
Bernoulli-Dunkl and Euler-Dunkl polynomials

and their generalizations∗,†
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Abstract

Bernoulli-Dunkl and Euler-Dunkl polynomials are generalizations of
the classical Bernoulli and Euler polynomials, using the Dunkl operator
instead of the differential operator. In this paper, we study properties
of these polynomials that extend some of the well-known identities in
the classical case, such as the Euler-Maclaurin or the Boole summation
formulas in the Dunkl context.
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1 Introduction

An Appell sequence, {Pn(x)}∞n=0, is defined by means of a Taylor generating
expansion

A(t)ext =

∞∑
n=0

Pn(x)
tn

n!
, (1.1)

where A(t) is an analytic function in a neighborhood around t = 0 and A(0) 6= 0.
It is easy to prove that, under these circumstances, Pn(x) is a polynomial of
degree n and P ′n(x) = nPn−1(x). Typical examples of Appell sequences are the
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Bernoulli polynomials {Bn(x)}∞n=0, the Euler polynomials {En(x)}∞n=0, and the
probabilists’ Hermite polynomials {Hen(x)}∞n=0, that are defined taking A(t) =

t/(et−1), 2/(et+1) or e−t
2/2, respectively (a slight variation are the physicists’

Hermite polynomials {Hn(x)}∞n=0 defined by e−t
2

e2xt =
∑∞
n=0Hn(x)tn/n!).

An interesting generalization of Appell sequences arises if, instead of ext

in (1.1), we use Eα(xt), where Eα(·) is certain function that generalizes the
exponential function, in the sense that E−1/2(x) = ex (we will see the definition
of Eα(·) in the next section). Note that the exponential function ex is invariant
under the differential operator d

dx , and this implies that P ′n(x) = nPn−1(x);
instead, the new function Eα(x) should be invariant under a new operator Λα,
called Dunkl operator, that should play the role of d

dx in the new context.
In the mathematical literature, this has been studied in the case correspond-

ing to Hermite polynomials, what leads to the so called generalized Hermite
polynomials {Hµ

n (x)}∞n=0; this can be seen, for instance, in [15]. In the world of
orthogonal polynomials, this has a lot of interest, in particular studying unique-
ness properties, as we can see in [1].

The extension to the Dunkl context of polynomials that are common in
number theory, such as the Bernoulli polynomials, was recently introduced in [5].
In particular, that paper defines the Bernoulli-Dunkl polynomials and shows
their use to sum the series that, in the new context, plays the role of

∑∞
j=1 1/j2n,

whose sum in terms of Bernoulli numbers (i.e., Bernoulli polynomials evaluated
at 1) were obtained by Euler. Actually, only the properties of Bernoulli-Dunkl
polynomials that are useful to sum that series are studied in [5] (among them,
their expansions on the Fourier-Dunkl orthogonal system, see [6, 7]), so a wider
analysis of the properties of Bernoulli-Dunkl polynomials is yet necessary.

The present paper is devoted to study the properties of Bernoulli-Dunkl
polynomials, Euler-Dunkl polynomials, and some of their generalizations. These
Appell-Dunkl sequences are extensions to the Dunkl context of the correspond-
ing classical Appell sequences by means of a process that is described in Table 1;
the details will be explained along the paper. In Section 2, we introduce the
Dunkl operator and define the Appell-Dunkl sequences of polynomials. Sec-
tion 3 is devoted to study Bernoulli-Dunkl polynomials, as a particular case of
Appell-Dunkl polynomials, and some specific properties of them. In Section 4,
we give the Dunkl translation, an operator which generalizes the Taylor expan-
sion in the classical case, and we obtain some properties of the Bernoulli-Dunkl
polynomials related to this translation. Section 5 is focused on defining Dunkl
primitives and, with that, in Section 6, we are able to give an Euler-Maclaurin
summation formula with Bernoulli-Dunkl polynomials. Section 7 is devoted to
study Euler-Dunkl polynomials; in particular, we give the Boole summation for-
mula in the Dunkl context. Finally, in Section 8, some properties for generalized
Bernoulli-Dunkl and generalized Euler-Dunkl polynomials are given.
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Bernoulli 7→ Bernoulli-Dunkl Euler 7→ Euler-Dunkl

Classical text

et−1 =
∞∑
n=0

Bn(x) t
n

n!
2ext

et+1 =
∞∑
n=0

En(x) t
n

n!

x 7→ x+1
2

text/2et/2

et−1 =
∞∑
n=0

Bn(x+1
2 ) t

n

n!
2ext/2et/2

et+1 =
∞∑
n=0

En(x+1
2 ) t

n

n!

t 7→ 2t 2textet

e2t−1 =
∞∑
n=0

Bn(x+1
2 ) 2ntn

n!
2extet

e2t+1 =
∞∑
n=0

En(x+1
2 ) 2ntn

n!

rewrite 2text

et−e−t =
∞∑
n=0

Bn(x+1
2 ) 2ntn

n!
2ext

et+e−t =
∞∑
n=0

En(x+1
2 ) 2ntn

n!

exp 7→ Eα
2tEα(xt)

Eα(t)−Eα(−t) =
∞∑
n=0

B∗n(x+1
2 ) 2ntn

γn,α

2Eα(xt)
Eα(t)+Eα(−t) =

∞∑
n=0

E∗n(x+1
2 ) 2ntn

γn,α

rewrite 2(α+1)Eα(xt)
Iα+1(t)

=
∞∑
n=0

B∗n(x+1
2 ) 2ntn

γn,α

Eα(xt)
Iα(t) =

∞∑
n=0

E∗n(x+1
2 ) 2ntn

γn,α

Dunkl Eα(xt)
Iα+1(t)

=
∞∑
n=0

Bn,α(x) tn

γn,α

Eα(xt)
Iα(t) =

∞∑
n=0

En,α(x) tn

γn,α

Generalized Eα(xt)
(Iα+1(t))r

=
∞∑
n=0

B
(r)
n,α(x) tn

γn,α

Eα(xt)
(Iα(t))r =

∞∑
n=0

E
(r)
n,α(x) tn

γn,α

Table 1: Scheme that describes the process to transform the definition of the
classical Bernoulli and Euler polynomials into the definition of the Bernoulli-
Dunkl and Euler-Dunkl polynomials (and their generalizations of order r). In
the classical case, we use the “basic” interval [0, 1], the function exp and the
factorial n!; in the Dunkl case with α > −1, we must use the “basic” interval
[−1, 1], the function Eα and γn,α.

2 The Dunkl transform on the real line and the
Appell-Dunkl polynomials

Prior to introduce Appell-Dunkl sequences we need some preliminary notations.
For α > −1, let Jα denote the Bessel function of order α and, for complex

values of the variable z, let

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
= Γ(α+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)
= 0F1(α+ 1, z2/4)

(the function Iα is a small variation of the so-called modified Bessel function of
the first kind and order α, usually denoted by Iα; see [16] or [14]). Also, take

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z), z ∈ C.

Following [10] for α ≥ −1/2 and [15] for α > −1, in the real line and with
the reflection group Z2, the Dunkl operator Λα is defined as

Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
, (2.1)
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where f is a suitable function on R. For any λ ∈ C, we have

ΛαEα(λx) = λEα(λx). (2.2)

Let us note that, when α = −1/2, we have Λ−1/2 = d/dx and E−1/2(λx) = eλx.
From the definition, it is easy to check that

Eα(z) =

∞∑
n=0

zn

γn,α

with

γn,α =

{
22kk! (α+ 1)k, if n = 2k,

22k+1k! (α+ 1)k+1, if n = 2k + 1,
(2.3)

and where (a)n denotes the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)

(with a a non-negative integer); of course, γn,−1/2 = n!. From (2.3), we have

γn,α
γn−1,α

= n+ (α+ 1/2)(1− (−1)n) =: θn,α. (2.4)

We also define (
n

j

)
α

=
γn,α

γj,αγn−j,α
,

that becomes the ordinary binomial numbers in the case α = −1/2. To simplify
the notation we sometimes write γn = γn,α and θn = θn,α.

For each function A(t) analytic in a neighborhood of t = 0 and with A(0) 6= 0,
we define an Appell-Dunkl sequence {An,α(x)}∞n=0 by means of the generating
function

A(t)Eα(xt) =

∞∑
n=0

An,α(x)
tn

γn
(2.5)

(additionally to the papers [1, 15] cited in the introduction, Appell-Dunkl se-
quences have been also considered, for instance, in [2, 3, 9]). From this definition,
it is not difficult to prove that An,α(x) is a polynomial of degree n and, more-
over, ΛαAn,α(x) = γn

γn−1
An−1,α(x) (when α = −1/2, this becomes the classical

A′n,−1/2(x) = nAn−1,−1/2(x) in the Appell sequences). To simplify the notation
we sometimes write An = An,α.

We straightforwardly have the following:

Lemma 2.1. Let {An(x)}∞n=0 be an Appell-Dunkl sequence defined by (2.5).
This sequence satisfies

Λα(An) = θnAn−1 (2.6)
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with θn = n+ (α+ 1/2)(1− (−1)n) as in (2.4) and, moreover,

xn = γn

n∑
j=0

Aj(x)

γj
an−j , (2.7)

where 1/A(t) =
∑∞
n=0 ant

n.

In particular, this can be also applied to the trivial case An(x) = xn, n ≥ 0,
that is an Appell-Dunkl sequence with A(t) = 1. Thus, we have

Λα((·)n)(x) = θnx
n−1, n = 1, 2, 3, . . .

(actually, this is also clear from the definition (2.1) applied to f(x) = xn).

In fact, a uniparametric family of Appell-Dunkl polynomials {A(r)
n,α(x)}∞n=0

can be defined if we take A(t)r instead of A(t) in (2.5); that is,

A(t)rEα(xt) =

∞∑
n=0

A(r)
n,α(x)

tn

γn
(2.8)

where r is an arbitrary real or complex parameter. Again, to simplify we can

write A
(r)
n = A

(r)
n,α.

Of course, Lemma 2.1 is also true for Ar and {A(r)
n }∞n=0 instead of just A and

{An}∞n=0, but we can also find formulas that relate polynomials with different
parameters. For instance, we have

∞∑
n=0

A(r+s)
n (x)

tn

γn
= A(t)r+sEα(xt) = A(t)s

∞∑
n=0

A(r)
n (x)

tn

γn
,

so
∞∑
n=0

A(r)
n (x)

tn

γn
=

1

A(t)s

∞∑
n=0

A(r+s)
n (x)

tn

γn
.

From this relation we easily get the following (notice that (2.7) is just the case
r = 0 and s = 1):

Lemma 2.2. Let {A(r)
n (x)}∞n=0 use to denote a uniparametric family of Appell-

Dunkl polynomials defined as in (2.8). Then, we have

A(r)
n (x) = γn

n∑
j=0

A
(r+s)
j (x)

γj
an−j,s,

where 1/A(t)s =
∑∞
n=0 an,st

n.

Remark 1. It is interesting to note that some of the results of this paper in
the context of the Dunkl operator (2.1) resembles to what happens in [4] in the
context of the differential operator

∆νf(x) =
d2

dx2
f(x) +

2ν

x

d

dx
f(x), ν > 0.
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On the one hand, the behavior of ∆ν for Bessel functions on (0,∞) is similar to
the behavior (2.2) for our function Eα on R (recall than the real part of Eα is,
essentially, a Bessel function that, moreover, is even), a kind of Appell sequences
can be defined in the context of ∆ν , and there is also a translation operator
associated to ∆ν (here, we will define the Dunkl translation in Section 4). In
particular, the ∆ν-Bernoulli and ∆ν-Euler sequences of polynomials are defined
in [4], and some of their properties studied. On the other hand, there are some
important differences, that make the case corresponding to ∆ν to be poorer.
As ∆ν is a second-order operator and the corresponding ∆ν-Appell sequences
have only even polynomials (in some sense, to apply ∆ν is similar to apply (2.1)
twice). Moreover, ∆ν does not include a reflection part f(x)− f(−x), so it can
not be included in Dunkl context. The notation in [4] is very different to the
one that we follow in this paper, that is close to the used in the Dunkl context.

3 Bernoulli-Dunkl polynomials and first prop-
erties

Following [5], we define the Bernoulli-Dunkl polynomials {Bn,α}∞n=0 by means
of the generating function

Eα(xt)

Iα+1(t)
=

∞∑
n=0

Bn,α(x)

γn,α
tn. (3.1)

To simplify the notation we sometimes write Bn = Bn,α (and γn = γn,α).
Since

Iα+1(x) =

∞∑
n=0

x2n

γ2n,α+1
,

we have for the first few Bernoulli-Dunkl polynomials that

B0(x) = 1, B1(x) = x,

B2(x) = x2 − α+ 1

α+ 2
, B3(x) = x3 − x,

B4(x) = x4 − 2x2 +
(α+ 4)(α+ 1)

(α+ 3)(α+ 2)
, B5(x) = x5 − 2

α+ 3

α+ 2
x3 +

α+ 4

α+ 2
x.

Already in [5], we prove the following basic properties:

Theorem 3.1. The Bernoulli-Dunkl polynomials satisfy

Λα(Bn) = θnBn−1, (3.2)
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with θn = n+ (α+ 1/2)(1− (−1)n) as in (2.4), and

x2n = B2n(x) + (α+ 1)

n−1∑
j=0

(
2n

2j

)
α

B2j(x)

α+ n− j + 1
, (3.3)

x2n+1 = B2n+1(x) + (α+ 1)

n−1∑
j=0

(
2n+ 1

2j + 1

)
α

B2j+1(x)

α+ n− j + 1
. (3.4)

Moreover, (i) B2n (for n ≥ 0) is an even polynomial, and (ii) B2n+1 (for n ≥ 0)
is an odd polynomial, which vanishes at 1 (and hence at −1) for n ≥ 1.

Proof. (3.3) and (3.4) are consequences of Lemma 2.1, using 1/A(t) = Iα+1(t).
Items (i) and (ii) may be proved using that our A(t) is an even function.

Prior to continue, and following [5], let us explain why we use “Bernoulli-
Dunkl” to name these polynomials Bn, n ≥ 0. The first reason is that

Bn,−1/2(2x− 1)

2n
= Bn(x), (3.5)

where {Bn}∞n=0 are the Bernoulli polynomials (for the definition and properties
of the Bernoulli polynomials, see, for instance, [8] or [11]). Indeed, taking into
account that

E−1/2(x) = ex, I1/2(x) =
sin(ix)

ix
,

the relation (3.5) can be deduced substituting x to 2x − 1, t to t/2 and α to
−1/2 in the definition (3.1). Here, we must note that the change x 7→ 2x − 1
in (3.5) is very natural, because, in the reflection group Z2 that is key in the
standard definition of the Dunkl operator (2.1), the points ±1 are essential,
and thus the role of x = 0 and x = 1 on the classical Bernoulli polynomials
must be translated to −1 and 1. In fact, this is the process that is explained
in Table 1 to define Bernoulli-Dunkl polynomials as an extension to the Dunkl
case of the classical Bernoulli polynomials. As it is shown in the table, this
process can be used for other classical polynomials, and this is what we study
in Sections 7 (Euler polynomials) and 8 (generalized Bernoulli and generalized
Euler polynomials).

Actually, another reason to use the name Bernoulli-Dunkl polynomials for
Bn is the role that they play in certain sums involving the zeros of the Bessel
functions (see [5]), that is a generalization of what happens in the case α = −1/2
with the Bernoulli polynomials. But this is not in the scope of this paper.

4 The Dunkl translation

4.1 Definition and some properties

The Dunkl translation operator of a function f is defined by

τyf(x) =

∞∑
n=0

yn

γn,α
Λnαf(x), α > −1, (4.1)
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where Λ0
α is the identity operator and Λn+1

α = Λα(Λnα). In the case α = −1/2,
the translation τyf is just the Taylor expansion of a function f around a fixed
point x, that is,

f(x+ y) =

∞∑
n=0

f (n)(x)
yn

n!
.

Of course, definition (4.1) is valid only for C∞ functions, and assuming also
that the series on the right is convergent. In particular, this can be guaranteed
when f is a polynomial, because the operator Λα applied to a polynomial of
degree k generates a polynomial of degree k − 1, so the series (4.1) has only a
finite quantity on not null summands. (With the help of generalized Hermite
polynomials, [15] also gives the definition of τyf in a L2(R, dµα) sense.)

From the definition (4.1), it is clear that τy commutes with the Dunk oper-
ator Λα. In what follows, we are going to see some other basic properties.

A nice property of the Dunkl translation, than resembles the Newton bino-
mial (x+ y)n =

∑n
k=0

(
n
k

)
ykxn−k, is the following:

τy((·)n)(x) =

n∑
k=0

(
n

k

)
α

ykxn−k. (4.2)

Actually, this formula is a particular case of a general property for Appell
sequences, {An}∞n=0, (for (4.2), take the polynomials An(x) = xn):

Theorem 4.1. For α > −1, let {An(x)}∞n=0 be an Appell-Dunkl sequence de-
fined as in (2.5). Then,

τy(Ak)(x) =

k∑
j=0

(
k

j

)
α

Aj(x)yk−j .

Proof. From Λα(Ak)(x) = θkAk−1(x) it follows that

Λjα(Ak)(x) = θkθk−1 · · · θk−j+1Ak−j(x) =
γk
γk−j

Ak−j(x), j ≤ k.

Then,

τy(Ak)(x) =

k∑
j=0

yj
γk

γjγk−j
Ak−j(x) =

k∑
j=0

(
k

j

)
α

Aj(x)yk−j .

Other properties of the translation operator, including an integral expression
can be found, for instance, in [15]. This integral expression for the Dunkl
translation is more general than (4.1), because we do not need C∞ functions
to apply it. Using the integral expression, the relation τyf(x) = τxf(y) can be
easily obtained. But, at least for polynomials, this property can be also proved
using our definition (4.1), as we see in what follows:

Lemma 4.2. Let f be a polynomial. Then,

τyf(x) = τxf(y). (4.3)
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Proof. By linearity, it is enough to prove it for f(x) = xn, n = 0, 1, 2, . . . . That
is, we want to prove τy((·)n)(x) = τx((·)n)(y). But, using

(
n
k

)
α

=
(
n

n−k
)
α

, this is

clear from (4.2).

In particular, observe that τyf(0) = τ0f(y) = f(y), and then, by (4.1), we
get the power expansion

f(y) =

∞∑
n=0

Λnαf(0)
yn

γn
.

Now, we are going to state other basic properties of the Dunkl translation
that will be valid only for suitable functions. That is, (4.1) must exist and con-
verge, and the manipulations used in the corresponding proofs must be possible.
In this paper, we will apply the Dunkl translation just for polynomials, and this
avoids any kind of problems (this safeguard must be taken into account several
times along the paper, but we will not mention it again).

In this way, a property easily checked is the following:

Lemma 4.3. We have

τaτbf(x) =

∞∑
m=0

1

γm

(
m∑
k=0

(
m

k

)
α

akbm−k

)
Λmα f(x) (4.4)

=

∞∑
m=0

1

γm
τa((·)m)(b)Λmα f(x).

Then, taking into account that
(
m
k

)
α

=
(
m

m−k
)
α

, we obtain the commutativity
of the translation, that is,

τaτb = τbτa.

In general (except when α = −1/2), τaτb is not a new translation, even
though a = b. In particular, τyτ−y is not the identity operator. Actually, τy
has an inverse operator τ−1y , but, in general, it is not a translation; this inverse
operator is the following:

Lemma 4.4. The inverse operator of τy defined as in (4.1) is

τ−1y f(x) =

∞∑
n=0

cny
n

γn,α
Λnαf(x), (4.5)

where c0 = 1 and cn for n ≥ 1 is defined with the recurrence cn = −
∑n−1
j=0

(
n
j

)
α
cj.

Proof. Let us take τ−1y defined as in (4.5) and let us check that τ−1y τy = Id (the
proof of τyτ

−1
y = Id is similar). We have

τ−1y τyf(x) =

∞∑
n=0

yn

γn

 n∑
j=0

(
n

j

)
α

cj

Λnαf(x),

which coincides with f(x) if we take c0 = 1 and
∑n
j=0

(
n
j

)
α
cj = 0.
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4.2 Properties of the Bernoulli-Dunkl polynomials related
to the translation

Let us start showing a kind of “umbral property” for the Bernoulli-Dunkl poly-
nomials. Actually, similar properties can be proved for any Appell-Dunkl se-
quence because, in the proof, we only need to use (2.6) (in our case, (3.2)).

Let us start noticing that Theorem 4.1 applied to Bernoulli-Dunkl polyno-
mials gives

τy(Bk)(x) =

k∑
j=0

(
k

j

)
α

Bj(x)yk−j . (4.6)

In the classical case α = −1/2, (4.6) becomes the well known translation formula

Bk(x+ y) =
k∑
j=0

(
k

j

)
Bj(x)yk−j

for the Bernoulli polynomials, whose umbral notation for x = 0 is the identity
Bk(y) = (B+ y)k where Bj is interpreted as the Bernoulli number Bj = Bj(0).

An easy consequence of (4.6) is that it allows to write the Bernoulli-Dunkl
polynomials in terms of the Bernoulli-Dunkl numbers Bj(0). Indeed, using
τy(Bk)(x) = τx(Bk)(y) and taking y = 0 we get

Bk(x) =

k∑
j=0

(
k

j

)
α

Bj(0)xk−j . (4.7)

Another property of the Bernoulli-Dunkl polynomials related to the trans-
lation is the following:

Theorem 4.5. For α > −1, the Bernoulli-Dunkl polynomials satisfy

Λα((·)k)(x) = (α+ 1)
(
τ1Bk(x)− τ−1Bk(x)

)
. (4.8)

Proof. To compute Λα((·)k)(x), let us distinguish the cases k = 2n or k = 2n+1
and apply, respectively, (3.3) and (3.4). To compute τ1Bk(x)−τ−1Bk(x), let us
use (4.1) with y = ±1, and take into account that ΛαBk(x) = (γk/γk−1)Bk−1(x).
Thus, the left hand side and the right hand side in (4.8) are equal.

In the case α = −1/2, this property becomes the “forward difference opera-
tor” formula

kxk−1 = Bk(x+ 1)−Bk(x) (4.9)

for the Bernoulli polynomials. Observe that the translation τ−1Bk(x) in the
Bernoulli-Dunkl case becomes a “translation” Bk(x − 0) because the role of
{0, 1} in the classical case is assumed by {−1, 1} in the Dunkl case (recall (3.5)).

Following with the Bernoulli case, we can change x by x+ j in (4.9), and to
sum from j = 0 to n. Then we have the telescoping sum

k

n∑
j=0

(x+ j)k−1 =

n∑
j=1

(Bk(x+ j + 1)−Bk(x+ j)) = Bk(x+ n+ 1)−Bk(x).

10



Taking x = 0 (and changing k by k + 1) we obtain the Jakob Bernoulli’s sum-
mation formula

n∑
j=1

jk =
Bk+1(n+ 1)−Bk+1(0)

k + 1
.

If we try to do the same in the Bernoulli-Dunkl case, considering that the
change x 7→ x+ j corresponds to an iterated translation τ j1 , the sum in j is not
telescopic and, unfortunately, we do not obtain a so appealing formula. Actu-
ally, using (4.8), we get the following (we have used τ jy instead of τ j1 to clearly
distinguish the provenance of the translations that appear in the formula):

n∑
j=0

τ jy ((·)k)(x) =
α+ 1

θk+1

n∑
j=0

(
τ jyτ1Bk+1(x)− τ jyτ−1Bk+1(x)

)
, k, n ≥ 0.

(4.10)
However, if we consider a new operator σ1 = τ−1−1 τ1 instead of τ1 we can

prove the next summation formula where a telescopic sum appears.

Theorem 4.6 (Summation formula). For α > −1 and k, n ≥ 0, we have

n∑
j=0

σj1τ
−1
−1 ((·)k)(x) =

α+ 1

θk+1

(
σn+1
1 (Bk+1)(x)−Bk+1(x)

)
. (4.11)

Proof. From (4.8) with k + 1 instead of k, and using Λα((·)k+1)(x) = θk+1x
k,

we have

xk =
α+ 1

θk+1

(
τ1(Bk+1)(x)− τ−1(Bk+1)(x)

)
,

and, consequently,

τ−1−1 ((·)k)(x) =
α+ 1

θk+1

(
σ1(Bk+1)(x)−Bk+1(x)

)
.

Then, applying j times the operator σ1 and summing in j from 0 to n,

n∑
j=0

σj1τ
−1
−1 ((·)k)(x) =

α+ 1

θk+1

n∑
j=0

(
σj+1
1 (Bk+1)(x)− σj1(Bk+1)(x)

)
=
α+ 1

θk+1

(
σn+1
1 (Bk+1)(x)−Bk+1(x)

)
.

Remark 2. Let us analyze the formula (4.11) in the classical case α = −1/2.
Recall that, the “basic” interval (−1, 1) in the Dunkl case must be adapted to
(0, 1) in the classical case while the translation τyf(x) generalizes the classical
f(x+y). Then, in the theorem, τ1 and τ−1 plays the role of the classical “(·)+1”
and “(·) + 0”; and the inverse operator τ−1−1 is a “(·)− 0”. Thus, both τ−1 and

τ−1−1 become the identity operator in the classical case, and σ1 = τ−1−1 τ1 plays
the role of “(·) + 1”. Finally, to reproduce a classical “(·) + j” for j ≥ 2, we will
have σj1 in the new context. Then, if we take x = −1 in (4.11), for α = −1/2

11



this becomes x = 0 and we again recover the classic formula for the Bernoulli
polynomials:

n∑
j=1

jk =
Bk+1(n+ 1)−Bk+1(0)

k + 1
.

To illustrate the behavior of τ jy and σjy and then to facilitate the evaluation
of (4.10) and (4.11), let us see how the operators that appear in these formulas
act on the polynomials of an Appell-Dunkl sequence {An}∞n=0, which includes
both cases xn or Bn(x), for instance.

For the operators in (4.10), let us start recalling that, as in Theorem 4.1, we
have

τy(An)(x) =

n∑
k=0

(
n

k

)
α

yn−kAk(x).

Then, by induction on j, it is not difficult to prove that

τ jy (An)(x) =

n∑
k=0

( ∑
k≤k1≤k2≤···≤kj−1≤n

product of j binomials︷ ︸︸ ︷(
n

kj−1

)
α

(
kj−1
kj−2

)
α

· · ·
(
k2
k1

)
α

(
k1
k

)
α

)
yn−kAk(x).

In the case α = −1/2, and if we take An(x) = xn, we have τ jy (An)(x) = (x+jy)n.

Then, taking into account the coefficient of xkyn−k in the binomial expansion
of (x+ jy)n, we have

jn−k
(
n

k

)
=

∑
k≤k1≤k2≤···≤kj−1≤n

product of j binomials︷ ︸︸ ︷(
n

kj−1

)(
kj−1
kj−2

)
· · ·
(
k2
k1

)(
k1
k

)
;

we have not found this binomial relation in the literature.
To analyze the operators in (4.11) is similar but a bit more cumbersome.

For the sake of generality and to clarify the formulas, let us give the expression
for σjy(An)(x), where σy = τ−1−y τy = τyτ

−1
y (to check the commutativity is an

easy exercise). At this time, following (4.5) and its notation for cj , and taking

dl =

l∑
j=0

(
l

j

)
α

(−1)jcj ,

we can write

σjy(An)(x) =

n∑
k=0

( ∑
k≤k1≤k2≤···≤kj−1≤n

dn−kj−1dkj−1−kj−2 · · · dk1−k

×
(

n

kj−1

)
α

(
kj−1
kj−2

)
α

· · ·
(
k1
k

)
α

)
yn−kAk(x).

Another important property is what follows.
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Theorem 4.7. Let P (x) be a polynomial of degree ≤ n. Then,

τx(ΛαP )(y) = (α+ 1)

n∑
j=0

τ1(ΛjαP )(x)− τ−1(ΛjαP )(x)

γj
Bj(y). (4.12)

Proof. Both τx and Λα are linear operators, so it is enough to prove the result
for P (x) = xn. From (4.8), we have

τx(Λα((·)n))(y) = (α+ 1)
(
τxτ1Bn(y)− τxτ−1Bn(y)

)
.

Then, using (4.4) and taking into account that ΛkαBn(y) = (γn/γn−k)Bn−k(y)
for k ≤ n, we get

τxτ1Bn(y) =

n∑
k=0

1

γk

(
k∑

m=0

(
k

m

)
α

xm

)
ΛkαBn(y)

=

n∑
k=0

(
k∑

m=0

(
k

m

)
α

xm

)(
n

k

)
α

Bn−k(y)

and, similarly,

τxτ−1Bn(y) =

n∑
k=0

(
k∑

m=0

(−1)k−m
(
k

m

)
α

xm

)(
n

k

)
α

Bn−k(y).

Consequently,

τx(Λα((·)n)))(y) = (α+ 1)

n∑
k=0

(
k∑

m=0

(1− (−1)k−m)

(
k

m

)
α

xm

)(
n

k

)
α

Bn−k(y).

(4.13)
Now, let us study the right hand side in (4.12). We have

τ1(Λjα((·)n))(x) =

∞∑
m=0

1

γm
Λj+mα ((·)n)(x) =

n−j∑
m=0

γn
γmγn−j−m

xn−j−m

and

τ−1(Λjα((·)n))(x) =

n−j∑
m=0

(−1)mγn
γmγn−j−m

xn−j−m,

so

τ1(Λjα((·)n))(x)− τ−1(Λjα((·)n))(x) =

n−j∑
m=0

1− (−1)m

γm

γn
γn−j−m

xn−j−m.

Multiplying by Bj(y)/γj and summing in j from 0 to n we get

n∑
j=0

τ1(Λjα((·)n))(x)− τ−1(Λjα((·)n))(x)

γj
Bj(y)

=

n∑
j=0

n−j∑
m=0

(1− (−1)m)γn
γjγmγn−j−m

xn−j−mBj(y)
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Changing j = n− k, this expression becomes

n∑
k=0

k∑
m=0

(1− (−1)m)γn
γn−kγmγk−m

xk−mBn−k(y)

=

n∑
k=0

k∑
m=0

(1− (−1)m)
γk

γmγk−m

γn
γn−kγk

xk−mBn−k(y)

=

n∑
k=0

(
k∑

m=0

(1− (−1)k−m)

(
k

m

)
α

xm

)(
n

k

)
α

Bn−k(y).

Comparing with (4.13), this proves the theorem.

In the classical case α = −1/2, taking into account the change of “basic”
interval from (−1, 1) to (0, 1) and (3.5), the formula (4.12) can be written as

P ′(x+ y) =

n∑
j=0

P (j)(x+ 1)− P (j)(x)

j!
Bj(y). (4.14)

Remark 3. With the operator ∆ν explained in Remark 1, the paper [4] assigns
the name “Euler-Maclaurin” to a formula that corresponds to our Theorem 4.7
(see [4, Theorem 16.12, p. 100]). However, there is not any good reason to say
that they are an “Euler-Maclaurin summation formula”. Actually, we will see a
suitable Euler-Maclaurin summation formula in the Dunkl context in Section 6.

5 The inverse of the Dunkl operator Λα: Dunkl
primitives

If α = −1/2, the Dunkl operator is Λ−1/2 = d
dx and if we want an “inverse” of

this operator we use the concept of primitive of a function, that is unique except
by an additive constant. In this situation, we may use the typical notation of
integrals.

In the Dunkl case, we could say that F is a Dunkl primitive of f if ΛαF = f .
This definition would make sense in a wide space of functions, if the Dunkl
primitives were unique unless additive constants. For our purposes, it is enough
to see that, for functions in C1(R), ΛαF = 0 if and only if F is a constant. For
even or odd functions, this property can be easily checked. It is well-known that
every function can be uniquely written as the sum of an even function and an odd
function, and moreover, Λα changes the evenness of the functions. Therefore,
the general case is straightaway obtained. Once that we have established the
uniqueness except by an additive constant, a notation as∮

f(x) dαx = F (x) + c

is properly justified (of course, c ∈ R is a constant).
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We are dealing only with polynomials so we only need to know how to
compute the Dunkl primitive of a polynomial. Actually, as Λα((·)n+1)(x) =
θn+1x

n, we have ∮
xn dαx =

xn+1

θn+1
+ c, n = 0, 1, 2, . . . ,

and then, for a polynomial p(x) =
∑n
k=0 akx

k, its Dunkl primitive is∮
p(x) dαx =

n∑
k=0

ak
θk+1

xk+1 + c.

By (3.2), the Dunkl primitive of the Bernoulli-Dunkl polynomial Bn(x) is
Bn+1(x)/θn+1 + c. Actually, by (2.6), the same happens with every Appell-
Dunkl sequence {An(x)}∞n=0,∮

An(x) dαx =
An+1(x)

θn+1
+ c, n = 0, 1, 2, . . . .

Following with the generalization of the classical case to the Dunkl scheme,
we can also define the “Dunkl definite integral” as∮ b

a

f(x) dαx = F (x)
∣∣∣b
a

= F (b)− F (a),

when F is the Dunkl primitive of f . Of course, we have

Λα

(∮ (·)

a

f(t) dαt

)
(x) = f(x).

Even more, let S and T be linear operators such that S(C) = T (C) = C
when C is a constant function; for instance, this happens when S = T = τy.
Then, if ΛαF = f and F is such that S(F ) and T (F ) are properly defined, we
will denote ∮ T (·)(b)

S(·)(a)
f(x) dαx = T (F )(b)− S(F )(a). (5.1)

Usually, S and T will be a Dunkl translation, its inverse operator, or a com-
position of this kind of operators. In this paper, we will always use this def-
inition with polynomials, where the Dunkl translation (and its inverse opera-
tor) is a finite sum and thus (5.1) does not have any problem. For instance,
if P (x) and p(x) are polynomials with P (x) a Dunkl primitive of p(x), i.e.,∮
p(x) dαx = P (x) + c, we have∮ τz(·)(b)

τy(·)(a)
p(x) dαx = τz(P )(b)− τy(P )(a). (5.2)

When α = −1/2 we know two basic properties∫ b

a

p(x+ y) dx =

∫ b+y

a+y

p(x) dx and

∫ b

a

p(cx)c dx =

∫ cb

ca

p(x) dx.

We are going to prove analogous properties for Dunkl definite integrals.
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Lemma 5.1. If p is a polynomial, we have∮ b

a

τyp(x) dαx =

∮ τy(·)(b)

τy(·)(a)
p(x) dαx (5.3)

and ∮ b

a

p(cx)c dαx =

∮ cb

ca

p(x) dαx. (5.4)

Proof. By linearity, it is enough to prove it for p(x) = xn. Let us start with
(5.3). By (4.2), we have∮
τy((·)n)(x) dαx =

n∑
k=0

(
n

k

)
α

yk
∮
xn−k dαx =

n∑
k=0

(
n

k

)
α

yk
xn−k+1

θn−k+1
+ c

=
1

θn+1

n+1∑
k=0

(
n+ 1

k

)
α

ykxn−k+1 + c′ =
1

θn+1
τy((·)n+1)(x) + c′.

Then,∮ b

a

τy((·)n)(x) dαx =
1

θn+1

(
τy((·)n+1)(b)− τy((·)n+1)(a)

)
=

∮ τy(·)(b)

τy(·)(a)
xn dαx.

The proof of (5.4) is similar.

6 Euler-Maclaurin summation formula for Ber-
noulli-Dunkl polynomials

In the Dunkl context, the Euler-Maclaurin summation formula for polynomials
becomes in the next result.

Theorem 6.1 (Euler-Maclaurin summation formula). Let R be a polynomial
and use σ1 to denote the operator σ1 = τ1τ

−1
−1 . Also, let N be a positive integer.

Then,

1

2α+ 2
(σN1 R(0) +R(0)) +

1

α+ 1

N−1∑
j=1

σj1R(0)

=

∮ σN1 (·)(0)

0

R(t) dαt+

∞∑
k=1

σN1 (Λ2k−1
α R)(0)− Λ2k−1

α R(0)

γ2k
B2k(1),

(6.1)
where the series

∑∞
k=1 is, actually, a finite sum.

At a first sight, this formula does not resembles to the classical Euler-
Maclaurin summation for a polynomial Q, where integrals and sums are related
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using Bernoulli numbers Bk(0) by means of

1

2
(Q(N) +Q(0)) +

N−1∑
j=1

Q(j) =

∫ N

0

Q(t) dt+

∞∑
k=2

Q(k−1)(N)−Q(k−1)(0)

k!
Bk(0);

(6.2)
actually,

∑∞
k=2 =

∑n
k=2, where n is the degree of Q, because Q(k)(x) is null for

k > n.
Of course, the new formula (6.1) must reduce to (6.2) when α = −1/2.

With this aim, let us previously show how to obtain (6.2); then, in the proof of
Theorem 6.1, we will try to “imitate” the classical arguments but adapted to
the new scenario. This justifies the name “Euler-Maclaurin summation formula”
for (6.1).

In the classical case, a good starting point to prove the Euler-Maclaurin
summation formula is (4.14) with y = 0. Actually, we are going to write

∑∞
k=0

instead of
∑n
k=0, taking again into accout that all the summands are null when

k is greater than the degree of the polynomial. Then, (4.14) becomes

P ′(x) =

∞∑
k=0

P (k)(x+ 1)− P (k)(x)

k!
Bk(0). (6.3)

The expansion (6.2) that we want to prove is a formula for Q and, to apply (6.3),
we take P such that P ′(x) = Q(x). Of course, this implies that∫ x+1

x

Q(t) dt = P (x+ 1)− P (x).

Thus, isolating the summands corresponding to k = 0 and 1, we can write

Q(x) = (P (x+ 1)− P (x))B0(0) + (P ′(x+ 1)− P ′(x))B1(0)

+

n∑
k=2

P (k)(x+ 1)− P (k)(x)

k!
Bk(0).

Moreover,

P (k)(x+ 1)− P (k)(x) = Q(k−1)(x+ 1)−Q(k−1)(x), k ≥ 2,

so

Q(x) = B0

∫ x+1

x

Q(t) dt+ (Q(x+ 1)−Q(x))B1(0)

+

∞∑
k=2

Q(k−1)(x+ 1)−Q(k−1)(x)

k!
Bk(0).

Using B0 = 1 and B1(x) = x− 1/2, we get

1

2
(Q(x+ 1) +Q(x)) =

∫ x+1

x

Q(t) dt+

∞∑
k=2

Q(k−1)(x+ 1)−Q(k−1)(x)

k!
Bk(0).

(6.4)
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Finally, summing in x from x = 0 to x = N−1 (observe that
∑N−1
x=0 (Q(k−1)(x+

1)−Q(k−1)(x)) is a telescoping series) we obtain (6.2).
Now, we already have all the ingredients to obtain the Euler-Maclaurin sum-

mation formula for Bernoulli-Dunkl polynomials. In the same way that (6.3) is
a key formula to obtain (6.2), we will use (4.12) as a starting point to prove the
new result. In the proof, we can see how the process tries to follows the steps
of the classical case, but the method is more intricate due to the difficulties im-
posed by the translation operator. Remember that σj1 plays the role of “(·) + j”
in the new context, as we see in Remark 2.

Proof of Theorem 6.1. Let us start using (4.12), but, on the left, with τy(ΛαP )(x)
instead of τx(ΛαP )(y) (by (4.3), they are equal). Then, taking y = 1 we have

1

α+ 1
(τ1ΛαP )(x) = τ1(P )(x)− τ−1(P )(x) + (τ1(ΛαP )(x)− τ−1(ΛαP )(x))/γ1

+

∞∑
k=1

τ1(Λ2k
α P )(x)− τ−1(Λ2k

α P )(x)

γ2k
B2k(1).

Now, previously to introduce R (that will arise later), let us give a formula
similar to (6.4). Given a polynomial Q, take P (x) a Dunkl primitive of Q(x),
so ΛαP (x) = Q(x). Moreover, by (5.2),∮ τ1(·)(x)

τ−1(·)(x)
Q(t) dαt = τ1P (x)− τ−1P (x), (6.5)

Using ΛαP = Q, we have

τ1(ΛαP )(x) = τ1Q(x), τ−1(ΛαP )(x) = τ−1Q(x),

and, similarly, τ±1(Λ2k
α P )(x) = τ±1(Λ2k−1

α Q)(x). Moreover, by (6.5),

τ1(P )(x)− τ−1(P )(x) =

(∮ τ1(·)

τ−1(·)
Q(t) dαt

)
(x) =

∮ τ1(·)(x)

τ−1(·)(x)
Q(t) dαt.

Thus, remembering that γ0 = 1 and γ1 = 2α+ 2, we get

1

2α+ 2
(τ1Q(x) + τ−1Q(x)) =

∮ τ1(·)(x)

τ−1(·)(x)
Q(t) dαt

+

∞∑
k=1

τ1(Λ2k−1
α Q)(x)− τ−1(Λ2k−1

α Q)(x)

γ2k
B2k(1).

(6.6)

Contrary to what happens in the classical case, we cannot take intervals
(x, x + 1), (x + 1, x + 2) and so on and to sum. Instead, we could successively
apply the operator τ1, but, in this way, the presence of τ−1 disturbes and we
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do not obtain an alternating series. Then, we introduce σ1 = τ−1−1 τ1 and the

polynomial R = τ−1Q (so Q = τ−1−1R). With this notation, (6.6) becomes

1

2α+ 2
(σ1R(x) +R(x)) =

∮ σ1(·)(x)

x

R(t) dαt

+

∞∑
k=1

σ1(Λ2k−1
α R)(x)− Λ2k−1

α R(x)

γ2k
B2k(1).

Applying the operator σ1, and remembering the notation (5.1) for the integral
term, we get

1

2α+ 2
(σ2

1R(x) + σ1R(x)) =

∮ σ2
1(·)(x)

σ1(·)(x)
R(t) dαt

+

∞∑
k=1

σ2
1(Λ2k−1

α R)(x)− σ1(Λ2k−1
α R)(x)

γ2k
B2k(1);

and this σ1 can be applied as many times as we want, obtainig

1

2α+ 2
(σj+1

1 R(x) + σj1R(x)) =

∮ σj+1
1 (·)(x)

σj1(·)(x)
R(t) dαt

+

∞∑
k=1

σj+1
1 (Λ2k−1

α R)(x)− σj1(Λ2k−1
α R)(x)

γ2k
B2k(1).

Summing from j = 0 up to N − 1 and starting at x = 0 we finish the proof.

7 Euler-Dunkl polynomials

7.1 Definition of Euler-Dunkl polynomials and first prop-
erties

We define the Euler-Dunkl polynomials {En,α}∞n=0 of order α > −1 by means
of the generating function

Eα(xt)

Iα(t)
=

∞∑
n=0

En,α(x)

γn,α
tn.

As usually, we will sometimes denote it only by En, without specifying α. The
first few Euler-Dunkl polynomials are

E0(x) = 1, E1(x) = x,

E2(x) = x2 − 1, E3(x) = x3 − α+ 2

α+ 1
x,

E4(x) = x4 − 2
α+ 2

α+ 1
x2 +

α+ 3

α+ 1
, E5(x) = x5 − 2

α+ 3

α+ 1
x3 +

α+ 3

(α+ 1)2
x.
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These polynomials are an Appell-Dunkl sequence, so they satisfy (2.6) Anal-
ogous to (3.3) and (3.4) (again an easy consequence of Lemma (2.1), with
1/A(t) = Iα(t)) are the following relations:

x2n =

n∑
j=0

(
2n

2j

)
α

E2j(x), x2n+1 =

n∑
j=0

(
2n+ 1

2j + 1

)
α

E2j+1(x). (7.1)

Moreover, as in the case corresponding to Bernoulli-Dunkl polynomials, it is
easy to prove that (i) E2n (for n ≥ 0) is an even polynomial, which vanishes at 1
(and hence at −1) for n ≥ 1, and (ii) E2n+1 (for n ≥ 0) is an odd polynomial.
(Note the difference with {Bn}∞n=0: the polynomials {En}∞n=0 that vanishes at
±1 are the even polynomials, except E0 = 1.)

Even more, these polynomials {En}∞n=0 are related to the classical Euler
polynomials {En}∞n=0 by

En,−1/2(2x− 1)

2n
= En(x)

(for the definition and properties of the Euler polynomials we can see, for in-
stance, [8]). This process has been sketched in Table 1.

7.2 Properties related to the Dunkl translation

Applying Theorem 4.1 to the case of Euler-Dunkl polynomials, we have

τy(Ek)(x) =

k∑
j=0

(
k

j

)
α

Ej(x)yk−j , (7.2)

that has the same aspect than (4.6) for the Bernoulli-Dunkl case.
For Euler-Dunkl polynomials we obtain a similar result to Theorem 4.5.

Theorem 7.1. For α > −1, the Euler-Dunkl polynomials satisfy

2xk = τ1(Ek)(x) + τ−1(Ek)(x). (7.3)

Proof. Use (7.2) and (7.1).

Let us also note that, for α = −1/2, this result becomes the classical formula

2xk = Ek(x+ 1) + Ek(x)

for Euler polynomials.
Analogously to (4.10), applying j times the translation τy in (7.3), and

summing from j = 0 to j = n, we have

n∑
j=0

τ jy ((·)k)(x) =
1

2

n∑
j=0

(
τ jyτ1(Ek)(x) + τ jyτ−1(Ek)(x)

)
, k, n ≥ 0.

And the summation formula for Euler-Dunkl polynomials similar to Theo-
rem 4.6 is the following.
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Theorem 7.2 (Summation formula). For α > −1 and k, n ≥ 0, we have

n∑
j=0

(−1)n−jσj1τ
−1
−1 ((·)k)(x) =

1

2

(
σn+1
1 (Ek)(x) + (−1)nEk(x)

)
. (7.4)

Proof. Starting in (7.3), apply σj1, multiply by (−1)n−j and sum with j from 0
to n.

Formula (7.4) is the analogous of the classical formula for the Euler polyno-
mials

n∑
j=1

(−1)n−jjk =
Ek(n+ 1) + (−1)nEk(0)

2
.

Finally, following the analogous arguments of Theorem 4.7 but with the
properties of the Euler-Dunkl polynomials it is easy to prove the next result.

Theorem 7.3. Let P (x) be a polynomial of degree ≤ n. Then,

τx(P )(y) =
1

2

n∑
j=0

τ1(ΛjαP )(x) + τ−1(ΛjαP )(x)

γj
Ej(y). (7.5)

7.3 Boole summation formula

The alternating version of the Euler-Maclaurin formula, using Euler polynomi-
als, is the Boole summation formula [8, 24.17.1], that for a polynomial P is the
following:

2

N−1∑
j=0

(−1)jP (j) =

∞∑
k=0

(−1)N−1P (k)(N) + P (k)(0)

k!
Ek(0). (7.6)

Note that the summation is really finite because P (k)(x) is null when k is greater
than the degree of P (x).

Now, we are going to prove this formula in the Dunkl context, using Euler-
Dunkl polynomials. Of course, the new formula reduces to (7.6) when α = −1/2.

Theorem 7.4 (Boole summation formula). Let P be a polynomial and let N
be a positive integer. Then,

2

N−1∑
j=0

(−1)jσj1(P )(0) = (−1)N−1σN1 (P )(0) + P (0)

+

∞∑
k=0

(−1)N−1σN1 (Λ2k+1
α P )(0) + Λ2k+1

α P (0)

γ2k+1
E2k+1(1),

(7.7)

where the series
∑∞
k=0 is really a finite sum.
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Proof. Using (7.5) with τy(P )(x) instead τx(P )(y) on the left side, and taking
y = −1, we have

2τ−1(P )(x) = τ1(P )(x) + τ−1(P )(x)

+

∞∑
k=0

τ1(Λ2k+1
α P )(x) + τ−1(Λ2k+1

α P )(x)

γ2k+1
E2k+1(−1).

The summation is finite because P is a polynomial; moreover, the even terms
are null because E2k(−1) = 0, k > 0 (and E0(x) = 1 is outside of the sum). In
fact, as E2k+1 is an even function, we can write E2k+1(1) instead of E2k+1(−1).

Now, we apply the inverse operator τ−1−1 to obtain

P (x)− σ1(P )(x) =

∞∑
k=0

σ1(Λ2k+1
α P )(x) + Λ2k+1

α P (x)

γ2k+1
E2k+1(1).

Applying (−1)jσj1 and summing from j = 0 up to N − 1, we have

2

N−1∑
j=1

(−1)jσj1(P )(x) = (−1)N−1σN1 (P )(x)− P (x)

+

∞∑
k=0

(−1)N−1σN1 (Λ2k+1
α P )(x) + Λ2k+1

α P (x)

γ2k+1
E2k+1(1).

Finally, taking x = 0 and summing 2P (0) on both sides of the equality, (7.7) is
proved.

8 Generalized Bernoulli-Dunkl and generalized
Euler-Dunkl polynomials

8.1 Generalizated Bernoulli-Dunkl polynomials

Following (2.8), when α > −1 we can also define the generalized Bernoulli-Dunkl

polynomials {B(r)
n,α}∞n=0 of order r by means of the generating function

Eα(xt)

Iα+1(t)r
=

∞∑
n=0

B
(r)
n,α(x)

γn,α
tn. (8.1)

Again, we sometimes write B
(r)
n = B

(r)
n,α. Taking into account that

Iα+1(t)s =

( ∞∑
n=0

t2n

γ2n,α+1

)s
=

∞∑
n=0

a2n,st
2n,

and using Lemma 2.1 we can prove that, for n ≥ 0, B
(r)
2n is an even polynomial,

and B
(r)
2n+1 is an odd polynomial.
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We can give a generalization of (3.3) and (3.4). Let’s write

∞∑
n=0

B
(r)
n,α(x)

γn,α
tn = Iα+1(t)

Eα(xt)

Iα+1(t)r+1
=

( ∞∑
n=0

t2n

γ2n,α+1

)( ∞∑
n=0

B
(r+1)
n,α (x)

γn,α
tn
)
.

Then, making the Cauchy product of the series and identifying the coefficients
of every tn, we have the following:

Theorem 8.1. The generalized Bernoulli-Dunkl polynomials satisfy

B
(r)
2n (x) = B

(r+1)
2n (x) + (α+ 1)

n−1∑
j=0

(
2n

2j

)
α

B
(r+1)
2j (x)

α+ n− j + 1
, (8.2)

B
(r)
2n+1(x) = B

(r+1)
2n+1 (x) + (α+ 1)

n−1∑
j=0

(
2n+ 1

2j + 1

)
α

B
(r+1)
2j+1 (x)

α+ n− j + 1
. (8.3)

In the classical case, the generalized Bernoulli polynomials of order r are

{B(r)
n (x)}∞n=0 defined by(

t

et − 1

)r
ext =

∞∑
n=0

B(r)
n (x)

tn

n!
.

They were introduced by Nørlund in 1922 (see [12, 13]), and they are also known
as Nørlund polynomials.

In this case, the generalized Bernoulli polynomials and the generalized Bernoulli-
Dunkl polynomials are related by

B
(r)
n,−1/2(2x− r) = 2nB(r)

n (x).

To prove this relation we just need to verify that when we take α = −1/2,
t 7→ t/2 and x 7→ 2x− r, the generating function is given by

E−1/2((2x− r)t/2)

I1/2(t/2)r
=

(
t

et − 1

)r
ext.

The details are as in (3.5).

8.2 Some properties for the generalized Bernoulli-Dunkl
polynomials related to the translation

Some of the properties Bernoulli-Dunkl polynomials shown in the previous sec-
tions have a suitable version for the case of generalized Bernoulli-Dunkl poly-
nomials.

The generalized Bernoulli-Dunkl polynomials form an Appell sequence, so,
applying Theorem 4.1, we have the relation

τy(B
(r)
k )(x) =

k∑
j=0

(
k

j

)
α

B
(r)
j (x)yk−j . (8.4)
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that is a generalization of (4.6). A simple consequence is the following expression

for the polynomials B
(r)
k (x) (analogous to (4.7)):

B
(r)
k (x) = τ0(B

(r)
k )(x) = τx(B

(r)
k )(0) =

k∑
j=0

(
k

j

)
α

B
(r)
j (0)xk−j .

Another result that we can generalize is Theorem 4.5, that now becomes as
follows (the proof is similar using (8.2) and (8.3) instead of (3.3) and (3.4)):

Theorem 8.2. For α > −1, the generalized Bernoulli-Dunkl polynomials of
order r and r + 1 are related by means of

Λα(B
(r)
k )(x) = (α+ 1)

(
τ1B

(r+1)
k (x)− τ−1B(r+1)

k (x)
)
.

More interesting is this relation:

Theorem 8.3. For α > −1, the generalized Bernoulli-Dunkl polynomials satisfy

τy(B
(r+s)
k )(x) =

k∑
j=0

(
k

j

)
α

B
(r)
j (x)B

(s)
k−j(y).

Proof. From (8.1) for r and s, we have

Eα(xt)

Iα+1(t)r
Eα(yt)

Iα+1(t)s
=

( ∞∑
k=0

B
(r)
k (x)

γk
tk
)( ∞∑

k=0

B
(s)
k (y)

γk
tk
)

=

∞∑
k=0

(
1

γk

k∑
j=0

(
k

j

)
α

B
(r)
j (x)B

(s)
k−j(y)

)
tk.

On the other hand, using (8.1) for r + s and the definition of Eα(z),

Eα(xt)

Iα+1(t)r+s
Eα(yt) =

( ∞∑
k=0

B
(r+s)
k (x)

γk
tk
)( ∞∑

k=0

yk

γk
tk
)

=

∞∑
k=0

(
1

γk

k∑
j=0

(
k

j

)
α

B
(r+s)
j (x)yk−j

)
tk.

Now, equaling the coefficients of tk in these expressions and using (8.4), we
obtain

k∑
j=0

(
k

j

)
α

B
(r)
j (x)B

(s)
k−j(y) =

k∑
j=0

(
k

j

)
α

B
(r+s)
j (x)yk−j = τy(B

(r+s)
k )(x).

A nice particular case appears taking y = 0. In this way, we get

B
(r+s)
k (x) =

k∑
j=0

(
k

j

)
α

B
(s)
k−j(0)B

(r)
j (x), (8.5)
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that gives the polynomials B
(r+s)
k (x) in terms of B

(r)
k (x) and the generalized

Bernoulli-Dunkl numbers B
(s)
k−j(0). It is also interesting to take x = 0 in (8.5);

this relates generalized Bernoulli-Dunkl numbers of different order by means of
a formula that, as usual, resembles Newton expansion of the binomial.

8.3 Generalizated Euler-Dunkl polynomials

Following (2.8), when α > −1 we can also define the generalized Euler-Dunkl

polynomials {E(r)
n,α}∞n=0 of order r by means of the generating function

Eα(xt)

Iα(t)r
=

∞∑
n=0

E
(r)
n,α(x)

γn,α
tn.

Again, we sometimes write E
(r)
n = E

(r)
n,α. Analogously to generalized Bernoulli-

Dunkl polynomials, we easily obtain that, for n ≥ 0, E
(r)
2n is an even polynomial

an E
(r)
2n+1 is an odd polynomial.

In order to generalize (7.1) for the generalized Euler-Dunkl polynomials, we
can write

∞∑
n=0

E
(r)
n (x)

γn
tn = Iα(t)

Eα(xt)

Iα(t)r+1
=

( ∞∑
n=0

t2n

γ2n

)( ∞∑
n=0

E
(r+1)
n (x)

γn
tn

)
.

Then, identifying coefficients we have the next result.

Theorem 8.4. For α > −1, the generalized Euler-Dunkl polynomials satisfy

E
(r)
2n (x) =

n∑
j=0

(
2n

2j

)
α

E
(r+1)
2j (x), E

(r)
2n+1(x) =

n∑
j=0

(
2n+ 1

2j + 1

)
α

E
(r+1)
2j+1 (x).

In the classical case, the generalized Euler polynomials of order r are {E(r)
n (x)}∞n=0

defined by (
2

et + 1

)r
ext =

∞∑
n=0

E(r)
n (x)

tn

n!
.

The generalized Euler polynomials and the generalized Euler-Dunkl polynomials
are related by

E
(r)
n,−1/2(2x− r) = 2nE(r)

n (x).

In a similar way than in the generalized Bernoulli-Dunkl case, we just need to
verify that when we take α = −1/2, t 7→ t/2 and x 7→ 2x − r, the generating
function is given by

E−1/2((2x− r)t/2)

I−1/2(t/2)r
=

(
2

et + 1

)r
ext.
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8.4 Some properties for the generalized Euler-Dunkl poly-
nomials related to the translation

As the generalized Euler-Dunkl polynomials are Appell-Dunkl polynomials we
can write

τy(E
(r)
k )(x) =

k∑
j=0

(
k

j

)
α

E
(r)
j (x)yk−j .

Using this formula and Theorem 8.4 we can show the relation of these polyno-
mials with the translation.

Theorem 8.5. For α > −1, the generalized Euler-Dunkl polynomials of order
r and r + 1 satisfy

E
(r)
k (x) =

1

2

(
τ1(E

(r+1)
k )(x) + τ−1(E

(r+1)
k )(x)

)
.

Finally, with the same arguments of Theorem 8.3 we have the following:

Theorem 8.6. For α > −1, the generalized Euler-Dunkl polynomials hold

τy(E
(r+s)
k )(x) =

k∑
j=0

(
k

j

)
α

E
(r)
j (x)E

(s)
k−j(y).
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