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Abstract

We introduce Bernoulli-Dunkl and Apostol-Euler-Dunkl polynomials as general-
izations of Bernoulli and Apostol-Euler polynomials, where the role of the derivative
is now played by the Dunkl operator on the real line. We use them to find the sum
of many different series involving the zeros of Bessel functions.
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1 Introduction

Along the middle years of the XVIII-th century, Euler proved that

∞∑
j=1

1

j2k
=

(−1)k−122k−1π2k

(2k)!
B2k, k = 1, 2, . . . , (1.1)

∞∑
j=1

(−1)j

(2j − 1)2k+1
=

(−1)k+1π2k+1

4(2k)!
E2k, k = 0, 1, 2, . . . , (1.2)

where B2k and E2k are the Bernoulli and Euler numbers, respectively. Bernoulli and Euler
numbers are the particular values B2k = B2k(0) and E2k = E2k(1/2), where {Bn(x)}n and
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{En(x)}n are, respectively, the Bernoulli and Euler polynomials defined by the generating
functions

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
,

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
.

The sum (1.1) can be seen as an identity for the sum of the reciprocals of the zeros of sin(x)
while in the sum (1.2) the zeros of cos(x) are modified by an alternating sign. The sine and
cosine functions can be expressed in terms of Bessel functions: sin(x) = (πx/2)1/2J1/2(x)

and cos(x) = (πx/2)1/2J−1/2(x), respectively. So a natural generalization of (1.1) is to
use Bessel functions Jα(x) (see, for instance, [26, 17, 19]) and to compute the series∑

j

1

s2k
j,α

, (1.3)

where {sj,α}j are the zeros of a Bessel function. This question, which has both mathemati-
cal and physical interest, has a somehow classical flavour and goes back to Lord Rayleigh in
1874 [21] (in fact, the sum (1.3) as a function of α is usually called the Rayleigh function).
Since then, many papers have been published which study, with different approaches,
these and many other series along with identities and other properties; see, for instance,
[24, 16, 15, 3, 10] or [20, formula 11 in § 5.7.33] (and the list is by no means exhaustive).

However, identities relating (1.3) or any other sum involving the zeros of Bessel func-
tions with some kind of “Bernoulli” or “Euler numbers” seem to be unknown. Such
identities could be considered a true generalization of (1.1) and (1.2).

The purpose of this paper is to introduce what we have called Bernoulli-Dunkl and
Apostol-Euler-Dunkl polynomials. We will use them to sum many series involving the
zeros of Bessel functions, among which are the analogous to the series (1.1) and (1.2).

Our approach is the following. Bernoulli and Euler polynomials are particular cases of
the so-called Appell sequences. An Appell sequence {Pn(x)}∞n=0 is a sequence of polyno-
mials defined by a Taylor generating expansion

A(t)ext =

∞∑
n=0

Pn(x)
tn

n!
, (1.4)

where A(t) is a function analytic at t = 0 with A(0) 6= 0. Since the exponential function
ex is invariant under the differential operator d/dx, it is easy to show that Pn(x) is a
polynomial of degree n and P ′n(x) = nPn−1(x). Typical examples of Appell sequences
are the Bernoulli and Euler polynomials above, or the probabilistic Hermite polynomials
{Hen(x)}∞n=0.

For α ∈ C \ {−1,−2, . . . }, we consider the entire functions

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
,

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z),

where Jα is the Bessel function of order α. A simple computation gives

Eα(z) =

∞∑
n=0

zn

γn,α
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with

γn,α =

{
22kk! (α+ 1)k, if n = 2k,

22k+1k! (α+ 1)k+1, if n = 2k + 1.

The entire function Eα is invariant under the Dunkl operator

Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
(see [13, 22]). Let us note that, when α = −1/2, we have γn,−1/2 = n!, E−1/2(x) = ex

and Λ−1/2 = d/dx. Hence Appell sequences can be generalized by replacing ext by Eα(xt)
in (1.4): given a function A(t) analytic at t = 0 such that A(0) 6= 0, we can associate to it
an Appell-Dunkl sequence {An}∞n=0 by the generating function

A(t)Eα(xt) =

∞∑
n=0

An(x)
tn

γn,α
. (1.5)

It is not difficult to check that An is a polynomial of degree n which satisfies ΛαAn =
(n+ (α+ 1/2)(1− (−1)n))An−1.

Appell-Dunkl polynomials have already appeared in the literature as generalizations
of the Hermite polynomials (see, for instance, [1, 22]). But, as far as we know, no gener-
alizations of Bernoulli or Euler polynomials have been considered using this approach.

This paper is organized as follows. In Section 2, we introduce our generalizations
of Bernoulli and Euler polynomials. More precisely, the Bernoulli-Dunkl polynomials
{Bn,α}∞n=0 are associated as in (1.5) to the generating function

A(t) =
1

Iα+1(t)
.

On the other hand, the Apostol-Euler-Dunkl polynomials {En,α,u}∞n=0 are associated as
in (1.5) to the generating function

A(t) =
uIα+1(u)

(t+ u)Iα+1(t+ u)
,

where the parameter u is a complex number which is neither 0 nor a zero of Iα+1. In
particular, we will show that Bn,−1/2(2x − 1) = 2nBn(x) and En,−1/2,iπ/2(2x − 1) =
2nEn(x), where Bn and En are the Bernoulli and Euler polynomials, respectively.

In Section 3, we consider some partial fraction decompositions related to the functions
Iα. Using them and the polynomials introduced in Section 2, we sum in Section 4 a lot
of series involving the zeros of Bessel functions, among which are the following examples.
For any complex value of α (except for the negative integers), we can order the zeros
sj,α, j ∈ Z \ {0}, of the Bessel function Jα+1(x)/xα+1 (notice that we have shifted the
parameter α by 1) so that, sj,α = −s−j,α and 0 < Re sj,α ≤ Re sj+1,α, j ≥ 1 ([26, § 15.41,
p. 497]). The case α > −2 is particularly relevant because then sj,α, j ≥ 1, are positive
numbers ([26, § 15.27, p. 483]). We then prove (Theorem 4.1)

∞∑
j=1

1

s2k
j,α

=
(−1)k+1

22kk! (α+ 2)k−1
B2k,α(1), (1.6)

which can be considered a genuine generalization of (1.1).
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We also sum a variant of this series with “alternating signs” (Theorem 4.1): for Reα <
2k − 3/2,

∞∑
j=1

1

Iα(isj,α)s2k
j,α

=
(−1)k+1

22kk! (α+ 2)k−1
B2k,α(0). (1.7)

Indeed, in this context the factor Iα(isj,α), which multiplies each zero of the Bessel func-
tion, provides a generalization of the sign sequence (−1)j in (1.2) because for α = −1/2 we
have I−1/2(isj,−1/2) = (−1)j . Using the Bernoulli-Dunkl polynomials one can explicitly
compute the sum (1.7). For instance, for k = 1 and 2, one gets

∞∑
j=1

1

Iα(isj,α)s2
j,α

= − α+ 1

4(α+ 2)
,

∞∑
j=1

1

Iα(isj,α)s4
j,α

= − (α+ 1)(α+ 2)

32(α+ 3)(α+ 2)2
.

These series were considered in [24] for α ≥ −3/2.
We also prove (Theorem 4.4) that, for Reα < k − 1/2,∑

j∈Z\{0}

1

Iα(isj,α)(sj,α − u)n+1
= 2(1 + α)

(
(−1)n

un+1
− inEn,α,iu(0)

uIα+1(iu)γn

)
,

which can be considered a generalization of the Euler’s sums (1.2), because for α = −1/2
and u = π/2, this series reduces to (1.2). Although we will insist again on this, throughout
this paper any doubly infinite series of the form

∑
j∈Z must be understood as the principal

value, that is, the limit of
∑
|j|≤N as N goes to infinity.

Using our approach, we also sum some other relevant series such as (see Theorem 4.3
and Theorem 4.4) ∑

j∈Z\{0,l}

1

(sj,α − sl,α)k+1
,

∑
j∈Z\{0,l}

1

Iα(isj,α)(sj,α − sl,α)k+1

for k ≥ 0. For instance,∑
j∈Z\{0,l}

1

sj,α − sl,α
=

3 + 2α

2sl,α
, (1.8)

∑
j∈Z\{0,l}

1

(sj,α − sl,α)2
= − (3 + 2α)(7 + 2α)

12s2
l,α

+
1

3
,

∑
j∈Z\{0,l}

1

Iα(isj,α)(sj,α − sl,α)
=

2(1 + α)

sl,α
− 1 + 2α

2sl,αIα(isl,α)
,

and ∑
j∈Z\{0,l}

1

Iα(isj,α)(sj,α − sl,α)2
=

(1 + α)(2α− 1)

s2
l,α

− 1

Iα(isl,α)

(
1 +

(1 + 2α)(2α− 3)

2s2
l,α

)
.
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The sum (1.8) is the Calogero series [7].
For α > −1, the Dunkl operator has associated the following orthonormal system:

eα,j(r) =
2α/2Γ(α+ 1)1/2

|Iα(isj,α)|
Eα(isjr), j ∈ Z \ {0}, r ∈ [−1, 1],

and eα,0(r) = 2(α+1)/2Γ(α + 2)1/2. In the last section of this paper we find the following
expansion of the Bernoulli-Dunkl polynomials with respect to this system (Theorem 5.4):

Bn,α(x) =
−(−i)nγn

21+α/2(α+ 1)Γ(α+ 1)1/2

∑
j∈Z\{0}

(−1)j

snj,α
eα,j(x),

where the convergence is in L2
(

[−1, 1], |x|2α+1

2α+1Γ(α+1) dx
)

. This can be considered as a gen-

eralization of the Hurwitz expansion for Bernoulli polynomials in Fourier series

Bn(x) = − n!

(2πi)n

∑
j∈Z\{0}

e2πijx

jn
.

2 Bernoulli-Dunkl and Apostol-Euler-Dunkl polyno-
mials

As explained in the introduction, we will define Bernoulli-Dunkl and Apostol-Euler-Dunkl
polynomials as particular cases of Appell-Dunkl polynomials. To introduce Appell-Dunkl
polynomials we need some preliminary notations.

2.1 The Dunkl transform on the real line and the Appell-Dunkl
polynomials

For α > −1, let Jα denote the Bessel function of order α and, for complex values of the
variable z, let

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
= Γ(α+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)
= 0F1(α+ 1, z2/4)

where 0F1 is a hypergeometric function, see [14, Chapter IV] (the function Iα is a slight
variation of the so-called modified Bessel function of the first kind and order α, usually
denoted by Iα, see [26, 17, 19]). Moreover, let us take

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z), z ∈ C.

The Dunkl operator Λα in the real line (with reflection group Z2) is defined as

Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
, (2.1)

acting on suitable functions f on R (see [13] for α ≥ −1/2 and [22] for the extension to
α > −1). It is easy to check that, for any λ ∈ C, we have

ΛαEα(λx) = λEα(λx).
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Let us note that Λ−1/2 = d/dx and E−1/2(λx) = eλx.
The function Eα(z) is known as the Dunkl kernel because, in a similar way to the

Fourier transform (which is the particular case α = −1/2), we can define the Dunkl
transform on the real line

Fαf(y) =

∫
R
Eα(−ixy)f(x) dµα(x), y ∈ R, (2.2)

where dµα denotes the measure

dµα(x) = 1
2α+1Γ(α+1) |x|

2α+1 dx

(in particular, dµ−1/2(x) = (2π)−1/2 dx). The Dunkl transform (2.2) can be extended to
an isometric isomorphism on L2(R, µα) and fulfils F−1

α f(y) = Fαf(−y).
From the definition, it is easy to check that

Eα(z) =

∞∑
n=0

zn

γn,α

with

γn,α =

{
22kk! (α+ 1)k, if n = 2k,

22k+1k! (α+ 1)k+1, if n = 2k + 1,
(2.3)

and where (a)n denotes the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)

(with n a non-negative integer). Notice that γn,−1/2 = n!. From (2.3), one easily has

θn,α :=
γn,α
γn−1,α

= n+ (α+ 1/2)(1− (−1)n). (2.4)

We also define (
n

j

)
α

=
γn,α

γj,αγn−j,α
,

that becomes the ordinary binomial numbers in the case α = −1/2. To simplify the
notation we sometimes write γn,α = γn and θn,α = θn.

To every function A(t) analytic in a neighbourhood of t = 0 with A(0) 6= 0, we associate
a sequence of Appell-Dunkl polynomials An(x) by the generating function

A(t)Eα(xt) =

∞∑
n=0

An(x)
tn

γn
(2.5)

(in addition to the papers [1, 22] cited in the introduction, Appell-Dunkl sequences have
been considered also, for instance, in [4, 6, 12]). From this definition, it is not difficult
to prove that An(x) is a polynomial of degree n and ΛαAn(x) = γn

γn−1
An−1(x) (when

α = −1/2, this becomes the classical A′n(x) = nAn−1(x) of Appell sequences).
We straightforwardly have the following:
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Lemma 2.1. The Appell-Dunkl polynomials An(x), n ≥ 0, defined by (2.5) satisfy the
recurrence relations

xn = γn

n∑
j=0

Aj(x)

γj
an−j ,

where
1

A(t)
=

∞∑
n=0

ant
n.

Moreover,
Λα(An) = (n+ (α+ 1/2)(1− (−1)n))An−1.

2.2 Bernoulli-Dunkl polynomials

We define the Bernoulli-Dunkl polynomials {Bn,α}∞n=0 by the generating function

Eα(xt)

Iα+1(t)
=

∞∑
n=0

Bn,α(x)

γn,α
tn. (2.6)

To simplify the notation we sometimes write Bn = Bn,α.
Since

Iα+1(x) =

∞∑
n=0

x2n

γ2n,α+1
,

the first few Bernoulli-Dunkl polynomials are

B0(x) = 1, B1(x) = x,

B2(x) = x2 − α+ 1

α+ 2
, B3(x) = x3 − x,

B4(x) = x4 − 2x2 +
(α+ 4)(α+ 1)

(α+ 3)(α+ 2)
, B5(x) = x5 − 2

α+ 3

α+ 2
x3 +

α+ 4

α+ 2
x.

Proposition 2.2. The Bernoulli-Dunkl polynomials satisfy the recurrence relations

x2n = B2n(x) + (α+ 1)

n−1∑
j=0

(
2n

2j

)
α

B2j(x)

α+ n− j + 1
, (2.7)

x2n+1 = B2n+1(x) + (α+ 1)

n−1∑
j=0

(
2n+ 1

2j + 1

)
α

B2j+1(x)

α+ n− j + 1
.

Moreover,
Λα(Bn) = (n+ (α+ 1/2)(1− (−1)n))Bn−1 (2.8)

and

1. B2n is an even polynomial, n ≥ 0;

2. B2n+1 is an odd polynomial, n ≥ 0, and vanishes at 1 (and hence at −1) for n ≥ 1.

Proof. It is an easy consequence of Lemma 2.1.
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Remark 1. One of the reasons why we call the family {Bn}∞n=0 Bernoulli-Dunkl polyno-
mials is the following. From its generating function one gets

Bn,−1/2(2x− 1)

2n
= Bn(x), (2.9)

where {Bn}∞n=0 are the Bernoulli polynomials (for the definition and properties of the
Bernoulli polynomials one can see, for instance, [14, 11]).

Indeed, taking into account that

E−1/2(x) = ex, I1/2(x) =
sin(ix)

ix
,

and replacing x by 2x− 1, t by t/2, and α by −1/2 in the definition (2.6) yields

ext−t/2

sin(it/2)
it/2

=

∞∑
n=0

Bn,−1/2(2x− 1)

2n
tn

n!
.

An easy computation gives
ext−t/2

sin(it/2)
it/2

=
text

et − 1
,

from where (2.9) follows. We note that the change x 7→ 2x− 1 in (2.9) is very natural in
the Dunkl context, because it is very much related to the reflection group Z2 (see (2.1)).
For this group, the points ±1 are essential, and thus the role of x = 0 and x = 1 for the
classical Bernoulli polynomials must be translated to −1 and 1.

The other reason to call them Bernoulli-Dunkl is that they play in the sums (1.6) the
same role played by Bernoulli polynomials in the Euler sums (1.1).

One might expect that Bernoulli-Dunkl polynomials would satisfy many identities and
formulas corresponding to known properties of Bernoulli polynomials. Although the scope
of this paper is not to look for these identities, we display here just one of them to taste
their flavour.

The Dunkl translation operator of a function f is defined by

τyf(x) =

∞∑
n=0

yn

γn,α
Λnαf(x), α > −1,

where Λ0
α is the identity operator and Λn+1

α = Λα(Λnα). For the Dunkl transform, the
translation τy plays the same role as the classical translation for the Fourier transform
(that is, τyf(x) = f(x + y) for the case α = −1/2). Some properties of the translation
operator, including an integral expression, can be found in [22], [23], and [25]. For our
purposes, we only need the identity [22, formula (4.2.2)]

τy(Eα(t·))(x) = Eα(tx)Eα(ty).

Then, we have the following result:

Proposition 2.3. For α > −1, the Bernoulli-Dunkl polynomials satisfy

τy(Bk(·))(x) =

k∑
j=0

(
k

j

)
α

Bj(x)yk−j . (2.10)
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Proof. We prove that a certain generating function is equal for both sides of (2.10). Indeed,

∞∑
k=0

τy(Bk(·))(x)

γk
tk =

1

Iα+1(t)
τy(Eα(t·))(x) =

Eα(tx)

Iα+1(t)
Eα(ty)

=

( ∞∑
k=0

Bk(x)

γk
tk

)( ∞∑
k=0

tkyk

γk

)
=

∞∑
k=0

tk

 k∑
j=0

Bj(x)

γj

yk−j

γk−j


=

∞∑
k=0

tk

γk

 k∑
j=0

(
k

j

)
α

Bj(x)yk−j

 .

In the classical case α = −1/2, (2.10) becomes the well known translation formula

Bk(x+ y) =

k∑
j=0

(
k

j

)
Bj(x)yk−j

for Bernoulli polynomials.

2.3 Apostol-Euler-Dunkl polynomials

We define the Apostol-Euler-Dunkl polynomials {En,α,u}∞n=0 by the generating function

uIα+1(u)Eα(xt)

(t+ u)Iα+1(t+ u)
=

∞∑
n=0

En,α,u(x)

γn,α
tn, (2.11)

where u is a complex number which is neither 0 nor a root of Iα+1. To simplify the
notation we sometimes write En = En,α,u.

Proposition 2.4. The Apostol-Euler-Dunkl polynomials satisfy the recurrence relation

xn =
2(1 + α)γn
uIα+1(u)

n∑
j=0

Ej(x)

γj(n− j)!
I(n−j+1)
α (u). (2.12)

Moreover,
Λα(En) = (n+ (α+ 1/2)(1− (−1)n))En−1.

Proof. It is an easy consequence of Lemma 2.1, taking into account that 2(1 + α)I ′α(x) =
xIα+1(x).

The computation of Apostol-Euler-Dunkl polynomials can be simplified using the fol-
lowing lemma.

Lemma 2.5. Given α ∈ C \ {−1,−2, . . . } and a nonnegative integer k, we have

I(k)
α (z) = Iα(z)Pk(z) + Iα+1(z)Qk(z), (2.13)

where Pk(z) and Qk(z) are rational functions satisfying P0(z) = 1, Q0(z) = 0, and the
recurrence relations

Pk+1(z) = P ′k(z) +
2(α+ 1)

z
Qk(z)

and

Qk+1(z) = Q′k(z) +
z

2(α+ 1)
Pk(z)− 2(α+ 1)

z
Qk(z).
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Proof. The result is obvious for k = 0. Let us assume that the result is true for some k
and prove it for k + 1.

Let us write Iα(z) = 2αΓ(α+ 1)Iα(z)/zα, where Iα is the modified Bessel function of
the first kind and order α, see [26, 17, 19]. We will use the identities (see, for instance,
[19, formulas 10.29.2])

I ′α(z) = Iα+1(z) +
α

z
Iα(z) (2.14)

and
I ′α(z) = Iα−1(z)− α

z
Iα(z). (2.15)

By (2.14) we have

I ′α(z) = 2αΓ(α+ 1)

(
I ′α(z)

zα
− α Iα(z)

zα+1

)
=

z

2(α+ 1)
Iα+1(z),

and by (2.15) (with α+ 1 instead of α) we deduce that

I ′α+1(z) = 2α+1Γ(α+ 2)

(
I ′α+1(z)

zα+1
− (α+ 1)

Iα+1(z)

zα+2

)
= 2α+1Γ(α+ 2)

(
Iα(z)

zα+1
− 2(α+ 1)

Iα+1(z)

zα+2

)
=

2(α+ 1)

z
(Iα(z)− Iα+1(z)).

Then,

I(k+1)
α (z) = I ′α(z)Pk(z) + Iα(z)P ′k(z) + I ′α+1(z)Qk(z) + Iα+1(z)Q′k(z)

=
z

2(α+ 1)
Iα+1(z)Pk(z) + Iα(z)P ′k(z)

+
2(α+ 1)

z
(Iα(z)− Iα+1(z))Qk(z) + Iα+1(z)Q′k(z)

= Iα(z)

(
P ′k(z) +

2(α+ 1)

z
Qk(z)

)
+ Iα+1(z)

(
Q′k(z) +

z

2(α+ 1)
Pk(z)− 2(α+ 1)

z
Qk(z)

)
and (2.13) follows.

The identities in the previous lemma become much simpler when z = ui and u is a
zero of the Bessel function Jα or Jα+1. Indeed, if sn,α is a non-null zero of Jα+1(x) and
(as usual in the literature) jn,α = sn,α−1, then:

Corollary 2.6. Given α ∈ C \ {−1,−2, . . . } and a nonnegative integer k, we have

I(k)
α (isl) = Iα(isl)Pk(isl)

where the first values for Pk(z) are P0(z) = 1, P1(z) = 0, P2(z) = 1,

P3(z) = −2α+ 1

z
, and P4(z) =

(2α+ 1)(2α+ 3)

z2
+ 1.

Moreover,
I(k)
α (ijl) = Iα+1(ijl)Qk(ijl)
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where the first values for Qk(z) are Q0(z) = 0, Q1(z) =
z

2(α+ 1)
,

Q2(z) = − 2α+ 1

2(α+ 1)
, Q3(z) =

z

2(α+ 1)
+

(2α+ 1)

z
, and

Q4(z) = −(1 + 2α)

(
1

1 + α
+

3 + 2α

z2

)
.

This gives the first few Apostol-Euler-Dunkl polynomials En,α,ijl as follows:

E0,α,ijl(x) = 1,

E1,α,ijl(x) = x+
2(1 + α)(1 + 2α)

ijl
,

E2,α,ijl(x) = x2 +
2(1 + 2α)

ijl
x− 2(1 + α)

(
1 +

2α(1 + 2α)

j2
l

)
,

E3,α,ijl(x) = x3 +
2(2 + α)(1 + 2α)

ijl
x2 − 2(2 + α)

(
1 +

2α(1 + 2α)

j2
l

)
x

− 8(2 + α)(1 + α)(1 + 2α)

3ijl

(
2 +

α(−1 + 2α)

j2
l

)
.

The Apostol-Euler-Dunkl polynomials can be considered as a generalization of the
Apostol-Euler polynomials {En(x;λ)}∞n=0 defined by the generating function

2

λet + 1
ext =

∞∑
n=0

En(x;λ)
tn

n!

(see, for instance, [18]). Indeed, one can recover the Apostol-Euler polynomials replacing
x by 2x − 1 and t by t/2, and taking α = −1/2 and λ = −e2u in the definition (2.11) of
the Apostol-Euler-Dunkl polynomials:

En,−1/2,log(−λ)/2(2x− 1)

2n−1(λ+ 1)
= En(x;λ). (2.16)

We omit the computation of (2.16) because it is similar to the one in Remark 1 in the
previous section. (We do not consider any Dunkl version of the Apostol-Bernoulli polyno-
mials [2] because they are very close relatives of the Apostol-Euler polynomials, see [18,
Lemma 2].)

Taking λ = 1 (or u = iπ/2) in (2.16) gives

En,−1/2,iπ/2(2x− 1)

2n
= En(x),

where {En}∞n=0 are the Euler polynomials.
Bernoulli-Dunkl polynomials can be obtained from the Apostol-Euler-Dunkl polyno-

mials by taking limit when u goes to 0. Indeed, the generating function (2.11) can be
written as

Iα+1(u)Eα(tx)

Iα+1(t+ u)
=

(
1 +

t

u

) ∞∑
n=0

En,α,u(x)

γn
tn.

An easy computation gives

Iα+1(u)Eα(tx)

Iα+1(t+ u)
= 1 +

∞∑
n=1

(
En,α,u(x)

γn
+

En−1,α,u(x)

uγn−1

)
tn.

11



Taking limit when u goes to 0 and using the generating function (2.6) proves that

Bn,α(x) = lim
u→0

(
En,α,u(x) +

γnEn−1,α,u(x)

uγn−1

)
.

Remark 2. It is not obvious which Appell-Dunkl polynomials should be called “Euler-
Dunkl polynomials” (which should admit the Apostol-Euler-Dunkl polynomials as a gen-
eralization). For instance, if we define

Eα(xt)

Iα(t)
=

∞∑
n=0

En,α(x)

γn,α
tn

we again have En,−1/2(2x−1) = 2nEn(x). This could justify the definition of Euler-Dunkl
polynomials as {En,α}∞n=0. However, defining the Apostol-Euler-Dunkl polynomials by
(2.11) allows to add more series, which is the goal of this paper, and this definition of
Euler-Dunkl polynomials cannot be extended to (2.11).

2.4 Calogero-Dunkl numbers

We finally introduce what we have called Calogero-Dunkl numbers; later in this paper, we
will use them to add the Calogero type series (1.8) that appear in [7]. The Calogero-Dunkl
numbers {an,α,u}∞n=0 are defined by the generating function

Iα(t+ u)

(t+ u)Iα+1(t+ u)
=

∞∑
n=0

an,α,ut
n, (2.17)

where the parameter u is neither 0 nor a zero of the entire function Iα+1. This gives the
following recurrence for the Calogero-Dunkl numbers:

I(n)
α (u) = 2(1 + α)n!

n∑
j=0

aj,α,u
I(n−j+1)
α (u)

(n− j)!
, (2.18)

with a0,α,u = Iα(u)/(uIα+1(u)).
Lemma 2.5 can be used to compute the Calogero-Dunkl numbers. In particular, from

Corollary 2.6 we get the first few Calogero-Dunkl numbers an,α,ijl :

a0,α,ijl = 0, a1,α,ijl =
1

2(1 + α)
, (2.19)

a2,α,ijl =
1 + 2α

4(1 + α)ijl
, a3,α,ijl = − 1

6(1 + α)
+

1− 4α2

12(1 + α)j2
l

. (2.20)

The Calogero-Dunkl numbers can be used to define the associated Calogero-Dunkl
polynomials by setting

A(t) =
(t+ u)Iα+1(t+ u)

Iα(t+ u)

in the definition (2.5) of the Appell-Dunkl polynomials (but we do not study these poly-
nomials here).

12



3 Partial fraction decomposition for the Bessel func-
tions

We will use the polynomials defined in the previous section to find the sum of some series
(see Section 4). To this end we need a couple of partial fraction decompositions for the
Bessel functions.

The first one is the following. For each complex number α, except for the negative
integers,

Jα(t)

Jα+1(t)
=

2(α+ 1)

t
+

∞∑
j=1

2t

t2 − s2
j

(3.1)

if t 6= 0,±s1,±s2, . . . , where the right-hand side converges uniformly on compact sets
of C \ {0,±s1,±s2, . . . }. The proof is essentially the same as for the well-known partial

fraction decomposition of Jα+1(t)
Jα(t) (see [26, § 15.41, p. 497–498]). The expansion (3.1) can

be rewritten as
Iα(it)

tIα+1(it)
=

1

t
+

1

2(α+ 1)

∑
j∈Z\{0}

1

t− sj
; (3.2)

here, let us recall that any series of the form
∑
j∈Z must be understood as the limit of∑

|j|≤N as N goes to infinity, and hence the right-hand side in (3.2) converges uniformly

on compact sets of C \ {0,±s1,±s2, . . . }.
We will also need a partial fraction decomposition for 1

tIα+1(it) . The same argument

of [26, § 15.41, p. 497–498] produces this partial fraction decomposition. The proof goes as
follows: assume t 6= 0,±s1,±s2, . . . and take a large rectangle D = D(A,B) with vertices
±A± iB, where A and B are positive, and consider

1

2πi

∫
∂D

1

(w − t)wIα+1(iw)
dw,

∂D meaning the border of D (none of the points 0,±s1,±s2, . . . must lie in ∂D). The
poles of 1

(w−t)wIα+1(iw) in D, all of them simple, are t, 0, and those sj ∈ D. The residue

at t is, obviously,
1

tIα+1(it)
;

and the residue at 0 is

− 1

tIα+1(0)
= −1

t
.

Finally, the residue at each sj ∈ D is

lim
w→sj

w − sj
(w − t)wIα+1(iw)

=
1

(sj − t)sjI ′α+1(isj)
=

1

(sj − t)2(α+ 1)Iα(isj)
.

Thus, the calculus of residues gives

1

2πi

∫
∂D

1

(w − t)wIα+1(iw)
dw =

1

tIα+1(it)
− 1

t
+
∑
sj∈D

1

(sj − t)2(α+ 1)Iα(isj)
. (3.3)

Using arguments similar to those of [26, § 15.41, p. 498], the values of A and B can be
chosen arbitrarily large and such that

|Jα+1(w)| ≥ C|w|−1/2 (3.4)
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on ∂D for some constant C > 0 independent of A and B. We sketch here the proof for the

sake of completeness. The starting point is the equality 2Jα+1(w) = H
(1)
α+1(w) +H

(2)
α+1(w),

where the Bessel functions of the third kind satisfy the estimates

H
(1)
α+1(w) =

(
2

πw

)1/2

ei(w−
1
2 (α+1)π−π4 ){1 + η1,α+1(w)}, (3.5)

H
(2)
α+1(w) =

(
2

πw

)1/2

e−i(w−
1
2 (α+1)π−π4 ){1 + η2,α+1(w)}, (3.6)

η1,α+1(w) and η2,α+1(w) being O(1/w) for large |w| [26, § 15.4, p. 496]. Then, outside the

horizontal strip | Im(w − 1
2 (α + 1)π − π

4 )| ≤ log 2 we have either |ei(w− 1
2 (α+1)π−π4 )| < 1

2

or |ei(w− 1
2 (α+1)π−π4 )| > 2, so that either H

(1)
α+1 or H

(2)
α+1 dominates the other and (3.4)

follows. The whole ∂D is thus covered, except for two vertical lines of length 2 log 2
with Rew = ±A. On these two pieces, according to (3.5) and (3.6) the problem reduces
essentially to get a lower estimate for | cos(w − 1

2 (α + 1)π − π
4 )|, which can be done by

simply choosing A so that to avoid the zeros of the cosine function.
Since |w|α ≤ C|w|Reα, it follows from (3.4) that

sup
w∈∂D

∣∣∣∣ 1

wIα+1(iw)

∣∣∣∣ ≤ C−1|w|Reα+1/2.

Then, the left-hand side of (3.3) goes to 0 as A and B go to infinity, provided that
Reα+ 1

2 < 0, and this proves the partial fraction decomposition

1

tIα+1(it)
=

1

t
+

1

2(α+ 1)

∑
j∈Z\{0}

1

(t− sj)Iα(isj)
, for Reα+

1

2
< 0,

valid for t 6= 0,±s1,±s2, . . . If we consider, for a fixed positive integer m, the integral

1

2πi

∫
∂D

1

(w − t)m+1wIα+1(iw)
dw,

then the same arguments work with the only difference that the integrand now has a pole
of order m+ 1 at t, so the residue at t is

1

m!

dm

dwm

(
1

wIα+1(iw)

)∣∣∣∣
w=t

.

The residues at 0 and those sj ∈ D are, respectively,

1

(−t)m+1

and
1

(sj − t)m+12(α+ 1)Iα(isj)
.

This gives the expansion(
1

tIα+1(it)

)(m)

=
(−1)mm!

tm+1
+

(−1)mm!

2(α+ 1)

∑
j∈Z\{0}

1

(t− sj)m+1Iα(isj)
, (3.7)

which is valid if Reα−m+ 1
2 < 0 and t 6= 0,±s1,±s2, . . .
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4 Sums involving the zeros of the Bessel functions

In this section, we will use the Bernoulli-Dunkl, Apostol-Euler-Dunkl polynomials and the
Calogero-Dunkl numbers to sum a lot of series involving the zeros of Bessel functions.

For any complex value of α (except for the negative integers), we can order the zeros sj,α
of the Bessel function Jα+1(x)/xα+1 so that sj,α = −s−j,α and 0 < Re sj,α ≤ Re sj+1,α,
j ≥ 1 ([26, § 15.41, p. 497]). To simplify the notation, we write sj = sj,α. The case α > −2
is particularly relevant because then sj , j ≥ 1, are positive numbers; but complex zeros
appear when α < −2 ([26, § 15.27, p. 483]). However, their imaginary parts are bounded
for each (bounded set of) α, see [26, § 15.4, p. 497].

Let us consider the sums (depending on the parameter α, some of them might be
divergent)

σk =

∞∑
j=1

1

s2k
j

, (4.1)

%k =

∞∑
j=1

1

Iα(isj)s2k
j

, (4.2)

ηk,u =
∑

j∈Z\{0}

1

(sj − u)k+1
, (4.3)

η
{l}
k =

∑
j∈Z\{0,l}

1

(sj − sl)k+1
, (4.4)

ωk,u =
∑

j∈Z\{0}

1

Iα(isj)(sj − u)k+1
, (4.5)

ω
{l}
k =

∑
j∈Z\{0,l}

1

Iα(isj)(sj − sl)k+1
, (4.6)

where u ∈ C \ {±s1,±s2, . . . }. It has been already mentioned that series like
∑
j∈Z or

similar refer to the limit of
∑
|j|≤N as N goes to infinity.

Notice that for α = −1/2 we have sj = jπ and Iα(isj) = (−1)j , so we can think of %k,

ωk,u, and ω
{l}
k as a kind of “alternating” series.

Let us start with the two first sums, which are computed using the Bernoulli-Dunkl
polynomials.

Theorem 4.1. Let α be a complex number which is not a negative integer and k ≥ 1.
Then

σk =
(−1)k+1

22kk! (α+ 2)k−1
B2k(1). (4.7)

If, in addition, Reα < 2k − 3/2, then

%k =
(−1)k+1

22kk! (α+ 2)k−1
B2k(0). (4.8)

Proof. Let us begin with (4.7). The starting point is the partial fraction decomposi-
tion (3.2), which can be written as

Iα(it)

tIα+1(it)
=

1

t
+

1

α+ 1

∞∑
j=1

t

t2 − s2
j

15



if t 6= 0,±s1,±s2, . . . , where, for α ∈ C \ {−1,−2, . . . }, the right-hand side converges
absolutely (and uniformly on compact sets of C \ {0,±s1,±s2, . . . }).

Using the geometric series and changing the order of the sums (the absolute convergence
allows the use of Fubini’s theorem), we get

Iα(it)

tIα+1(it)
=

1

t
− 1

α+ 1

∞∑
j=1

t

s2
j

∞∑
n=0

t2n

s2n
j

=
1

t
− 1

α+ 1

∞∑
k=1

( ∞∑
j=1

1

s2k
j

)
t2k−1, (4.9)

valid if 0 < |t| < |sj | for every j. On the other hand, evaluating the generating function
(2.6) for the Bernoulli-Dunkl polynomials at x = 1 gives

Iα(t)

Iα+1(t)
+

t

2(α+ 1)
=

∞∑
k=0

Bk,α(1)

γk,α
tk

in a neighbourhood of 0. Taking into account that B0 = 1,B1(x) = x and that B2k+1(x)
vanishes at x = 1 for k ≥ 1, we get

Iα(t)

tIα+1(t)
=

1

t
+

∞∑
k=1

B2k,α(1)

γ2k,α
t2k−1. (4.10)

Now, the identity (4.7) follows easily by comparing (4.9) and (4.10).
The proof of (4.8) proceeds in a similar way, but using now the partial fraction decom-

position (3.7) with m = 2k − 1, i.e.,(
1

tIα+1(it)

)(2k−1)

= − (2k − 1)!

t2k
− 1

2(α+ 1)

∑
j∈Z\{0}

(2k − 1)!

Iα(isj)(t− sj)2k
,

valid for t 6= 0,±s1,±s2, . . . , where, for α ∈ C \ {−1,−2, . . . } with Reα < 2k − 3/2, the
series converges absolutely. Putting together the terms with j and −j, using the power
series expansion

1

(t− sj)2k
+

1

(t+ sj)2k
=
∑
n≥k

2

(
2n− 1

2k − 1

)
t2n−2k

s2n
j

,

valid if |t| < |sj | for every j, and applying Fubini’s theorem to change the order of the
sums give(

1

tIα+1(it)

)(2k−1)

= − (2k − 1)!

t2k

− 1

α+ 1

∑
n≥k

(∑
j≥1

1

Iα(isj)s2n
j

)
(2n− 1)(2n− 2) . . . (2n+ 1− 2k)t2n−2k. (4.11)

Now, taking x = 0 in (2.6) gives

1

tIα+1(it)
=

1

t
+
∑
n≥1

B2n,α(0)

γ2n,α
(−1)nt2n−1

in a punctured neighbourhood of 0. After differentiating (2k−1) times, we can compare the
constant term in the resulting expansion with the constant term in (4.11) to obtain (4.8).
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Notice that for α = −1/2, Theorem 4.1 gives the corresponding formulas for
∑∞
j=1 1/j2k

and
∑∞
j=1(−1)j/j2k (the first one is (1.1) and the second one is closely related by sepa-

rating even and odd values of j) in terms of Bernoulli polynomials (recall that, by (2.9),
Bn,−1/2(x) = 2nBn((x+ 1)/2)).

Of course, an important question is what happens with the series (4.1) and (4.2) for
odd values of the exponents. We cannot expect to find a closed formula for these series,
since it is not known even in the classical cases

∑∞
j=1 1/j2k+1 and

∑∞
j=1(−1)j/j2k+1. The

fact that (4.9) and (4.11) contain only even powers of sj is the reason why no information
can be obtained for (4.1) and (4.2) with odd exponents. The Fourier-Dunkl series we
will consider later in Theorem 5.4 give no information either: for n odd, even assuming
pointwise convergence, taking x = 0 or x = 1 simply produces 0 = 0.

As explained above, the series σk and %k have already been studied in the literature,
but the expressions (4.7) and (4.8) in terms of the Bernoulli-Dunkl polynomials are new.

The recurrence relation (2.7) for the Bernoulli-Dunkl polynomials gives the correspond-
ing recurrence relation for the sums (4.1) and (4.2).

Corollary 4.2. Under the hypothesis of Theorem 4.1,

n =

n∑
j=1

(−1)j+14j(n− j + 1)j(α+ n− j + 2)jσj ,

−α− 1 =

n∑
j=1

(−1)j+14j(n− j + 1)j(α+ n− j + 2)j%j .

The first relation can be found in [24, p. 149], or in [16, identity (14)]; the second one
in [24, p. 151].

The Calogero-Dunkl numbers (2.17) can be used to find the sum of the series (4.3)
and (4.4).

Theorem 4.3. For α ∈ C \ {−1,−2, . . . }, k = 0, 1, 2, . . . , and u ∈ C \ {0,±s1,±s2, . . . },
the sum of the series ηk,u defined in (4.3) is

ηk,u = 2(1 + α)

(
(−1)k

uk+1
− ik+1ak,α,iu

)
. (4.12)

Moreover, the series ηk,u (4.3) and η
{l}
k (4.4) satisfy the recurrence relations

k∑
j=0

I(k−j+1)
α (iu)

ij(k − j)!

(
ηj,u −

(−1)j2(1 + α)

uj+1

)
= −I

(k)
α (iu)

k!
, (4.13)

k∑
j=0

I(k−j+1)
α (isl)

ij+1(k − j)!

(
η
{l}
j − (−1)j2(1 + α)

sj+1
l

)
=
I(k+2)
α (isl)

(k + 1)!
− I

(k)
α (isl)

k!
. (4.14)

In particular,

η
{l}
0 =

3 + 2α

2sl
, η

{l}
1 = − (3 + 2α)(7 + 2α)

12s2
l

+
1

3
. (4.15)

Proof. The starting point is again the partial fraction decomposition (3.2), i.e.,

Iα(it)

tIα+1(it)
=

1

t
+

1

2(α+ 1)

∞∑
j=1

(
1

t− sj
+

1

t+ sj

)
. (4.16)
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Writing

t− sj = (u− sj)
(

1− t− u
sj − u

)
,

t+ sj = (u+ sj)

(
1− t− u
−sj − u

)
,

inserting it in (4.16) and using the geometric series leads to

Iα(it)

tIα+1(it)
=

1

t
− 1

2(α+ 1)

∞∑
j=1

∞∑
k=0

(t− u)k
(

1

(sj − u)k+1
+

1

(−sj − u)k+1

)
.

It is easy to check that ∣∣∣∣ 1

(sj − u)k+1
+

1

(−sj − u)k+1

∣∣∣∣ ≤ C 1

|sj |2

for every k and j, with some constant C depending on u, and then deduce that the double
series above converges absolutely if |t− u| < 1. This allows the use of Fubini’s theorem to
get

Iα(it)

tIα+1(it)
=

1

t
− 1

2(α+ 1)

∞∑
k=0

(t− u)k
∑

j∈Z\{0}

1

(sj − u)k+1
,

if |t− u| < 1. Changing t to t+ u gives

Iα(i(t+ u))

(t+ u)Iα+1(i(t+ u))
=

1

t+ u
− 1

2(α+ 1)

∞∑
k=0

tk
∑

j∈Z\{0}

1

(sj − u)k+1

for |t| < 1. Comparing with the generating function (2.17) for the Calogero-Dunkl num-
bers, we easily get

ikak,α,iu =
(−1)k

uk+1
− 1

2(α+ 1)

∑
j∈Z\{0}

1

(sj − u)k+1
,

from where (4.12) follows.
The recurrence relation (2.18) for the Calogero-Dunkl numbers gives then the recur-

rence (4.13). Now consider the sums

η
{l}
k,u =

∑
j∈Z\{0,l}

1

(sj − u)k+1
= ηk,u −

1

(sl − u)k+1
.

Using (4.13) we get

k∑
j=0

I(k−j+1)
α (iu)

ij(k − j)!

(
η
{l}
j,u −

(−1)j2(1 + α)

uj+1

)

=

k∑
j=0

I(k−j+1)
α (iu)

ij(k − j)!
1

(sl − u)j+1
− I

(k)
α (iu)

k!
.

Taking now limit when u→ sl proves (4.14) after an easy computation.
Finally, the identities (4.15) follow by taking k = 1 and k = 2 and using then Corol-

lary 2.6.
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The first series in (4.15) is the Calogero series ([7]).
Using the identities (2.19) and (2.20) for the first few Calogero-Dunkl numbers an,α,ijl ,

where jl is a non-null zero of the Bessel function Jα(x), from (4.12) we get

η0,jl =
2(1 + α)

jl
, η1,jl = 1− 2(1 + α)

j2
l

, η2,jl =
1 + 2α

2jl
+

2(1 + α)

j3
l

.

We finally use the Apostol-Euler-Dunkl polynomials (2.11) to sum the series (4.5)
and (4.6).

Theorem 4.4. For α ∈ C \ {−1,−2, . . . }, k = 0, 1, 2, . . . with Reα < k − 1/2, and
u ∈ C \ {0,±s1,±s2, . . . }, the sum of the series ωk,u defined in (4.5) is

ωk,u = 2(1 + α)

(
(−1)k

uk+1
− ikEk,α,iu(0)

uIα+1(iu)γk

)
. (4.17)

Moreover, the series ωk,u (4.5) and ω
{l}
k (4.6) satisfy the recurrence relations

k∑
j=0

I(k−j+1)
α (iu)

ij(k − j)!

(
ωj,u −

2(1 + α)(−1)j

uj+1

)
= 0, (4.18)

k∑
j=0

I(k−j+1)
α (isl)

ij+1(k − j)!

(
ω
{l}
j − 2(1 + α)(−1)j

sj+1
l

)
=

I(k+2)
α (isl)

(k + 1)! Iα(isl)
. (4.19)

In particular,

ω
{l}
0 =

2(1 + α)

sl
− 1 + 2α

2slIα(isl)
, (4.20)

ω
{l}
1 = −2(1 + α)

s2
l

− 1

6Iα(isl)

(
1 +

(1 + 2α)(2α− 3)

2s2
l

)
. (4.21)

Proof. We proceed as in the proof of Theorem 4.3, but using now the partial fraction
decomposition (3.7), i.e.,(

1

tIα+1(it)

)(k)

=
(−1)kk!

tk+1
+

1

2(α+ 1)

∑
j∈Z\{0}

(−1)kk!

Iα(isj)(t− sj)k+1
,

for α ∈ C \ {−1,−2, . . . } with Reα < k − 1/2. Using again that

t− sj = (u− sj)
(

1− t− u
sj − u

)
,

the k-th derivative of the geometric series, Fubini’s theorem to permute the order of the
sums, changing t to t+u and, finally, comparing with the k-th derivative of the generating
function (2.11) for the Apostol-Euler-Dunkl polynomials evaluated at x = 0, we get (4.17).

The recurrence (2.12) for the polynomials Ek,α,iu gives for k ≥ 1 the recurrence (4.18)
for the sums ωk,u.

Consider now the sums

ω
{l}
k,u =

∑
j∈Z\{0,l}

1

Iα(isj)(sj − u)k+1
. (4.22)
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Since

ωk,u = ω
{l}
k,u +

1

Iα(isl)(sl − u)k+1
,

we get the recurrence relation

k∑
j=0

I(k−j+1)
α (iu)

ij(k − j)!

(
ω
{l}
j,u −

2(1 + α)(−1)j

uj+1

)
=

−1

Iα(isl)

k∑
j=0

I(k−j+1)
α (iu)

(k − j)!(sl − u)j+1
. (4.23)

From (4.22) and (4.6), one easily gets limu→sl ω
{l}
k,u = ω

{l}
k . Taking now limit when u goes

to sl in (4.23) proves that

k∑
j=0

I(k−j+1)
α (isl)

ij+1(k − j)!

(
ω
{l}
j − 2(1 + α)(−1)j

sj+1
l

)
=

I(k+2)
α (isl)

(k + 1)! Iα(isl)
,

which is the identity (4.19).
Finally, the identities (4.20) and (4.21) follow by taking k = 1 and k = 2 and using

Corollary 2.6.

For α = −1/2 and u = π/2, the identity (4.17) reduces to the Euler identity (1.2).

5 Fourier-Dunkl series for the Bernoulli-Dunkl poly-
nomials

Along this section, we assume that α > −1. Hence, the Bessel function Jα+1(x) has
an increasing sequence of positive zeros {sj}j≥1, and the real function Im(Eα(ix)) =

x
2(α+1) Iα+1(ix) is odd and has an infinite sequence of zeros {sj}j∈Z (with s−j = −sj and

s0 = 0). We associate to each α an orthonormal system called Fourier-Dunkl system and
compute the corresponding Fourier expansions of the Bernoulli-Dunkl polynomials.

5.1 The Fourier-Dunkl orthogonal system

The Fourier-Dunkl orthonormal system is formed by the functions

eα,j(r) =
2α/2Γ(α+ 1)1/2

|Iα(isj)|
Eα(isjr), j ∈ Z \ {0}, r ∈ [−1, 1], (5.1)

and eα,0(r) = 2(α+1)/2Γ(α + 2)1/2 (notice the difference of a constant factor (2α + 2)1/2

with respect to (5.1)). To simplify the notation we sometimes write eα,j = ej .

From the definition, and taking into account that Eα(0) = 1, Eα(ix) = Eα(−ix), and
Λα,xEα(λx) = λEα(λx), it is easy to prove the following:

eα,0(1) = eα,0(−1) = 2(α+1)/2Γ(α+ 2)1/2,

eα,j(1) = eα,j(−1) = (−1)j · 2α/2Γ(α+ 1)1/2, j ∈ Z \ {0}, (5.2)

eα,j(x) = eα,−j(x),

Λαeα,j(x) = isjeα,j(x) (5.3)
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(the last identity is trivial for j = 0 because Λα vanishes on constant functions and s0 = 0);
notice that the factor (−1)j in (5.2) follows from this fact: if rν,1, rν,2, . . . are the positive
zeros of Jν(x) (all of them are simple) arranged in ascending order of magnitude, then, if
ν > −1,

0 < rν,1 < rν+1,1 < rν,2 < rν+1,2 < · · · ,
a result that is usually expressed by saying that the positive zeros of Jν(x) interlace with
those of Jν+1(x) (see, for instance, [26, § 15.22, p. 479]).

Evaluating (5.1) on r = 0, we also have

eα,j(0) =
2α/2Γ(α+ 1)1/2

|Iα(isj)|
, (−1)jeα,j(0) =

2α/2Γ(α+ 1)1/2

Iα(isj)
, j ∈ Z \ {0}.

With this notation and recalling that

dµα(x) = (2α+1Γ(α+ 1))−1|x|2α+1 dx,

the following result was proved in [9]:

Theorem 5.1. Let α > −1. Then, the sequence of functions {eα,j}j∈Z is a complete
orthonormal system in L2([−1, 1], dµα).

The Lp-convergence of these series was studied in [8].
The case α = −1/2 corresponds to the classical trigonometric Fourier setting: I−1/2(z) =

cos(iz), I1/2(z) = sin(iz)
iz , sj = πj, E−1/2(isjx) = eiπjx, and {ej}j∈Z is the trigonometric

system with the appropriate multiplicative constant so that it is orthonormal on [−1, 1]
with respect to the normalized Lebesgue measure dµ−1/2(x) = (2π)−1/2 dx.

An important property that will be very useful in what follows is the following (the
proof is straightforward, so it is omitted).

Lemma 5.2. Let f and g be two differentiable functions on the interval [−1, 1]. Then,∫ 1

−1

Λαf(x)g(x) dµα(x) =
f(1)g(1)− f(−1)g(−1)

2α+1Γ(α+ 1)
−
∫ 1

−1

f(x)Λαg(x) dµα(x). (5.4)

In our context, the identity (5.4) plays the role of integration by parts.

5.2 The Fourier-Dunkl series for the Bernoulli-Dunkl polynomials

Let α > −1 and n ≥ 1 be fixed. Our aim now is to compute the Fourier-Dunkl expansion of
the Bernoulli-Dunkl polynomial Bn,α(x) with respect to the orthonormal system {eα,j}j∈Z,
i.e.,

Bn(x) =
∑
j∈Z

cj(Bn) ej(x), cj(Bn) =

∫ 1

−1

Bn(y)ej(y) dµα(y),

where, as usual, we are dropping α in the notation. As we will see in the proof of the
next lemma, the key facts for computing the Fourier-Dunkl coefficients cj(Bn) are the
properties of the Bernoulli-Dunkl polynomials (namely (2.8), their parity and their values
in ±1) as well as the formula (5.4).

To simplify the notation, let us recall that γn/γn−1 = θn (see (2.4)), so can rewrite
(2.8) as

Λα(Bn) = (n+ (α+ 1/2)(1− (−1)n))Bn−1 = θnBn−1. (5.5)

Moreover, instead of computing cj(Bn) we are computing c−j(Bn) because, using that

e−j(y) = ej(y), the formulas become clearer.
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Lemma 5.3. For j ∈ Z and n = 1, 2, . . . , let us denote

c−j(Bn) =

∫ 1

−1

Bn(y)ej(y) dµα(y).

Then,
c0(Bn) = 0. (5.6)

For j 6= 0,

c−j(B1) =
−i
sj

(−1)j

2α/2Γ(α+ 1)1/2
, (5.7)

and the recurrence relation

c−j(Bn) =
θni

sj
c−j(Bn−1), n ≥ 2

holds. Therefore,

c−j(Bn) =
−inγn
snj

(−1)j

21+α/2(α+ 1)Γ(α+ 1)1/2
, for j 6= 0.

Proof. Using (5.4) we have

c0(Bn) =

∫ 1

−1

Bn(y)e0(y) dµα(y)

=
1

θn+1

∫ 1

−1

ΛαBn+1(y)2(α+1)/2Γ(α+ 2)1/2 dµα(y)

= 2(α+1)/2Γ(α+ 2)1/2 Bn+1(1)−Bn+1(−1)

2α+1Γ(α+ 1)θn+1

− 2(α+1)/2Γ(α+ 2)1/2

θn+1

∫ 1

−1

Bn+1(y)Λα1 dµα(y)

=
Γ(α+ 2)1/2

2(α+1)/2Γ(α+ 1)
· Bn+1(1)−Bn+1(−1)

θn+1
.

Since Bn+1(x) is odd if n is even, and even if n is odd, we have

c0(Bn) =


0, if n is odd,

Γ(α+ 2)1/2

2(α−1)/2Γ(α+ 1)
· Bn+1(1)

θn+1
, if n is even.

But B2m+1(1) = 0 for m ≥ 1, so we obtain (5.6).
To prove (5.7), let us apply (5.3), (5.4) and (5.5). Thus,

c−j(B1) =

∫ 1

−1

B1(y)ej(y) dµα(y) =
1

isj

∫ 1

−1

B1(y)Λαej(y) dµα(y)

=
1

isj

B1(1)ej(1)−B1(−1)ej(−1)

2α+1Γ(α+ 1)
− 1

isj

∫ 1

−1

ΛαB1(y)ej(y) dµα(y)

=
1

isj

B1(1)ej(1)−B1(−1)ej(−1)

2α+1Γ(α+ 1)
− 1

isj

1

θ1

∫ 1

−1

B0(y)ej(y) dµα(y)

=
1

isj

B1(1)ej(1)−B1(−1)ej(−1)

2α+1Γ(α+ 1)
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where the last integral vanishes due to the orthogonality of {ej}j∈Z:∫ 1

−1

B0(y)ej(y) dµα(y) =
1

2(α+1)/2Γ(α+ 2)1/2

∫ 1

−1

e0(y)ej(y) dµα(y) = 0.

Then, using that B1(1) = 1 and B1(−1) = −1, together with (5.2), we get (5.7).
To prove the recurrence relation, let us start looking what happens if n is even, say

n = 2m. From (5.3), (5.4) and (5.5), and taking into account that B2m(1) = B2m(−1)
and ej(1) = ej(−1), it follows that

c−j(B2m) =

∫ 1

−1

B2m(y)ej(y) dµα(y) =
1

isj

∫ 1

−1

B2m(y)Λαej(y) dµα(y)

=
1

isj

B2m(1)ej(1)−B2m(−1)ej(−1)

2α+1Γ(α+ 1)

− 1

isj

∫ 1

−1

ΛαB2m(y)ej(y) dµα(y)

= −θ2m
1

isj

∫ 1

−1

B2m−1(y)ej(y) dµα(y) = θ2m
i

sj
c−j(B2m−1).

In the case n = 2m + 1, we can use (5.3), (5.4) and (5.5) again, and the fact that
B2m+1(1) = B2m+1(−1) = 0. Then,

c−j(B2m+1) =

∫ 1

−1

B2m+1(y)ej(y) dµα(y) =
1

isj

∫ 1

−1

B2m+1(y)Λαej(y) dµα(y)

=
1

isj

B2m+1(1)ej(1)−B2m+1(−1)ej(−1)

2α+1Γ(α+ 1)

− 1

isj

∫ 1

−1

ΛαB2m+1(y)ej(y) dµα(y)

= −θ2m+1
1

isj

∫ 1

−1

B2m(y)ej(y) dµα(y) = θ2m+1
i

sj
c−j(B2m).

Finally, the recurrence relation, together with θnθn−1 · · · θ2 = γn/γ1, γ1 = 2(α + 1)
and (5.7), gives

c−j(Bn) =
θnθn−1 · · · θ2

sn−1
j

in−1c−j(B1) =
−inγn
snj

(−1)j

21+α/2(α+ 1)Γ(α+ 1)1/2

and the proof is finished.

A direct consequence of the previous lemma is the following (recall that s−j = −sj):

Theorem 5.4. For every α > −1 and n ≥ 1,

Bn(x) =
−(−i)nγn

21+α/2(α+ 1)Γ(α+ 1)1/2

∑
j∈Z\{0}

(−1)j

snj
ej(x), (5.8)

where the convergence is in L2([−1, 1], dµα).

23



Notice that Theorem 4.1 would follow also by evaluating the series (5.8) at x = 1 and
x = 0, provided that this series were proved to converge pointwisely at those points. Some
kind of Dirichlet theorem about pointwise convergence of these Fourier series would be
reasonable, for piecewisely smooth functions. However, the pointwise behaviour of these
Fourier series is out of the scope of this paper, and such a result does not seem to be
obvious or, at least, easy to prove in a few lines.

In the case α = −1/2, Theorem 5.4 becomes the Hurwitz expansion

Bn(x) = − n!

(2πi)n

∑
j∈Z\{0}

e2πijx

jn
, n ≥ 1,

for the classical Bernoulli polynomials.
For the sake of completeness, we include here other relevant Fourier-Dunkl series.

Theorem 5.5. For every α > −1 and t ∈ C \ {0,±s1,±s2, . . . },

2(α+ 1)2α/2Γ(α+ 1)1/2 Eα(itx)

tIα+1(it)
=

√
2(α+ 1)

t
e0 +

∑
j∈Z\{0}

(−1)jej(x)

t− sj
, (5.9)

where the convergence is in L2([−1, 1], dµα).

Proof. The proof is a consequence of the identity∫ 1

−1

Eα(ixr)Eα(−iyr) dµα(r) =
1

2α+1Γ(α+ 1)

Eα(ix)Eα(−iy)− Eα(−ix)Eα(iy)

i(x− y)
(5.10)

(see [5, Lemma 1]), which holds for α > −1, x, y ∈ C, and x 6= y (the proof in [5] is given
for α ≥ −1/2 and x, y ∈ R but the result can be extended to α > −1 and x, y ∈ C without
any problem).

By (5.10), the Fourier-Dunkl coefficients of the function Eα(itx) are, for j 6= 0,

cj(Eα(itx)) =

∫ 1

−1

Eα(itx)ej(x) dµα(x)

=
2α/2Γ(α+ 1)1/2

|Iα(isj)|

∫ 1

−1

Eα(itx)Eα(−isjx) dµα(x)

=
1

2α/2+1Γ(α+ 1)1/2|Iα(isj)|
Eα(it)Eα(−isj)− Eα(−it)Eα(isj)

i(t− sj)
.

Now, from the definition of Eα, we have

Eα(it)Eα(−isj)− Eα(−it)Eα(isj) =
it

α+ 1
Iα+1(it)Iα(isj)

and

cj(Eα(itx)) =
Iα(isj)

2α/2+1(α+ 1)Γ(α+ 1)1/2|Iα(isj)|
tIα+1(it)

(t− sj)

=
(−1)j

2α/2+1(α+ 1)Γ(α+ 1)1/2

tIα+1(it)

(t− sj)
. (5.11)
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For j = 0, using again (5.10) and the identity Eα(0) = 1 gives

c0(Eα(ixt)) = 2(α+1)/2Γ(α+ 2)1/2

∫ 1

−1

Eα(itx) dµα(x)

=

√
2(α+ 1)

2α/2+1Γ(α+ 1)1/2

Eα(it)− Eα(−it)
it

=

√
2(α+ 1)

2α/2+1(α+ 1)Γ(α+ 1)1/2
Iα+1(it). (5.12)

Finally, from (5.11) and (5.12), we conclude (5.9).

The partial fraction decompositions (3.2) and (3.7) (for m = 0) are very much related
to the Fourier-Dunkl series (5.9). Indeed, (3.7) (for m = 0) would follow evaluating the
Fourier-Dunkl series at x = 0. At x = 1, the Fourier-Dunkl series (5.9) converges to

2(α+ 1)2α/2Γ(α+ 1)1/2

tIα+1(it)

Eα(it) + Eα(−it)
2

= 2(α+ 1)2α/2Γ(α+ 1)1/2 Iα(it)

tIα+1(it)

(the mean value of side limits), which gives (3.2). But, as commented above, the pointwise
convergence of the Fourier-Dunkl series (5.9) does not seem to be easy to prove.
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