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Abstract. A large class of Appell polynomial sequences {pn(x)}∞n=0

are special values at the negative integers of an entire function F (s, x),
given by the Mellin transform of the generating function for the se-
quence. For the Bernoulli and Apostol-Bernoulli polynomials, these are
basically the Hurwitz zeta function and the Lerch transcendent. Each
of these have well-known Fourier series which are proved in the litera-
ture using varied techniques. Here we find the latter Fourier series by
directly calculating the coefficients in a straightforward manner. We
then show that, within the context of Appell sequences, these are the
only cases for which the polynomials have uniformly convergent Fourier
series. In the more general context of Sheffer sequences, we find that
there are other polynomials with uniformly convergent Fourier series.
Finally, applying the same ideas to the Fourier transform, considered
as the continuous analog of the Fourier series, the Hermite polynomials
play a role analogous to that of the Bernoulli polynomials.

1. Introduction

An Appell sequence {Pn(x)}∞n=0 is defined formally by an exponential
generating function of the form

(1) G(x, t) = A(t) ext =

∞∑
n=0

Pn(x)
tn

n!
,

where x, t are indeterminates and A(t) is a formal power series. One often
adds the condition A(0) 6= 0, although in principle this is not necessary. As
in [11], we define an Appell-Mellin sequence as an Appell sequence where
A(t) is a function defined on the union of a complex neighborhood of the
origin and the negative axis (−∞, 0), satisfying:

(a) A(t) is non-constant and analytic around 0,
(b) A(−t) is continuous on [0,+∞) and has polynomial growth at +∞.

In this case, assuming that A(t) has a zero of order k at t = 0 (thus
k = 0 if A(0) 6= 0), we proved in [11] that for each fixed x > 0, the Mellin
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transform

(2) F (s, x) =
1

Γ(s)

∫ ∞
0

G(x,−t) ts−1 dt =
1

Γ(s)

∫ ∞
0

A(−t)e−xtts−1 dt

converges in the right half-plane Re(s) > −k to a holomorphic function,
which may be analytically continued to an entire function of s satisfying

(3) F (−n, x) = Pn(x), n = 0, 1, 2, . . . ;

a pair of recent papers dealing with continuous parameter extensions of
sequences are [2, 3].

From here on, in the rest of the paper, we will use the common notational
convention σ = Re s for s ∈ C.

The classical cases, of significant importance in number theory, for exam-
ple, are the Bernoulli and Apostol-Bernoulli polynomials. For the Bernoulli
polynomials Bn(x), we have A(t) = t/(et − 1) and F (s, x) is essentially the
Hurwitz zeta function, namely,

(4) F (s, x) = sζ(s+ 1, x).

The Hurwitz zeta function ζ(s, x) is usually defined as the meromorphic
continuation to C, of the series

∑∞
k=0(k + x)−s, which converges for σ > 1.

It has a simple pole at s = 1 and no other singularities. As can be observed,
the pole is canceled in the above expression for F (s, x).

The Apostol-Bernoulli polynomials Bn(x;λ) correspond to the choiceA(t) =
t/(λet−1), with λ ∈ C\{1}. If we denote the Mellin transform by F (s, x;λ),
then for |λ| ≤ 1 we have

(5) F (s, x;λ) = sΦ(λ, s+ 1, x),

where the latter function is the classical Lerch transcendent (see [1]) defined
as the analytic continuation of the series

Φ(λ, s, x) =
∞∑
n=0

λn

(n+ x)s
.

For |λ| < 1, the series converges for all s ∈ C and for |λ| = 1, it converges if
σ > 0. For |λ| > 1 it is divergent, but one can use (5) to continue the Lerch
transcendent to a meromorphic function on C, again having a simple pole
at s = 1 and no other singularities:

(6) Φ(λ, s, x) :=
1

s− 1
F (s− 1, x;λ).

The Hurwitz zeta function and the Lerch transcendent have the following
Fourier series in x:

ζ(s, x) = Γ(1− s)
∑

k∈Z\{0}

e2πikx

(2πik)1−s
, x ∈ (0, 1], σ < 0,

and

Φ(λ, s, x)λx = Γ(1− s)
∞∑

k=−∞

e2πikx

(2πik − log λ)1−s
, x ∈ (0, 1], σ < 0.

Multiple proofs of these formulas are found in the literature (see for instance
the classical references [4, § 1.10 and § 1.11] or [7, § 1.6]) as well as extensive
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studies of their many other properties. In [10] we give a direct simple ar-
gument, based on the Mellin transform, for finding the Fourier coefficients
in the case of the Hurwitz zeta function. Here we show how that reasoning
applies also to the Lerch function. When we substitute s = −n we obtain
the Fourier series of the Bernoulli and Apostol-Bernoulli polynomials. This
is discussed in Section 2.

For degree greater than or equal to 2, these Fourier series converge uni-
formly on [0, 1]. Of course this is not possible for a linear polynomial since
its value at 0 cannot coincide with its value at 1. In Section 3 we show that
these two are the only Appell polynomials with such uniformly convergent
Fourier series.

On the other hand, in Section 4 we shall see that dropping the Appell
condition and considering Sheffer sequences, one does find other examples
of polynomials with uniformly convergent Fourier series.

Finally, in Section 5, we consider the Fourier transform as the continuous
analog of the Fourier series and use similar techniques to show that the Her-
mite polynomials play a role analogous to that of the Bernoulli polynomials
in the latter case.

2. Fourier series for Hurwitz and Lerch zeta functions

The following Fourier expansion of the Hurwitz zeta function ζ(s, x) is
well-known. We will briefly discuss the proof given in [10], but without
entering into too much detail, with a view towards using similar ideas in the
case of the Lerch function.

Theorem 1. For x ∈ (0, 1] and σ < 0,

(7) ζ(s, x) = Γ(1− s)
∑

k∈Z\{0}

e2πikx

(2πik)1−s
.

Sketch of the proof. By (2) and (4), we have

Γ(s)ζ(s, x) =
Γ(s)

s− 1
F (s− 1, x) =

∫ ∞
0

G(x,−t) ts−2 dt,

where G(x,−t) = tet(1−x)/(et − 1). The integral converges for σ > 1, but
it can be extended to σ > −1 by adding and subtracting the first two
terms of the power series of G(x,−t) (as a function of t). Moreover, by
simple manipulations of straightforward integrals, we get that, on the strip
−1 < σ < 0,

(8) Γ(s)ζ(s, x) =

∫ ∞
0

(
G(x,−t)− 1 + t

(
x− 1

2

))
ts−2 dt

(the details will be seen in the proof of Theorem 2). Now fix s = σ ∈
(−1, 0). We find the Fourier coefficients of the 1-periodic extension f(x) of
Γ(σ)ζ(σ, x) for x ∈ (0, 1]. The calculation is based on the following integral:∫ 1

0

(
te(1−x)t

et − 1
− 1 + t

(
x− 1

2

))
e−2πikx dx = − t2

(t+ 2πik)2πik
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for k 6= 0, and 0 if k = 0. By Fubini’s theorem,∫ 1

0
Γ(σ)ζ(σ, x)e−2πikx dx = −

∫ ∞
0

tσ

(t+ 2πik)2πik
dt =

π

sin(πσ)
(2πik)σ−1,

where one may observe that the last integral is a beta function. Since the
series ∑

k∈Z\{0}

e2πikx

(2πik)1−σ

is uniformly convergent in x if σ < 0, Dirichlet’s theorem on the conver-
gence of Fourier series and the reflection formula Γ(s)Γ(1− s) = π/ sin(πs)
imply that (7) holds for σ ∈ (−1, 0). The general case follows by analytic
continuation. �

As an immediate corollary, by (3) and (5) we obtain the Fourier series
of the Bernoulli polynomials (or rather, their 1-periodic extensions, but we
shall regard this as implicit),

(9) Bn(x) = −n!
∑

k∈Z\{0}

e2πikx

(2πik)n
, x ∈ [0, 1], n ≥ 2;

for n = 1 this holds only for x ∈ (0, 1], as can be verified directly.
For the Lerch transcendent, Theorem 1 has the following analog, whose

proof, that we now give in more detail, is similar:

Theorem 2. Let λ ∈ C \ {0, 1}. For x ∈ (0, 1] and σ < 0,

(10) Φ(λ, s, x)λx = Γ(1− s)
∞∑

k=−∞

e2πikx

(2πik − log λ)1−s
.

Proof. By (6), we have

Φ(λ, s, x) =
1

s− 1
F (s− 1, x;λ) =

1

Γ(s)

∫ ∞
0

G(x,−t) ts−2 dt

where

G(x,−t) =
−t

λe−t − 1
e−xt =

tet(1−x)

et − λ
.

The integral is holomorphic for σ > 0. To make it holomorphic for σ > −1,
we subtract the first term of the Taylor series at t = 0,

G(x,−t) =
1

λ− 1
(−t) +O(t2),

and apply the standard classical technique of separating the integral into
two parts: over (0, α) and over (α,∞), where 0 < α < Rλ, Rλ being the
radius of convergence of the Taylor series of G(x,−t) at t = 0. We have

(11)

Γ(s)Φ(λ, s, x) =

∫ ∞
α

G(x,−t) ts−2 dt

+

∫ α

0

(
G(x,−t) +

t

λ− 1

)
ts−2 dt− αs

(λ− 1)s
,

where the last summand arises from
∫ α
0 t

s−1 dt = αs/s. Observe that the
right-hand term in (11) is analytic for σ > −1, except at s = 0, where
there is a simple pole. Thus, for x ∈ (0, 1], Φ(λ, s, x) can be analytically



APPELL SEQUENCES, MELLIN TRANSFORMS AND FOURIER SERIES 5

continued to σ > −1 (the pole at s = 0 is canceled by the zero of 1/Γ(s)).
Moreover, taking into account that αs/s = −

∫∞
α ts−1 dt when σ < 0, on the

strip −1 < σ < 0 we have

Φ(λ, s, x) =
1

Γ(s)

∫ ∞
0

(
G(x,−t) +

t

λ− 1

)
ts−2 dt

=
1

Γ(s)

∫ ∞
0

( tet(1−x)
et − λ

+
t

λ− 1

)
ts−2 dt.

Now fix s = σ ∈ (−1, 0). To obtain the Fourier coefficients
∫ 1
0 Φ(λ, σ, x)λxe−2πikx dx,

we note the following immediate integral:∫ 1

0

( tet(1−x)
et − λ

+
t

λ− 1

)
λxe−2πikx dx = − t2

(t+ 2πik − log λ)(2πik − log λ)
.

Then by Fubini’s theorem, whose use is easily justified,

Γ(σ)

∫ 1

0
Φ(λ, σ, x)λxe−2πikx dx = −

∫ ∞
0

tσ

(t+ 2πik − log λ)(2πik − log λ)
dt.

Now, the last integral is a beta function, and we arrive at

Γ(σ)

∫ 1

0
Φ(λ, σ, x)λxe−2πikx dx =

π

sin(πσ)
(2πik − log λ)σ−1, σ ∈ (−1, 0).

By Dirichlet’s theorem,

Φ(λ, σ, x)λx = Γ(1− σ)
∞∑

k=−∞

e2πikx

(2πik − log λ)1−σ
, σ ∈ (−1, 0).

The sum on the right is analytic on σ < 0 by uniform convergence, and the
general case follows by analytic continuation. �

As an immediate corollary, since F (−n, x;λ) = Bn(x;λ), by (5) we have

(12) Bn(x;λ)λx = −n!
∞∑

k=−∞

e2πikx

(2πik − log λ)n
, x ∈ [0, 1], n ≥ 2.

Remark. Note that the difference between the theorems is due to the fact
that the generating function of the Apostol-Bernoulli polynomials has a
zero at t = 0 while that of the Bernoulli polynomials does not. That is why
in (11) we only need to remove one term from the Taylor series, while in (8)
we need two. It is often convenient to assume A(0) 6= 0 in order to normalize
results. We will do this from now on, after a brief digression showing that
this can be done without loss of generality.

Indeed, allowing A(t) to have a zero at t = 0 of any multiplicity k > 0
causes the polynomials P0(x), . . . , Pk−1(x) to be null, and makes the poly-
nomials Pn(x) with n ≥ k have degree n− k. Removing the zero by taking
A∗(t) = A(t)/tk (so A∗(0) 6= 0) yields

A∗(t) ext =

∞∑
n=0

P ∗n(x)
tn

n!
,
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which generates an Appell sequence such that P ∗n(x) has degree n for every
n ≥ 0, and these “shifted” polynomials are related to the original family
in (1) via

Pn(x) =


0, if 0 ≤ n < k,

n!

(n− k)!
P ∗n−k(x), if n ≥ k,

which is a near trivial variation. It is convenient to have polynomial se-
quences in which the n-th polynomial has degree n, and it also avoids unnec-
essarily complicating the statements of results (for example, in Theorem 4).
For these reasons let us assume from now on that A(0) 6= 0.

The assumption that A(0) 6= 0 requires us to slightly alter the Apostol-
Bernoulli polynomials Bn(x;λ) given in [1], for which A(t) = t/(λet − 1),
which has a simple zero at the origin. Except when λ = 1, this implies
that Bn(x;λ) has degree n − 1 (and B0(x;λ) is null). To avoid this, we
assume that λ 6= 1 (λ = 1 corresponds to the Bernoulli polynomials) and
instead of A(t) we will use A∗(t) = 1/(λet−1), which generates polynomials
with the “correct” degree. Thus, we define the “shifted” Apostol-Bernoulli
polynomials {B∗n(x;λ)}∞n=0 by means of

1

λet − 1
ext =

∞∑
n=0

B∗n(x;λ)
tn

n!
, λ ∈ C \ {1}.

Thus, B∗n(x;λ) is a polynomial of degree n and is trivially related to the
“classical” Apostol-Bernoulli sequence by

B∗n(x;λ) =
1

n+ 1
Bn+1(x;λ), n = 0, 1, 2, . . . .

It is easy to check how (5) and (6) change when using shifted Apostol-
Bernoulli polynomials. For λ 6= 1, they are related to the Lerch transcendent
function by

(13) B∗n(x;λ) = −Φ(λ,−n, x), n = 0, 1, 2, . . . .

With this change of notation, we have

(14) B∗n(x;λ)λx = −n!
∞∑

k=−∞

e2πikx

(2πik − log λ)n+1
, x ∈ [0, 1], n ≥ 1.

3. Appell polynomials and uniformly convergent Fourier series

It is easy to see that the Fourier coefficients of the 1-periodic function
which coincides with an n th degree polynomial Pn on (0, 1] are of the form

(15) P̂n(k) =
c1,k
k

+
c2,k
k2

+ · · ·+
cn,k
kn

(an explicit form for these coefficients is given in [8, Lemma 10], for example).
The Bernoulli polynomials are special from this point of view since their
Fourier coefficients involve only the last term, namely only cn,k is nonzero.
This implies that their Fourier series are uniformly convergent for n ≥ 2.
In addition, the Fourier coefficients are completely multiplicative arithmetic
functions, a fact which can be used to find interesting Möbius inversion
formulas (see [9]).
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The Apostol-Bernoulli polynomials B(x;λ), after introducing the factor
λx, have similar properties. It is natural to ask if there are other Appell
sequences having “interesting” Fourier series in the above senses. In fact,
the mere requirement of uniform convergence, which in terms of (15) means
that c1,k = 0, leaves the Bernoulli polynomials as the only example. Simi-
larly, requiring uniform convergence after the introduction of a factor ϕ(x)
discards all but the Apostol-Bernoulli polynomials.

Theorem 3. Suppose that for a given general Appell sequence {Pn(x)}∞n=0

defined as in (1), with A(0) 6= 0, the Fourier series of Pn(x) converges
uniformly on (0, 1] for all n ≥ 2. Then the sequence is a nonzero constant
multiple of the sequence of Bernoulli polynomials.

Proof. Uniform convergence implies that the 1-periodic extension of Pn(x)
is continuous, which means we must have Pn(0) = Pn(1) for n ≥ 2. Then
by (1), the function

A(t)ext − P0 − P1(x)t

has the same value at x = 0 and x = 1, from which we deduce that

A(t)(et − 1) = (P1(1)− P1(0))t,

and hence the generating function is a nonzero constant multiple of the
generating function of the Bernoulli polynomials. �

Remark. A similar argument shows that if the Fourier series of Pn(x) con-
verges uniformly on the entire interval (0, 1] for any n ≥ n0, then for these
n, Pn(x)/n! is a fixed (i.e., with coefficients not depending on n) linear
combination of Bj(x)/j! for j = n, n− 1, . . . , n− n0.

Thus, uniform convergence of the Fourier series characterizes the Bernoulli
polynomials among all Appell sequences. There is, however, another pos-
sibility: that there exists some function ϕ(x) on [0, 1] such that gn(x) =
ϕ(x)Pn(x) satisfies gn(0) = gn(1) for n ≥ n0, and hence gn(x) may have a
uniformly convergent Fourier series. As we saw this happens for the shifted
Apostol-Bernoulli polynomials B∗n(x;λ) with ϕ(x) = λx. Let’s see that these
are essentially the only possible cases within the Appell context.

Theorem 4. Suppose that for a given general Appell sequence {Pn(x)}∞n=0

defined as in (1) with A(0) 6= 0, there is a function ϕ(x) on [0, 1] such
that ϕ(0) 6= 0 and the Fourier series of ϕ(x)Pn(x) converges uniformly on
(0, 1] for all n ≥ 2. Then {Pn(x)}∞n=0 is, up to a constant, the sequence
of Bernoulli polynomials, the sequence of shifted Apostol-Bernoulli polyno-
mials, or a combination of Apostol-Bernoulli and shifted Apostol-Bernoulli
polynomials.

Proof. The uniform convergence of the series implies that ϕ(0)Pn(0) =
ϕ(1)Pn(1) for n ≥ 2. Separating the constant and linear terms, the hy-
pothesis implies that the function

ϕ(x)A(t)ext − ϕ(x)A(0)− ϕ(x)(A′(0) +A(0)x)t

takes the same values at x = 0 and x = 1. A little algebra shows that, if we
let λ = ϕ(1)/ϕ(0), then

A(t)
(
λet − 1

)
= A(0)(λ− 1) + (A′(0)(λ− 1) +A(0)λ)t
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and hence, setting C1 = A(0)(λ − 1) and C2 = A′(0)(λ − 1) + A(0)λ, we
arrive at

A(t) =
C1

λet − 1
+

C2t

λet − 1
,

from which we deduce the theorem. The case λ = 1 corresponds to the
special case of Bernoulli polynomials and λ 6= 1 to the remaining cases. �

Remark. In general, if we require equality ϕ(0)Pn(0) = ϕ(1)Pn(1) for n ≥ n0,
or uniform convergence of the Fourier series for n ≥ n0, the same method
shows that Pn(x)/n! is a fixed (i.e., with coefficients independent of n) linear
combination of B∗j (x;λ)/j! for j = n, n− 1, . . . , n− n0.

This result exhausts the possibilities for “nice” Fourier series of Appell
polynomials, at least in the sense of being uniformly convergent on the
entire interval [0, 1]. Thus an analytical property translates into a uniqueness
statement involving these two arithmetically interesting polynomial families.

4. The case of Sheffer sequences

Appell polynomials are a particular case of Sheffer polynomials, defined
by means of a generating function of the form

(16) G(x, t) = A(t) exB(t) =
∞∑
n=0

Pn(x)
tn

n!
,

where A(t) and B(t) are analytic in a neighborhood of 0 and B(0) = 0,
which guarantees that the coefficients Pn(x) are polynomials in x. We will
also assume that A(0) 6= 0 and B′(0) 6= 0, because these conditions imply
that Pn(x) is a polynomial of degree n for every n ≥ 0.

In the case of Appell polynomials, we have seen that the unique family
of polynomials whose Fourier series for n ≥ 2 converge uniformly on [0, 1]
is that of the Bernoulli polynomials, Apostol-Bernoulli polynomials or some
combination of these. This is no longer true within the wider context of
Sheffer sequences.

In this section we are going to see that there exist other families of Sheffer
polynomials with uniformly convergent Fourier series. An example is (19).

Let {Pn(x)}∞n=0 be a Sheffer family defined by (16). As in the proof of
Theorem 3, the uniform convergence implies that the 1-periodic extension
of Pn(x) is continuous, which means we must have Pn(0) = Pn(1) for n ≥ 2.

Then, the function A(t) exB(t)−P0(x)−P1(x)t must have the same value at

x = 0 and x = 1. From this, it follows that A(t)(eB(t)−1) = (P1(1)−P1(0))t.
As P1(t) is a polynomial of degree 1, the difference a = P1(1) − P1(0) is
nonzero. Without lost of generality we may assume that a = 1, so that

(17) A(t)(eB(t) − 1) = t.

We need a procedure to find the Fourier series of Sheffer polynomials
satisfying (17). The method is essentially different from what we have used
above for the Bernoulli polynomials to obtain (9), which was based on the
Fourier series of the transcendental function ζ(s, x) and its specialization at
the negative integers. With this in mind, let us begin with the following
lemma.
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Lemma 5. Let {Pn(x)}∞n=0 be a Sheffer sequence defined by (16) and sat-
isfying (17). For k ∈ Z and t in a neighborhood of 0, we have

(18)
∞∑
n=0

(∫ 1

0
Pn(x)e−2πikx dx

)
tn

n!
=

t

B(t)− 2πik
.

Proof. Multiplying both sides of (16) by e−2πikx and integrating over [0, 1]
we obtain, on the one hand,∫ 1

0
A(t) ex(B(t)−2πik) dx = A(t)

eB(t) − 1

B(t)− 2πik
=

t

B(t)− 2πik
,

and on the other hand,∫ 1

0

( ∞∑
n=0

Pn(x)e−2πikx
tn

n!

)
dx.

Thus (18) follows if we can justify the exchange of the integral and the sum
in a neighborhood of 0. To this end, let R be the minimum of the radius of
convergence of A(t) and B(t), and K an upper found for the values of these
functions on |t| = R/2. By Cauchy’s formula,

Pn(x)

n!
=

1

2πi

∫
|t|=R/2

A(t) exB(t)

tn+1
dt,

for x ∈ [0, 1]. Then∣∣∣∣Pn(x)

n!

∣∣∣∣ ≤ 1

2π

2πR

2

(
2

R

)n+1

max
|t|=R/2

|A(t) exB(t)| ≤
(

2

R

)n
KeK .

Now, for |t| < R/3, we have∫ 1

0

∞∑
n=0

∣∣∣∣Pn(x)e−2πikx
|t|n

n!

∣∣∣∣ dx ≤ KeK ∞∑
n=0

(
2

R

)n(R
3

)n
<∞,

and thus Fubini’s theorem justifies the exchange of integral and sum. �

The lemma implies that one way of computing the Fourier coefficients
of Pn(x) is to expand t

B(t)−2πik in (18) as a power series in t and then

compare coefficients. To illustrate the method, let us see how it works for
the Bernoulli polynomials. In this case B(t) = t and

t

t− 2πik
= −

∞∑
n=1

tn

(2πik)n
, k 6= 0

(of course, we have the constant function 1 when k = 0). Using (18)
and comparing the coefficients of tn, we obtain the Fourier coefficients∫ 1
0 Pn(x)e−2πikx dx and again arrive at (9).

Consider now the choice of B(t) = t/(1− t) in (16). Assuming (17), our
polynomials are defined by

(19)
t

et/(1−t) − 1
ext/(1−t) =

∞∑
n=0

Pn(x)
tn

n!
.
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For k 6= 0, we have

t

B(t)− 2πik
=

(t− 1)t

2πik

1

1− t 1+2πik
2πik

= (t2 − t)
∞∑
n=0

(1 + 2πik)n

(2πik)n+1
tn

=
∞∑
n=0

(1 + 2πik)n

(2πik)n+1
tn+2 −

∞∑
n=0

(1 + 2πik)n

(2πik)n+1
tn+1

= − 1

2πik
t−

∞∑
n=2

(1 + 2πik)n−2

(2πik)n
tn,

and t/(B(t)− 2πik) = 1− t for k = 0. Thus, we have proved the following.

Lemma 6. The Fourier coefficients of the 1-periodic extension of the Sheffer
polynomials {Pn(x)}∞n=0 defined in (19) are as follows: for k 6= 0,

P̂n(k) =

∫ 1

0
Pn(x)e−2πikx dx =


0, if n = 0,

− 1
2πik , if n = 1,

−n! (1+2πik)n−2

(2πik)n , if n ≥ 2;

and, for k = 0, P̂0(0) = 1, P̂1(0) = −1, P̂n(0) = 0 (n ≥ 2).

Consequently, discarding the case n = 1, which cannot have a uniformly
convergent Fourier series, we arrive at:

Theorem 7. For n ≥ 2, the Sheffer polynomials defined in (19) satisfy

Pn(x) = −n!
∑

k∈Z\{0}

(1 + 2πik)n−2

(2πik)n
e2πikx

uniformly on x ∈ [0, 1].

Remark. It is easy to check by expanding the numerator of the expression
given in Theorem 7, that the polynomials Pn(x) are related to the Bernoulli
polynomials via

Pn(x)

n!
=

n∑
m=2

(
n− 2

m− 2

)
Bm(x)

m!
.

As expected, B1(x) is excluded since it does not have a uniformly convergent
Fourier series. The corresponding constant terms Pn(0) for n ≥ 1 form
sequence A052852 of the Online Encyclopedia of Integer Sequences [12].

In this case, it is easy to construct a function F (s, x) which is entire in s
and whose values at the negative integers is the nth polynomial Pn(x), at
least up to a constant factor depending only on n.

Corollary 8. The function

F (s, x) = −
∑

k∈Z\{0}

(
1

2πik
+ 1

)−s e2πikx

(1 + 2πik)2
, x ∈ [0, 1], s ∈ C

is entire in s and satisfies

F (−n, x) = Pn(x)/n!, n ≥ 2,

where {Pn(x)}∞n=0 are the Sheffer polynomials defined in (19).
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Proof. It is easily checked that the series converges absolutely and uniformly
on compact sets of the complex plane and thus defines an entire function.
It is clear that the values at negative integers satisfy the above relation. �

We can consider an “Apostol-type” generalization of (19), defined by

t

λet/(1−t) − 1
ext/(1−t) =

∞∑
n=0

Pn(x;λ)
tn

n!
,

or, for λ 6= 1, the “shifted” polynomials

(20)
1

λet/(1−t) − 1
ext/(1−t) =

∞∑
n=0

P∗n(x;λ)
tn

n!
,

so that P∗n(x;λ) has degree n. Proceeding as we did in (19) and assuming
λ 6= 0 to avoid trivial cases, we obtain

1

B(t)− 2πik + log λ
= − 1

2πik − log λ
−
∞∑
n=2

(1 + 2πik − log λ)n−2

(2πik − log λ)n
tn−1,

which is valid for all k ∈ Z. The Fourier expansion of λxP∗n(x;λ) for λ ∈
C \ {0, 1} can be written as follows.

Theorem 9. For n ≥ 1, the Sheffer polynomials defined in (20) satisfy

P∗n(x;λ)λx = −n!
∑
k∈Z

(1 + 2πik − log λ)n−1

(2πik − log λ)n+1
e2πikx

uniformly on x ∈ [0, 1].

5. Hermite polynomials and Fourier transform

In this last section, using similar techniques involving the Mellin trans-
form, we show that if instead of Fourier series, we consider the Fourier
transform, then the Hermite polynomials appear as analogs of the Bernoulli
polynomials with regard to the themes of the previous sections.

The sequence of Hermite polynomials is generated by

e−t
2
e2xt =

∞∑
n=0

Hn(x)
tn

n!
.

Strictly speaking, this is not an Appell sequence, but only because of the
factor of 2 in the exponential. For many purposes, one uses the Hermite

functions Hn(x) = e−x
2
Hn(x), which are generated by

e−(x−t)
2

=

∞∑
n=0

Hn(x)
tn

n!
.

Now the problem is that these are not even polynomials. Nevertheless, the
Mellin transforms of both the Hermite polynomials and functions,

H(s, x) =
1

Γ(s)

∫ ∞
0

e−t
2
e2xtts−1 dt, H(s, x) =

1

Γ(s)

∫ ∞
0

e−(x+t)
2
ts−1 dt,

can still be analytically continued to entire functions which have as special
values at the negative integers the respective polynomials and functions, i.e.,

H(−n, x) = Hn(x), H(−n, x) = Hn(x), n = 0, 1, 2, . . . ,
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since it can be easily verified that the results in [11] are still valid with these
trivial modifications to the generating functions. Moreover, in this case, the
Mellin transform is defined for x ∈ R.

Lemma 10.

(a) For σ > −1 we have H(s, x) =
1

Γ(s)

∫ ∞
0

(
e−(x+t)

2 − e−x2
)
ts−1 dt.

(b) Let ξ ∈ C with Im ξ > 0. Then for −1 < σ < 0,∫ ∞
0

(e2πiξt − 1)ts−1 dt = (−2πiξ)−sΓ(s).

Proof. For the first part, we subtract the constant term from the Taylor
series of H(s, x). Then for σ > −1 we have

Γ(s)H(s, x) =

∫ ∞
1

e−(x+t)
2
ts−1 dt+

∫ 1

0

(
e−(x+t)

2 − e−x2
)
ts−1 dt+

e−x
2

s
.

Since
∫∞
1 ts−1 dt = −1/s, this proves the first formula. For the second

formula, the same trick that improves the convergence at t = 0 yields

Γ(s) =

∫ ∞
0

(e−t − 1)ts−1 dt, −1 < σ < 0.

Now consider the parametric integral

G(a) =

∫ ∞
0

(e−at − 1)ts−1 dt.

It defines a function holomorphic for Re a > 0 and continuous for Re a ≥ 0.
By changing variables we have G(a) = Γ(s)/as for a > 0, and the general
result follows by analytic continuation and continuity. �

Theorem 11. For any x ∈ R and σ < 0,

(21) H(s, x) =
√
π

∫ ∞
−∞

e−π
2ξ2(−2πiξ)−se2πixξ dξ.

Proof. We start from the well-known Fourier transform∫ ∞
−∞

(
e−(x+t)

2 − e−x2
)
e−2πixξ dx =

√
π(e2πiξt − 1)e−π

2ξ2 .

For −1 < σ < 0 we can compute the Fourier transform of H(s, x) using the
first formula in Lemma 10 and Fubini’s theorem:∫ ∞

−∞
H(s, x)e−2πixξ dx =

√
πe−π

2ξ2

Γ(s)

∫ ∞
0

(e2πiξt − 1)ts−1 dt.

By the second formula in the lemma,∫ ∞
−∞
H(s, x)e−2πixξ dx =

√
πe−π

2ξ2(−2πiξ)−s, −1 < σ < 0.

Since
√
πe−π

2ξ2(−2πiξ)−s ∈ L1(R) for −1 < σ < 0, the Fourier inversion
theorem gives

H(s, x) =
√
π

∫ ∞
−∞

e−π
2ξ2(−2πiξ)−se2πixξ dξ.

Finally, note that the integral on the right is holomorphic for σ < 0, so (21)
follows by analytic continuation. �
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Remark. These entire functions which extend the Hermite polynomials are
well-known and classical, as is the formula in the theorem. They may be
found in [6, Section 10.5], for example. However, we are not aware of this
particularly simple treatment using the Fourier transform and its inverse.

As a corollary of the theorem and the special values at negative inte-
gers, we obtain the following formula for the Hermite polynomials, which
was known even before that in Theorem 11 (see for example [5, formula
18.10.10]).

Corollary 12. For x ∈ R and n ∈ N,

Hn(x) =
√
πex

2

∫ ∞
−∞

e−π
2ξ2(−2πiξ)ne2πixξ dξ.
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