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Given a positive measure µ supported on a set Ω ⊆ C, an orthonormal
system {ϕn}n≥0 and a point a ∈ Ω, we study the relationship among

µ({a}), the kernels Kn(a, a) =
∑n

k=0 ϕk(a)ϕk(a) and the denseness of
span{ϕn}n≥0 in L2(µ) and in L2(ν), where ν = µ+Mδa.

0. Introduction

Let µ be a positive measure supported on a subset Ω ⊆ C and {ϕn: Ω → C}n≥0 an
orthonormal system in L2(µ) = L2(Ω, µ). Then∫

Ω

ϕnϕm dµ =
{

0, if n 6= m;
1, if n = m.

The system {ϕn}n≥0 is said to be complete in L2(µ) if the set span{ϕn}n≥0 of finite linear
combinations is dense in L2(µ) or, in other terms, if for each Φ ∈ L2(µ)∫

Ω

Φϕn dµ = 0 ∀n ≥ 0 ⇐⇒ Φ = 0 µ-a.e.

(the orthogonality is not required here).

For each n ≥ 0, set Πn =
{ n∑

k=0

λkϕk;λ0, . . . , λn ∈ C
}

. The best L2(µ) approximant

in Πn of any f ∈ L2(µ) is given by the n-th partial sum of its Fourier series with respect
to the set {ϕn}n≥0. Thus the best approximant is

Sn(f, x) =
n∑

k=0

ck(f)ϕk(x) =
∫

Ω

f(y)Kn(x, y) dµ(y),

where

ck(f) =
∫

Ω

fϕk dµ, Kn(x, y) =
n∑

k=0

ϕk(x)ϕk(y).

Furthermore,
∞∑

k=0

|ck(f)|2 ≤
∫

Ω

|f |2 dµ ∀f ∈ L2(µ) (1)

(Bessel’s inequality). If the system {ϕn}n≥0 is complete in L2(µ), then (1) becomes an
equality (Parseval’s equality) and the approximants {Sn(f)}n≥0 converge to f in L2(µ).
This leads to an elementary proof of the following result (see [1, p. 63, 114], [6, p. 45] for
more elaborate proofs and only in the case of systems of polynomials):
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Proposition 1. Let {ϕn}n≥0 be an orthonormal system in L2(µ) and let a ∈ Ω. Then

1
Kn(a, a)

≥ µ({a}) ∀n ≥ 0. (2)

If µ({a}) > 0 and {ϕn}n≥0 is complete, then

lim
n

1
Kn(a, a)

= µ({a}). (3)

Proof. We can assume 0 < µ({a}) < ∞, otherwise the statement holds trivially. Let
f be the characteristic function at the point a; then ck(f) = ϕk(a)µ({a}), so that

∞∑
k=0

|ck(f)|2 = µ({a})2
∞∑

k=0

|ϕk(a)|2

and ∫
Ω

|f |2 dµ = µ({a}).

Now, (2) and (3) follow from Bessel’s and Parseval’s formula, respectively.

Concerning the measure µ and the kernels Kn(a, a), we have the following well-known,
elementary result (see [3, p. 38, theorem 7.3] or [4, p. 4], for example). In fact, inequality
(2) can also be obtained as a corollary of lemma 1.

Lemma 1. Let {ϕn}n≥0 be an orthonormal system in L2(µ) and let a ∈ Ω. Then

1
Kn(a, a)

= min
∫

Ω

|Rn|2 dµ,

where the minimum is taken over all Rn ∈ Πn such that Rn(a) = 1. Furthermore, this
minimum is attained for Rn(x) = Kn(x, a)/Kn(a, a).

Our aim is to use proposition 1 and lemma 1 to obtain, using elementary techniques,
some relations between lim

n
Kn(a, a)−1 and certain properties of completeness of the system

{ϕn}n≥0.

1. Addition of a mass point

Obviously, one can not expect (3) to hold if the system {ϕn}n≥0 is not complete. If
{ϕn}n≥0 is complete but µ({a}) = 0, it can also fail, for the values ϕn(a) are µ-meaningless;
in this case, we will prove that (3) holds if and only if the system {ϕn}n≥0 is complete in
L2(ν). Here ν = µ+Mδa, where δa is a Dirac delta on a, M > 0 and as a consequence∫

Ω

f dν =
∫

Ω

f dµ+Mf(a).
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The system {ϕn}n≥0 may not be orthogonal in L2(ν), but it can be orthonormalized

so as to get an orthonormal system {ψn}n≥0 in L2(ν), such that ψn =
n∑

k=0

λn,kϕk, with

λn,n 6= 0. Clearly, if {ψn}n≥0 (or, equivalently, {ϕn}n≥0) is complete in L2(ν), then
{ϕn}n≥0 is also complete in L2(µ), but the converse is not true, in general.

In view of (3), we will mainly deal with the case µ({a}) = 0. However, note that if
µ({a}) > 0 then the measures ν and µ are equivalent and so {ϕn}n≥0 is complete in L2(µ)
if and only if {ψn}n≥0 is complete in L2(ν) (for the same reason, M could be taken equal
to 1).

Let us state our first result (another proof of part “a) =⇒ b)” can be found in [2,
lemma 2]):

Theorem 1. If {ϕn}n≥0 is a complete orthonormal system in L2(µ), µ({a}) = 0 and
ν = µ+Mδa, then the following properties are equivalent:

a) lim
n

1
Kn(a, a)

= 0;

b) {ψn}n≥0 is a complete orthonormal system in L2(ν).

Proof. a) =⇒ b): Suppose {ψn}n≥0 is not complete in L2(ν); then, there exists
Φ ∈ L2(ν), Φ 6= 0, such that ∫

Ω

Φψn dν = 0 ∀n ≥ 0.

We can also assume ∫
Ω

|Φ|2 dν = 1,

so that {Φ} ∪ {ψn}n≥0 is an orthonormal system in L2(ν). Furthermore, Φ(a) 6= 0,
otherwise it would be orthogonal to {ϕn}n≥0 in L2(µ) and therefore Φ = 0 µ and ν a.e.

PutDn(a, a) =
n∑

k=0

|ψk(a)|2. Then, by (2) applied to {Φ}∪{ψn}n≥0, the fact Φ(a) 6= 0,

and lemma 1 respectively, we have the chain of inequalities

M = ν({a}) ≤ lim
n

1
|Φ(a)|2 +Dn(a, a)

< lim
n

1
Dn(a, a)

= lim
n

1
Kn(a, a)

+M

and so
lim
n

1
Kn(a, a)

> 0,

which is a contradiction.
b) =⇒ a): By (3) applied to {Φ} ∪ {ψn}n≥0 and lemma 1,

M = lim
n

1
Dn(a, a)

= lim
n

1
Kn(a, a)

+M

which gives a).

Under the conditions of theorem 1, the orthonormal system {ψn}n≥0 may not be
complete in L2(ν), but in this case it becomes complete by adding just one new function:
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Proposition 2. Let {ϕn}n≥0 be a complete system in L2(µ), µ({a}) = 0 and ν = µ+Mδa
and suppose {ψn}n≥0 is not complete in L2(ν). Then, the system {Φ} ∪ {ψn}n≥0 is
orthogonal (Φ is not normalized) and complete in L2(ν), where

Φ(x) =


∞∑

k=0

ϕk(x)ϕk(a), if x 6= a;

− 1
M , if x = a.

Proof. By theorem 1,
∞∑

k=0

|ϕk(a)|2 <∞.

Then, as ∫
Ω

∣∣∣ m∑
k=n

ϕk(x)ϕk(a)
∣∣∣2 dν(x)

= M
m∑

k=n

|ϕk(a)|2 +
∫

Ω

∣∣∣ m∑
k=n

ϕk(x)ϕk(a)
∣∣∣2 dµ(x) = (M + 1)

m∑
k=n

|ϕk(a)|2,

the series
∞∑

k=0

ϕk(x)ϕk(a) converges in L2(ν) because its partial sums constitute a Cauchy

sequence in L2(ν). So Φ is a well defined function in L2(ν). Now,∫
Ω

ϕnΦ dν = Mϕn(a)Φ(a) +
∞∑

k=0

ϕk(a)
∫

Ω

ϕnϕk dµ = 0

for every n ≥ 0; therefore, we also have∫
Ω

ψnΦ dν = 0 ∀n ≥ 0

and {Φ}∪{ψn}n≥0 is an orthogonal system in L2(ν). In order to prove that it is complete
in L2(ν), it is enough to check that

f ∈ L2(ν),
∫

Ω

fψn dν = 0 ∀n ≥ 0 =⇒ f = CΦ ν-a.e.

If ∫
Ω

fψn dν = 0 ∀n ≥ 0

then ∫
Ω

fϕn dν = 0 ∀n ≥ 0.
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Thus, ∫
Ω

(f +Mf(a)Φ)ϕn dµ =
∫

Ω

(f +Mf(a)Φ)ϕn dν = 0 ∀n ≥ 0,

i.e.,
f +Mf(a)Φ = 0 µ-a.e.

and so
f +Mf(a)Φ = 0 ν-a.e.

Example. Let T be the unit circle, Ω = T ∪ {0} and µ the measure∫
Ω

f dµ =
1
2π

∫ π

−π

f(eiθ) dθ.

Let {ϕn}n∈Z be given by ϕn(z) = zn for n ≥ 0 and ϕn(z) = (z)−n for n < 0 (the system
is indexed in Z, but this makes no difference). This system is orthonormal and complete
in L2(µ). Take ν = µ + δ0. Then, the system {ϕn}n∈Z is not complete in L2(ν) and
Φ(0) = −1, Φ(z) = 1 for z ∈ T.

Given any finite positive measure ν supported on the unit circle, the orthonormal
system obtained from {zn}n∈Z is complete in L2(ν) (see, e.g. [1, p. 180, theorem 5.1.2]).
Then, if we consider a finite positive measure µ supported on the unit circle and the
orthonormal system {ϕn}n∈Z obtained from {zn}n∈Z, part b) in theorem 1 holds, so that
part a) also holds.

In contrast, the real case is more interesting, as we see in the next section.

2. Orthogonal polynomials on the real line

In the following we will consider a system {pn}n≥0 of polynomials (pn of degree n)
orthonormal with respect to some positive measure µ on R.

The measure µ is said to be determinate if there does not exist any other positive
measure η on R such that∫

R
xn dµ(x) =

∫
R
xn dη(x) ∀n ≥ 0;

otherwise, µ is said to be indeterminate.
The system {pn}n≥0 is complete in L2(dµ) if and only if µ is N -extremal (see [5]).

Every determinate measure is N -extremal, and every indeterminate N -extremal measure
is a countable sum of Dirac deltas (see [2]).

If µ is determinate, then

lim
n

1
Kn(a, a)

= µ({a}) ∀a ∈ R (4)

(see, e.g., [6, p. 45, corollary 2.6]), while if µ is indeterminate then

lim
n

1
Kn(a, a)

> 0 ∀a ∈ C (5)

(see, e.g., [1, p. 50] and [6, p. 50, corollary 2.7]).
Now, the previous results provide a simple proof of the following:
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Theorem 2. Let {pn}n≥0 be a system of polynomials orthonormal with respect to a
positive measure µ on R. Let a ∈ R, M > 0, ν = µ+Mδa. Then:
a) µ indeterminate N -extremal, µ({a}) = 0 =⇒ ν indeterminate not N -extremal.
b) µ indeterminate N -extremal, µ({a}) > 0 =⇒ ν indeterminate N -extremal.
c) µ indeterminate not N -extremal =⇒ ν indeterminate not N -extremal.
d) µ determinate, µ({a}) = 0 =⇒ ν determinate or indeterminate N -extremal.
e) µ determinate, µ({a}) > 0 =⇒ ν determinate.

Proof. a), b) and c): since µ is indeterminate, ν = µ + Mδa is also indeterminate.
Now, if µ is not N -extremal (i.e. the polynomials are not dense in L2(µ)) then clearly ν is
not N -extremal. If µ is N -extremal and µ({a}) > 0, then ν is also N -extremal, for both
measures are equivalent. Finally, if µ({a}) = 0, from (5) and theorem 1 it follows that the
polynomials are not dense in L2(ν).

d) and e): if µ is determinate, from (4) and theorem 1 it follows that the polynomials
are dense in L2(ν), so that ν is either determinate or indeterminate N -extremal. This
proves d). Now, assume µ({a}) > 0. Then, µ and ν are equivalent measures. Take
b ∈ R such that µ({b}) = 0. Applying d), the measure µ + δb is N -extremal. Since
µ + δb is equivalent to ν + δb, this measure is also N -extremal. By part a), ν can not be
indeterminate N -extremal, so that it is determinate.

Remark. Both cases in part d) can actually occur. Indeed, if

ν =
∞∑

k=0

Mkδak

is either indeterminate N -extremal (every indeterminate N -extremal measure is of this
form) or determinate (take, for example, {ak}k≥0 bounded), it can be shown that the
measure

µ =
∞∑

k=1

Mkδak

is determinate. A proof can be seen in [2]; it is also a consequence of inequality (5) and
theorem 1.

In this context, let us mention that, in case d), if the measure µ is not discrete, then
ν is not discrete; therefore, it must be also determinate.
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Acta Litt. Ac. Sci. Szeged 1 (1923), 209–225.

6



[6] J. A. Shohat and J. D. Tamarkin, The Problem of Moments (Math. Surveys No. 1,
Amer. Math. Soc., Providence, RI, 1970).
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