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Abstract— The aim of this work is to provide analytic and graphic arguments to explain the dynamic behavior of Chebyshev’s
method applied to cubic polynomials. In fact, we plot the parameter plane related to this method and we compare it with other
previously know, as the parameter planes of Newton’s or Halley’s methods. We are interested in finding “bad polynomials” for
which the iterative method present convergence to points that are not roots of the involved polynomial. Actually, we show the
existence of polynomials for which Chebyshev’s method has superattracting n-cycles or the existence of polynomials for which
Chebyshev’s method has extraneous fixed points. The first fact is shared with other root-finding methods, such as Newton’s or
Halley’s, but not the second one.
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1 Introduction

Chebyshev’s method is a well-known iterative method for nu-
merically solving nonlinear equations f(z) = 0. It is defined
recursively by zn+1 = Cf (zn), for a given z0 ∈ C, where

(1) Cf (z) = z −
(

1 +
1

2

f(z)f ′′(z)

f ′(z)2

)
f(z)

f ′(z)
.

This method and its convergence properties for solving nonlin-
ear equations (not only in the complex plane, also in the real
line or even in Banach spaces) have been widely studied by
different authors (see [5] for instance). Throughout this paper
we introduce the operator Lf that maps a function f into the
quotient

(2) Lf : f 7→ ff ′′

(f ′)2
.

The aim of this work is to provide analytic and graphic argu-
ments to explain the dynamic behavior of Chebyshev’s method
applied to cubic polynomials. In fact, taking into account some

ideas given by Varona [9], we can plot the known as parameter
plane (see [8] for more details).

To be more precise, we follow the orbits of the two free criti-
cal points that appear when Chebyshev’s method is applied to
polynomials in the form

(3) pλ(z) = (z2 − 1)(z − λ), λ ∈ C.

We color the λ-plane depending on the convergence of these
two free critical points to any of the three roots of the polyno-
mial pλ, leading to 23 = 8 possible color schemes.

We are interested in finding “bad polynomials” for which the it-
erative method present convergence to points that are not roots
of the involved polynomial. Actually, we show the existence
of parameters λ that give rise to superattracting n-cycles, for
each n ∈ N, n ≥ 2, or to extraneous fixed points. The first
fact is shared with other root-finding methods, such as New-
ton’s or Halley’s, but not the second one, as it was pointed out
by García-Olivo et al [6].
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The iteration of the Chebyshev’s map (1) when f is a polyno-
mial in the form (3) gives rise to a rational map defined in the
extended complex plane. Therefore, the theory and concepts
related with the iteration of rational maps [2] can be applied
in this situation. We assume that concepts such as Fatou and
Julia sets, attracting, repelling or indifferent fixed points, cy-
cles, critical points, etcetera are understood for the reader and
we do not proceed to explain them. In particular, the following
classical theorem plays a key role in our analysis.

THEOREM 1 (Fatou-Julia). Every attracting cycle of a ratio-
nal map attracts at least one critical point.

Before undertaking our study, we mention some important
features related with Chebyshev’s method. All of them are
straightforward calculations.

1. (Scaling theorem). Let A(z) = αz + β with α 6= 0
be an affine map and let q(z) = p(A(z)). Then Cheby-
shev’s iteration map Cp is topologically conjugate to Cq ,
namely A ◦ Cq ◦A−1 = Cp.

2. Let ν(z) = z̄ the usual complex conjugation. Sup-
pose that p(z) =

∏
(z − ri) and let us define q(z) =∏

(z − r̄i). Then Cp is topologically conjugate to Cq ,
namely ν ◦ Cp = Cq ◦ ν.

3. Simple roots of p are superattracing fixed points of Cp.
Even more, if z∗ is a simple root of p, then C ′p(z

∗) =
C ′′p (z∗) = 0, so the method is cubically convergent.

4. Chebyshev’s method has linear convergence for roots z∗

with multiplicity m > 1. In this case

C ′p(z
∗) =

(m− 1)(2m− 1)

2m2
∈ (0, 1).

5. Chebyshev’s method has extraneous fixed points, i.e.,
fixed points of Cp that are not roots of p. These points
are solutions of

Lp(z) = −2.

In addition, they are attracting if∣∣∣∣1− Lp(z)
2Lp′(z)

2

∣∣∣∣ < 1

and superattracting if Lp′(z) = 3. Note that, accord-
ing (2), Lp′(z) = p′(z)p′′′(z)/p′′(z)2.

6. Taking into account

C ′p(z) =
(3− Lp′(z))Lp(z)2

2
,

the critical points of Cp are the roots of p or the solu-
tions of Lp′(z) = 3. The last ones are called free critical
points.

2 Chebyshev’s method applied to cubics

The dynamical study of Chebyshev’s method applied to
quadratic polynomials have been carried out in other previous
works, as [3], [4] or [7]. The cubic case has been also consid-
ered in [6] for instance. Now we present a new perspective,
following the steps given by Roberts and Horgan-Kobelski for
Newton’s or Halley’s methods [8]. So, we are interested in
study the behavior of Chebyshev’s method applied to cubic
polynomials with at least two different roots. As a first step,
we highlight that the use of the Scaling theorem reduces (see
[1]) the problem to the study of Chebyshev’s method applied to
the one-parameter family of polynomials (3). That is, for any
cubic polynomial q(z) with at least two distinct roots, there ex-
ists a parameter λ ∈ C such that Chebyshev’s map for q, Cq , is
topologically conjugate to Cpλ , with pλ defined in (3).

Chebyshev’s map for this kind of polynomials is a seventh de-
gree rational function

Cpλ(z) =
Hλ(z)

(3z2 − 2λz − 1)
3 ,

where Hλ(z) = 15z7 − 26λz6 + 15λ2z5 − 6z5 − 3λ3z4 −
9λz4 + 18λ2z3 − z3 − 6λ3z2 + 12λz2 − 9λ2z+ λ3 − λ, with
two free critical points:

ρ± =
5λ±

√
−5(λ2 + 3)

15
.

The strategy is to color the complex plane (that in this context
is known as parameter plane) depending on the behavior of
the orbits of the two critical points ρ± under the iteration of
Cpλ . As there are two free critical points and three roots, we
can find 32 = 9 possible convergence schemes, as shown in
Table 1. For instance, λ is colored in blue when the orbit of the
critical point ρ− converges to the root −1 and the orbit of the
critical point ρ+ converges to the root 1. Figures 1 and 2 show
a part of the parameter plane of Chebyshev’s method applied
to cubic polynomials. Actually, Figure 2 reveals a symmetry
about the real axis, a question that could be deduced from the
properties of the complex conjugation.

Table 1: Coloring scheme for Chebyshev’s method applied to
polynomials (z2 − 1)(z − λ), λ ∈ C, according to the conver-
gence of the two free critical points ρ− and ρ+.

Color (ρ−, ρ+)→ Color (ρ−, ρ+)→
Yellow (−1,−1) Blue (−1, 1)
Green (1,−1) Red (λ, λ)
Brown (−1, λ) Pink (λ,−1)
Orange (1, 1) Cyan (λ, 1)
Purple (1, λ)
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Figure 1: A square [−2, 2] × [0, 4] of the parameter plane for
Chebyshev’s method colored according the color scheme indi-
cated in Table 1.

Figure 2: A square [−2, 2]× [−2, 2] of the parameter plane for
Chebyshev’s showing the symmetry about the real axis.

As in the case of other iterative methods, such as Newton’s or
Halley’s methods, we can find black zones in the parameter
plane corresponding to points of no convergence to any of the
roots. In the case of Newton’s or Halley’s methods, these black
zones are due to the existence of attracting n-cycles. But in the
case of Chebyshev’s method this black zones are originated by:

• The presence of attracting extraneous fixed points, that

do not exist in Newton’s or Halley’s method.

• The presence of attracting n-cycles.

It is complicated to find these black holes in the parameter
plane just by visual inspection. However after a few calcu-
lations, we can find some of them. These black holes (see Fig-
ures 3–6) correspond to values of the parameter λ for which
Chebyshev’s method does not converge to any of the roots of
the polynomial pλ. That is, the method fails from the root-
finding point of view.

Superattracting extraneous fixed points for Chebyshev’s
method are solutions of the system of nonlinear equations{

Lp(z) = 2
Lp′(z) = 3

that satisfy p′′(z) 6= 0. For polynomials defined in (3) this
system is{

12z4 − 16z3λ+ 5z2λ2 − 9z2 + 8zλ− λ2 + 1 = 0
15z2 − 10zλ+ 2λ2 + 1 = 0

with λ 6= 3z. We obtain six different solutions:

λ = ±2
√

3

3
i ≈ ±1.154701i,

λ =
±5± 8

√
3i

7
≈ ±0.714286± 1.979487i.

Figures 3 and 4 show the existence of Mandelbrot-like sets near
two of these values of λ.

Figure 3: A rectangle [−0.02, 0.02]× [1.135, 1.175] of the pa-
rameter plane containing a black hole originated by the super-
attracting extraneous fixed point 2

√
3

3 i.
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Figure 4: A rectangle [0.69, 0.73] × [1.96, 2] of the parameter
plane containing a black hole originated by the superattracting
extraneous fixed point 5+8

√
3i

7 .

Now, let us analyze the existence of superattracting n-cycles
for Chebyshev’s method. To do this, we restrict our study to
the imaginary axis, i.e. to Chebyshev’s method applied to

pλ(z) = (z2 − 1)(z − λ), λ = βi, β ∈ R+.

Note that Chebyshev’s method leaves the imaginary axis in-
variant, so it is enough to study the imaginary part of Cpβi(iy),
y ∈ R:

(4) Rβ(y) =
q(β, y)

(3y2 − 2βy + 1)
3 ,

q(β, y) = 15y7 − 26y6β + 15y5β2 + 6y5 − 3y4β3 + 9y4β

− 18y3β2 − y3 + 6y2β3 + 12y2β − 9yβ2 + β3 + β.

The map Rβ defined in (4) has the following properties:

• Rβ(β) = β for all β ≥ 0.

• Rβ has free critical points iff Rβ has no asymptotes.

• Rβ has two poles: 1
3

(
β ±

√
β2 − 3

)
.

• Rβ has two free critical points: 1
15

(
5β ±

√
5(3− β2)

)
.

The orbits of the biggest free critical point

ρ+ =
1

15

(
5β +

√
5(3− β2)

)

can give rise to superattracting n-cycles. Actually, for each
n ≥ 2, we define the function

(5) gn(β) = Rnβ(ρ+)− ρ+.

A root of gn(β) = 0 originates a superattracting n-cycle of Rβ
and, consequently, a superattracting n-cycle for Chebychev’s
method.

Table 2 contains some solutions, βn, of the equation gn(β) = 0
for different values of n. An increasing sequence of values for
βn is obtained. This sequence converges to

√
3 ≈ 1.73205.

If we define λn = βni, then Chebyshev’s method applied to
(z2 − 1)(z − λn) has a superattracting n-cycle. Consequently,
the values in Table 2 gives raise to a “channel” of superattract-
ing n-cycles in the parameter plane. Figure 5 shows this chan-
nel, and Figure 6 shows a magnification around β2i.

Table 2: Some solutions of the equation gn(β) = 0.

n 2 3 4 5
βn 1.2865 1.3401 1.3894 1.4377

Figure 5: A channel of black holes created by the pres-
ence of superattracting n-cycles, in the rectangle [−0.2, 0.2]×
[1.14, 1.54] of the parameter plane.
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Figure 6: A detail in the rectangle [−0.0005, 0.0005] ×
[1.2862, 1.2872] showing a black hole originated by a super-
attracting 2-cycle.

Finally, Figures 7 and 8 show the graphs or Rβ for β = 1.2865
and β = 1.3401 respectively. These graphics show a typical
graph of function Rβ defined in (4), for β ∈ (0,

√
3), with no

asymptotes, a maximum at ρ− and a a minimum at ρ+. When
β →

√
3, the two free critical points collapse in the value

√
3/3

that becomes an asymptote of the corresponding function Rβ .

Figure 7: Graph or Rβ for β = β2 = 1.2865 together with the
web diagram proving the existence of a superattracting 2-cycle
containing the free critical point ρ+.

Figure 8: Graph or Rβ for β = β3 = 1.3401 together with the
web diagram proving the existence of a superattracting 3-cycle
containing the free critical point ρ+.
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