,Y ) is the set of bounded linear operators from the Banach space X into the Banach
space Y , and approximate an operator T−1 with T ∈ GL(X,Y ). Then, we chooseF(Z) =
Z−1 − T , where F : GL(Y,X)→ L(X,Y ), so that T−1 is the solution of F(Z) = 0.

We first consider Newton’s and Chebyshev’s methods and see that they approximate
inverse operators without using any inverse operator in their algorithm. From this peculiar-
ity of both methods, our interest focuses then on approximating T−1 by iteration (3) and
without using inverse operators. After that, we will prove that iteration (3) with α = 1/4
has order of convergence four.

2.1. NEWTON’S METHOD

If we apply Newton’s method,

Zn+1 = Zn − [F(Zn)]−1F(Zn), n ≥ 0, for given Z0 ∈ GL(Y,X),

to the problem of approximating T−1, it is clear that we can avoid the use of inverse opera-
tors for approximating Zn+1, just write the last algorithm in the form

F(Zn) + F ′(Zn)(Zn+1 − Zn) = 0, n ≥ 0,

and calculate F ′(Zn).
So, given Z ∈ GL(Y,X), as Z−1 exists,

‖I − Z−1(Z + βP )‖ ≤ ‖Z−1‖‖βP‖,

so that we obtain Z + βP ∈ GL(Y,X) and ‖βP‖ < 1
‖Z−1‖ with P ∈ GL(Y,X) if

0 < β <
1

‖P‖‖Z−1‖
.
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Then, T + βP ∈ GL(Y,X) and

F ′(Z)P = lim
β→0

1

β
(F(Z + βP )−F(Z)) = −Z−1PZ−1.

Taking into account the last, it is now easy to write Newton’s method as

Zn+1 = 2Zn − ZnTZn, n ≥ 0, for given Z0. (4)

As we can see, algorithm (4) does not use inverse operators to appoximate T−1. Notice that
the quadratic order of the method is held.

2.2. Chebyshev’s Method

If we now apply Chebyshev’s method,

Zn+1 = Zn−
(
I +

1

2
LF (Zn)

)
[F ′(Zn)]−1F(Zn), n ≥ 0, for given Z0 ∈ GL(Y,X),

where LF (Zn) = [F ′(Zn)]−1F ′′(Zn)[F ′(Zn)]−1F(Zn), and do the same as in Newton’s
method, we observe that the method does not use inverse operators to approximate T−1 if
the method is written as

Z0 given,

F(Zn) + F ′(Zn)(Un − Zn) = 0, n ≥ 0,

F ′′(Zn)(Un − Zn)2 + 2F ′(Zn)(Zn+1 − Un) = 0.

So, as before, given P,Q ∈ GL(Y,X), as Z−1 exists, if

0 < β <
1

‖Q‖‖Z−1‖
,

then Z + βQ ∈ GL(Y,X) and

F ′′(Z)PQ = lim
β→0

1

β

(
F ′(Z + βQ)P −F ′(Z)P

)
= Z−1PZ−1QZ−1+Z−1QZ−1PZ−1.

Taking into account the last, it is now easy to write Chebyshev’s method as

Zn+1 = 3Zn − 3ZnTZn + ZnTZnTZn, n ≥ 0, for given Z0. (5)

As we can see, algorithm (5) does not use inverse operators to appoximate T−1. Notice that
the cubical order of the method is held.

2.3. Chebyshev–Type Methods

If we now apply the family of iterations given in (3) to approximate T−1,

Zn+1 = Zn −
(
I +

1

2
LF (Zn) + αLF (Zn)2

)
[F ′(Zn)]−1F(Zn), n ≥ 0,
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for given Z0 ∈ GL(Y,X), and do the same as in the Newton and Chebyshev methods, we
see that these iterations do not use inverse operators to approximate T−1 if they are written
as 

Z0 given,

F(Zn) + F ′(Zn)(Un − Zn) = 0, n ≥ 0,

F ′′(Zn)(Un − Zn)2 + F ′(Zn)Vn = 0,

F ′′(Zn)(Un − Zn) ((Un − Zn) + 2αVn) + 2F ′(Zn)(Zn+1 − Un) = 0.

Proceeding as for Chebyshev’s method, we can write the iterations as
Z0 given,

Zn+1 = (3 + 4α)Zn − 3(1 + 4α)ZnTZn

+(1 + 12α)ZnTZnTZn − 4αZnTZnTZnTZn, n ≥ 0,

(6)

and see that algorithm (6) does not use inverse operators to approximate T−1. Notice that
the cubical order of the method is held.

3. CONVERGENCE ANALYSIS

In this section, we study the convergence of iterations given in (6). For this, we use a simple
technique which is different from the commonly used, which are based on the majorant
principle and on recurrence relations. We fist see that four is the order of convergence of (6)
for α = 1/4.

Theorem 1. Iteration (6) has order of convergence at least four if α = 1/4.

Proof. If rn = Zn − T−1, then

rn+1 + T−1 = Zn+1

= T−1
(
(3 + 4α)TZn − 3(1 + 4α)(TZn)2 + (1 + 12α)(TZn)3 − 4α(TZn)4

)
.

Observe that, if α = 1/4, the last expression is then reduced to

rn+1 + T−1 = Zn+1 = T−1
(
I − (Trn)4

)
= T−1 − rn(Trn)3,

so that rn+1 = −rn(Trn)3 and ‖rn+1‖ ≤ ‖T‖3‖rn‖4. Therefore, the order of convergence
at least four is guaranteed for α = 1/4.

Taking then into account that we have order of convergence four for method (6) with
α = 1/4, namely,{

Z0 given,

Zn+1 = 4Zn − 6ZnTZn + 4ZnTZnTZn − ZnTZnTZnTZn, n ≥ 0,
(7)

we establish now the convergence of this method.
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Theorem 2. If ‖I − TZ0‖ < 1, iteration (7) is convergent. In addition, if TZ0 = Z0T ,
then limn→∞ Zn = T−1.

Proof. If I − TZn = εn, then

εn+1 = I − TZn+1 = I − 4TZn + 6(TZn)2 − 4(TZn)3 + (TZn)4 = ε4n.

After that, from ‖ε0‖ = ‖I − TZ0‖ < 1, it follows that limn→∞(I − TZn) = 0 and, as a
consequence, TZ∗ = I , where Z∗ = limn→∞ Zn.

Next, as TZ∗ = I , if Z∗T = I , we have G∗ = T−1. For this, it is enough to see that
TZn = ZnT , for n ∈ N. If n = 1, then

TZ1 = 4TZ0 − 6(TZ0)
2 + 4(TZ0)

3 − (TZ0)
4

= Z0

(
4− 6(TZ0) + 4(TZ0)

2 − (TZ0)
3
)
T

= Z1T.

Following now mathematical induction on n, it is easy to complete the proof.

Observe that TZ∗ = I is only satisfied if TZ0 6= Z0T and, as a consequence, sequence
{Zn} converges to the right inverse of T . If we prove that T−1 exists, then Z∗ = T−1

without demanding the commutativeness of Z0 and T .

4. NUMERICAL EXAMPLES

In this section, we illustrate the application of iteration (7) to approximate inverse operators.

Example 3. In general, we do not need to invert a matrix to solve a linear system in most
practical applications. It is well–known that techniques based on the decomposition of the
matrix involved are much faster than the inversion of the matrix. We can find many fast
methods for special kinds of systems of linear equations in the mathematical literature.
But, inversion of matrices plays an important role in some specific applications, such as
computer graphics and wireless communications. In this work, we present an example
where the use of method (4) is made good.

For example, if we follow a process of discretization, by using finite differences, to
transform the boundary value problem given by

y′′(t) = v y(t) + w y′(t), y(a) = A, y(b) = B,

into a linear system, the m×m matrix

M =


x y 0 · · · 0
z x y · · · 0
0 z x · · · 0
...

...
...

. . .
...

0 0 0 · · · x
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is involved in the process, where x = 2 + k2v, y = −1 + k
2w, z = −1 − k

2w (with
k, v, w ∈ R) and m is the appropriate integer used to introduce the nodes ti = a+ ih, with
i = 0, 1, . . . ,m+ 1 and h = 1

m+1 .
From Table 3, we see that matrix M is badly conditioned, since cond(M) =

8.7466. But, if we approximate M−1 by method (7), starting at matrix Z0 =
diag{1/x, 1/x, . . . , 1/x}, which satisfies condition ‖I − TZ0‖1 < 1 of Theorem 2, since
‖I −MZ0‖1 = 0.8 < 1, we only need three iterations, Z3, to get the inverse matrix M−1

without any stability problem.

Table 1. Approximation of M−1 by Z3 with k = 1, v = 1/2, w = 2 and m = 32

det(M) 5.4210× 1012

cond(M) 8.9928

‖I −MZ0‖1 0.8

‖I −MZ3‖1 0

Example 4. Consider the Fredholm integral equation of the second kind given by

x(s) = `(s) + λ

∫ b

a
K(s, t)x(t) dt, (8)

where −∞ < a < b < +∞, `(s) ∈ C[a, b], the kernel K(s, t) is a known function in
[a, b]× [a, b] and x(s) ∈ C[a, b] is the unknown function to find.

If we consider the linear operator K : C[a, b] → C[a, b], given by [Kx](s) =∫ b
a K(s, t)x(t) dt, we can write equation (8) as

x(s) = `(s) + λ[Kx](s),

so that [(I − λK)x](s) = `(s). So, if operator [I − λK]−1 exists, we can find a solution
of (8) by solving

x(s) =
[
[I − λK]−1`

]
(s). (9)

Following the study presented in this work, if we consider T = I − λK and Z0 ∈
L(C[a, b], C[a, b]) such that ‖I−TZ0‖ < 1, then method (7) allows constructing a sequence
of linear operators {Zn} such that limn Zn = Z∗ with TZ∗ = I . Moreover, from the
existence of T−1, it follows Z∗ = T−1. As a consequence, we construct the iterative
method

xn(s) = [Zn(`)](s), n ∈ N, for given Z0 ∈ L(C[a, b], C[a, b]).

As {Zn} is convergent, it is a Cauchy sequence, so that {xn} is also a Cauchy sequence in
C[a, b], since

‖xn+m − xn‖ ≤ ‖Zn+m − Zn‖‖`‖.

Therefore, there exists limn xn = x∗ and then x∗ is a solution of (8).
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Taking now the above, if we consider the Fredholm integral equation of the second kind

x(s) = (1 + s)2 +
1

2

∫ 1

−1

(
st+ s2t2

)
x(t) dt, (10)

we can approximate the exact solution x∗(s) = 1 + 3s+ 5
3s

2. Fredholm integral equations
of this type are given in [8].

Following the Banach lemma on invertible operators and choosing the max–norm, we
observe that operator [I − λK]−1 exists if λ = 1/2, since then ‖λK‖ ≤ 5/6 < 1. Next,
if Z0 = I , we can prove by mathematical induction on n that iteration (7) is reduced to
Zn =

∑22n−1
i=0 Ki, for all n ≥ 0. Then, if we choose x0(s) = (1 + s)2, we obtain the first

three iterates given in Table 4, where we can also see that the iterates converge to the exact
solution x∗(s) of integral equation (10).

Table 2. Approximation of solution x∗(s) of (10) and absolute errors

n xn(s) ‖x∗(s)− xn(s)‖∞
0 (1 + s)2 1.6666
1 1.00000000 + 2.96296296 s+ 1.66133333 s2 4.2370× 10−2

2 1.00000000 + 2.99999993 s+ 1.66666666 s2 6.9713× 10−8

3 1.00000000 + 3.00000000 s+ 1.66666666 s2 8.7369× 10−31
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