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Weighted Norm Inequalities for Polynomial Expansions
Associated to Some Measures with Mass Points

J. J. Guadalupe, M. P´erez, F. J. Ruiz, and J. L. Varona

Abstract. Fourier series in orthogonal polynomials with respect to a measureν on
[−1, 1] are studied whenν is a linear combination of a generalized Jacobi weight and
finitely many Dirac deltas in [−1, 1]. We prove some weighted norm inequalities for
the partial sum operatorsSn, their maximal operatorS∗, and the commutator [Mb, Sn],
whereMb denotes the operator of pointwise multiplication byb ∈ BMO. We also prove
some norm inequalities forSn whenν is a sum of a Laguerre weight onR+ and a
positive mass on 0.

Introduction

Let ν be a positive Borel measure onR with infinitely many points of increase and such
that all the moments ∫

R
xn dν (n = 0, 1, . . .)

are finite. For each suitable functionf , let Sn f denote thenth partial sum of the Fourier
expansion off with respect to the system of orthogonal polynomials associated todν.

The uniform boundedness of the operatorsSn: L p(dν)→ L p(dν) (1< p <∞) and
some weighted versionsuSn(v

−1·): L p(dν)→ L p(dν) have been characterized when
ν is:

(a) a Jacobi or generalized Jacobi weight on [−1, 1] (see [P], [M1], and [B]); and
(b) a Laguerre weight onR+ or a Hermite weight onR (see [AW], [M2], and [M3]).

This uniform boundedness is equivalent, in rather general settings, to theL p conver-
gence ofSn f to f .

Let us consider for simplicity the unweighted case. For a generalized Jacobi weight,
not only the uniform boundedness of the operatorsSn has been studied, but also that of
the maximal operatorS∗ defined by

S∗ f (x) = sup
n
|Sn f (x)|
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(see [B]). For some orthogonal systems which include Jacobi polynomials and Bessel
functions, the maximal operatorS∗ has been considered by Gilbert [G] by means of
transference theorems.

Obviously, the boundedness ofS∗ on L p(dν) implies the uniform boundedness ofSn

(and theL p(dν) convergence ofSn f to f ). But it also implies, by standard arguments,
theν-a.e. convergence ofSn f to f . For these weights, the typical situation is that the
operatorsSn: L p(dν)→ L p(dν) and evenS∗ are uniformly bounded if and only ifp be-
longs to some explicitly given open interval(p0, p1) (the interval ofmean convergence).
In short, in this case theSn are said to be ofstrong(p, p)-type.

Then, for the endpointsp = p0, p1 of the interval of mean convergence it is natural
to study theweak(p, p)-type, i.e., the uniform boundedness of the operators

Sn: L p(dν)→ L p,∞(dν),

as well as therestricted weak(p, p)-type, i.e., the uniform boundedness

Sn: L p,1(dν)→ L p,∞(dν).

Here, L p,r (dν) stands for the classical Lorentz space of all measurable functionsf
satisfying

‖ f ‖L p,r (dν) =
(

r

p

∫ ∞
0

[t1/p f ∗(t)]r dt

t

)1/r

<∞ (1≤ p <∞, 1≤ r <∞),

‖ f ‖L p,∞(dν) = ‖ f ‖L p
∗ (dν) = sup

t>0
t1/p f ∗(t) <∞ (1≤ p ≤ ∞),

where f ∗ denotes the nonincreasing rearrangement off . We refer the reader to [SW,
Section V.3] for further information on these topics.

Fordν = dx on [−1, 1] (Fourier–Legendre series;p0 = 4/3, p1 = 4), S. Chanillo [C]
proved that theSn are not of weak(p, p)-type for p = 4 but they are of restricted weak
(p, p)-type forp = 4/3 andp = 4. In [GPV1] and [GPV2] these results were established
for any Fourier–Jacobi series (dν = (1− x)α(1+ x)β dx on [−1, 1], α, β > −1) and
p = p0, p = p1. The L p,r behavior ofSn was also studied by L. Colzani [Co] for
Fourier–Legendre series.

In this paper, we consider these problems for Fourier expansions with respect to
measures of the form

ν = µ+
k∑

i=1

Mi δai ,

whereMi > 0 (i = 1, . . . , k), δa denotes the Dirac delta ona ∈ R andµ is a generalized
Jacobi weight or, in some cases, a Laguerre or Hermite weight. In the particular case
of a Jacobi weight and two mass points on 1 and−1, the corresponding orthonormal
polynomials were studied by Koornwinder in [K] from the point of view of differential
equations (see also [Ch], [AE], [Kr], and [Li ]). Our method consists of relating the
operatorsSn to some other operators similar to (and expressible in terms of) the Fourier
expansions with respect toµ and polynomial modifications ofµ.

This method also applies to the commutator [Mb, Sn], whereMb is the operator of
pointwise multiplication by a given functionb, i.e., Mb f = bf . Given a linear operator
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T acting on functions, sayT : L p(dν)→ L p(dν), and a functionb, the commutator of
Mb andT is defined by

[Mb, T ] f = bT( f )− T(bf ).

The first results on this commutator were obtained by R. R. Coifman, R. Rochberg,
and G. Weiss (see [CRW]). They proved that ifT is the classical Hilbert transform and
1< p <∞, then [Mb, T ] is a bounded operator onL p(R) if and only if b ∈ BMO(R).
The boundedness of this commutator has been studied in more general settings by several
authors (see, e.g., [BL], [ST1], [ST2], [ST3], and [GHST]).

Let us also mention that the boundedness of the commutator [Mb, T ] (or, in our case,
[Mb, Sn]) for b in some real Banach spaceB is closely related to the analyticity (in our
case, uniform analyticity) of the operator-valued function

T : B → L(L p(dν), L p(dν)),
b 7→ T (b) = Meb T Me−b

in a neighborhood of 0∈ B, where B denotes the complexification ofB and
L(L p(dν), L p(dν)) is the space of bounded linear operators fromL p(dν) into itself. In
fact, the first Gˆateaux differential ofT at 0 in the directionb ∈ B is

d

ds
T (sb)

∣∣∣
s=0
= [Mb, T ]

(see [CM] and [L] for further details). It is via this relationship that R. R. Coifman and
M. A. M. Murray proved [CM] the uniform boundedness of the commutator

[Mb, Sn]: L2(dν)→ L2(dν),

whendν is a Jacobi weight (dν = (1− x)α(1+ x)β dx on [−1, 1]) with α, β > −1/2
andb ∈ BMO.

Here, we prove the uniform boundedness of [Mb, Sn] (as well as a weighted version)
in L p(dν), 1< p <∞, wheredν is a generalized Jacobi weight with possibly a finite
collection of Dirac deltas on [−1, 1] and againb ∈ BMO.

This paper is organized as follows: in Section 1 we present the basic notation and tech-
nical results. In Section 2 we consider the maximal operatorS∗ related to a generalized
Jacobi weight function with finitely many Dirac masses on [−1, 1]. As a consequence,
theL p and a.e. convergence of the Fourier series follow. For these measures (with some
restriction), the commutator [Mb, Sn] is studied in Section 3. Weak and restricted weak
boundedness at the endpoint of the interval of mean convergence for Jacobi weights
with Dirac masses on [−1, 1] are the subject of Section 4. Finally, in Section 5 we point
out howL p boundedness of Fourier expansions with respect to a Laguerre or Hermite
weight with a positive mass on 0 can be established.

1. Notations and Technical Results

Letµ be a positive Borel measure onR with infinitely many points of increase and such
that all the moments ∫

R
xn dµ (n = 0, 1, . . .)
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are finite. Letai ∈ R (i = 1, . . . , k) with ai 6= aj for i 6= j and assumeµ({ai }) = 0
(i = 1, . . . , k). Let Mi > 0 (i = 1, . . . , k) and write

ν = µ+
k∑

i=1

Mi δai ,(1)

whereδa denotes a Dirac delta ona:∫
R

f dδa = f (a).

Then, there is a sequence{Pn}n≥0 of polynomials,

Pn(x) = knxn + · · · , kn > 0, degPn = n,

such that ∫
R

Pn Pm dν =
{

0 if n 6= m;
1 if n = m.

Thenth partial sum operator of the Fourier expansion in terms ofPn is the operatorSn

given by

Sn f (x) =
∫

R
Ln(x, y) f (y) dν(y),

where

Ln(x, y) =
n∑

j=0

Pj (x)Pj (y)

is thenth kernel relative to the measuredν. If we denote

Tn f (x) =
∫

R
Ln(x, y) f (y) dµ(y),

then, according to (1), we have

Sn f (x) = Tn f (x)+
k∑

i=1

Mi Ln(x,ai ) f (ai ).(2)

By a weight function we mean a nonnegative, measurable function. We are interested in
finding conditions for the uniform boundedness of the operators

uSn(v
−1·): L p(dν)→ L p(dν)

whereu andv are weights, i.e., for the inequality

‖uSn(v
−1 f )‖L p(dν) ≤ C‖ f ‖L p(dν)

to hold forn ≥ 0 and f ∈ L p(dν), and also for the weaker boundedness

uSn(v
−1·): L p(dν)→ L p,∞(dν)

or

uSn(v
−1·): L p,1(dν)→ L p,∞(dν).
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Actually, the last one is equivalent (see [SW, Theorem 3.13]) to

‖uSn(v
−1χE)‖L p,∞(dν) ≤ C‖χE‖L p(dν)

for every measurable setE. In this context, notice that the valuesu(ai ), v(ai ) are signif-
icant here, sinceν({ai }) > 0.

In what follows, given 1≤ p ≤ ∞ we will denote byp′ the conjugate exponent, i.e.,
1 ≤ p′ ≤ ∞, 1/p+ 1/p′ = 1. Also, we will take 0· ∞ = 0 and byC we will mean a
constant, not depending onn, f , but possibly different at each occurrence.

Then, we have the following results:

Lemma 1. With the above notation, let 1 < p < ∞, 1 < q < ∞, 1 ≤ r ≤ ∞,
and 1 ≤ s ≤ ∞; let u, v be two weight functions onR with u(ai ) < ∞, 0 < v(ai ),
i = 1, . . . , k. Then, there exists some constant C> 0 such that:

‖uSn(v
−1 f )‖L p,r (dν) ≤ C‖ f ‖Lq,s(dν)(3)

for every f ∈ Lq,s(dν), n ≥ 0, if and only if there exists C> 0 such that:

(a) ‖uTn(v
−1 f )‖L p,r (dµ) ≤ C‖ f ‖Lq,s(dµ), f ∈ Lq,s(dµ), n ≥ 0;

(b) u(ai )‖v−1Ln(x,ai )‖Lq′ ,s′ (dµ) ≤ C, n ≥ 0, i = 1, . . . , k; and
(c) v(ai )

−1‖uLn(x,ai )‖L p,r (dµ) ≤ C, n ≥ 0, i = 1, . . . , k.

We can state a similar result about the maximal operatorS∗ defined by

S∗ f (x) = sup
n
|Sn f (x)|.

Let us also take

T∗ f (x) = sup
n
|Tn f (x)|

and

L∗(x, y) = sup
n
|Ln(x, y)|.

Lemma 2. With the above notation, let 1 < p < ∞, 1 < q < ∞, 1 ≤ r ≤ ∞,
and 1 ≤ s ≤ ∞; let u, v be two weight functions onR with u(ai ) < ∞, 0 < v(ai ),
i = 1, . . . , k. Then, there exists some constant C> 0 such that:

‖uS∗(v−1 f )‖L p,r (dν) ≤ C‖ f ‖Lq,s(dν),

for every f ∈ Lq,s(dν) if and only if there exists C> 0 such that:

(a) ‖uT∗(v−1 f )‖L p,r (dµ) ≤ C‖ f ‖Lq,s(dµ), f ∈ Lq,s(dµ);
(b) u(ai )‖v−1Ln(x,ai )‖Lq′ ,s′ (dµ) ≤ C, n ≥ 0, i = 1, . . . , k; and
(c) v(ai )

−1‖uL∗(x,ai )‖L p,r (dµ) ≤ C, i = 1, . . . , k.

Finally, we also have the analogous result for the commutator (notice thatb(ai ) is
significant here, too):
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Lemma 3. With the above notation, let 1 < p < ∞, 1 < q < ∞, 1 ≤ r ≤ ∞,
and 1 ≤ s ≤ ∞; let u, v be two weight functions onR with u(ai ) < ∞, 0 < v(ai ),
i = 1, . . . , k. Let b be a function onR with b(ai ) <∞, i = 1, . . . , k. Then, there exists
some constant C> 0 such that:

‖u[Mb, Sn](v−1 f )‖L p,r (dν) ≤ C‖ f ‖Lq,s(dν)

for every f ∈ Lq,s(dν), n ≥ 0, if and only if there exists C> 0 such that:

(a) ‖u[Mb, Tn](v−1 f )‖L p,r (dµ) ≤ C‖ f ‖Lq,s(dµ), f ∈ Lq,s(dµ), n ≥ 0;
(b) u(ai )‖v−1Ln(x,ai )[b(x)− b(ai )]‖Lq′ ,s′ (dµ) ≤ C, n ≥ 0, i = 1, . . . , k; and
(c) v(ai )

−1‖uLn(x,ai )[b(x)− b(ai )]‖L p,r (dµ) ≤ C, n ≥ 0, i = 1, . . . , k.

Remark. From the definition, we have‖χE‖L p,r (dσ) = σ(E)1/p for any measureσ
and any measurable setE. In particular, any function is a.e. a characteristic function
with respect to a measure of the formMδa, thus‖ f ‖L p,r (Mδa) = M1/p| f (a)|. As a
consequence, we obtain in our case

‖ f ‖L p,r (dν) ∼ ‖ f ‖L p,r (dµ) +
k∑

i=1

M1/p
i | f (ai )|,

where “∼” means that the ratio is bounded above and below by two positive constants.
Actually, theMi can be removed.

Proof of Lemma 1. (I) Suppose (3) holds. Letf ∈ Lq,s(dµ) and putg(ai ) = 0
(i = 1, . . . , k), g(x) = f (x) otherwise. Clearlyf = g (µ-a.e.), so that from relation (2)
and the definition ofTn it follows

uSn(v
−1g) = uTn(v

−1g) = uTn(v
−1 f ).

It is also easy to deduce

‖g‖Lq,s(dν) = ‖g‖Lq,s(dµ) = ‖ f ‖Lq,s(dµ)

(g has the same distribution function with respect toν andµ and it coincides with the
distribution function off with respect toµ). Therefore, from (3) applied tog, we have

‖uTn(v
−1 f )‖L p,r (dν) ≤ C‖ f ‖Lq,s(dµ)(4)

for every f ∈ Lq,s(dµ) andn ≥ 0.
Now, set f = χ{ai }; then,

u(x)Sn(v
−1 f )(x) = u(x)Mi Ln(x,ai )v(ai )

−1,

‖ f ‖Lq,s(dν) = M1/q
i

(for the last equality, see the previous remark). Therefore, from (3), applied tof , it
follows

v(ai )
−1‖uLn(x,ai )‖L p,r (dν) ≤ C(5)

for everyn ≥ 0 andi = 1, . . . , k.
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(II) Conversely, suppose (4) and (5) hold. Then, for everyf ∈ Lq,s(dν)we have, from
(2),

‖uSn(v
−1 f )‖L p,r (dν) ≤ ‖uTn(v

−1 f )‖L p,r (dν)

+
k∑

i=1

Mi ‖uLn(x,ai )v(ai )
−1 f (ai )‖L p,r (dν)

≤ C‖ f ‖Lq,s(dµ) + C
k∑

i=1

Mi | f (ai )| ≤ C‖ f ‖Lq,s(dν),

using the previous remark. That is: (3) is equivalent to (4) and (5). We will see now that
(5) is the same as (c) and that (4) is equivalent to (a) and (b).

(III) Fix an i ∈ {1, . . . , k}. Then

‖uLn(x,ai )‖L p,r (dν) ∼ ‖uLn(x,ai )‖L p,r (dµ) +
k∑

j=1

M1/p
j u(aj )|Ln(aj ,ai )|.

Now, from the Cauchy–Schwarz inequality we have

|Ln(aj ,ai )| ≤ Ln(aj ,aj )
1/2Ln(ai ,ai )

1/2

and the sequences{Ln(aj ,aj )}n≥0 ( j = 1, . . . , k) are bounded, sinceν({aj }) > 0 (see
[N, p. 4]). Hence,

‖uLn(x,ai )‖L p,r (dµ) ≤ ‖uLn(x,ai )‖L p,r (dν) ≤ ‖uLn(x,ai )‖L p,r (dµ) + C.

This means that (5) is actually equivalent to (c).
(IV) Let us now take condition (4). From the previous remark again,

‖uTn(v
−1 f )‖L p,r (dν) ∼ ‖uTn(v

−1 f )‖L p,r (dµ)

+
k∑

i=1

M1/p
i u(ai )|Tn(v

−1 f )(ai )|.

Thus, (4) is equivalent to condition (a), together with

u(ai )|Tn(v
−1 f )(ai )| ≤ C‖ f ‖Lq,s(dµ).

Having in mind that

u(ai )Tn(v
−1 f )(ai ) = u(ai )

∫
R
v(x)−1Ln(x,ai ) f (x) dµ(x),

that means, by duality,

u(ai )‖v(x)−1Ln(x,ai )‖Lq′ ,s′ (dµ) ≤ C,

i.e., condition (b).

The proofs of Lemmas 2 and 3 are essentially the same, so we omit them.
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The following result provides sufficient conditions for the uniform boundedness of
the operatorsTn in terms of the boundedness of the Fourier series corresponding to the
measureµ and other related measures. Recalling that

ν = µ+
k∑

i=1

Mi δai ,

we define, for each setA ⊆ {a1, . . . ,ak}, the measure

dµA(x) =
∏
ai∈A

(x − ai )
2 dµ(x)

(for A = ∅ we just getdµ) and the associated partial sum operatorsS̃A
n . We also define

the weight
wA(x) =

∏
ai∈A

|x − ai |1−2/p.

With this notation, we have:

Lemma 4. If for each A⊆ {a1, . . . ,ak} there exists a constant C such that

‖uwAS̃A
n ([vw

A]−1 f )‖L p(dµA) ≤ C‖ f ‖L p(dµA)

for every n≥ 0 and f ∈ L p(dµA), then there also exists a constant C such that

‖uTn(v
−1 f )‖L p(dµ) ≤ C‖ f ‖L p(dµ)

for n ≥ 0 and f ∈ L p(dµ).

Proof. Let us denote byK A
n (x, y) thenth kernel relative to the measuredµA. In the

casek = 1, we have

Ln(x, y) = CnK ∅n (x, y)+ (1− Cn)(x − a1)(y− a1)K
{a1}
n−1(x, y)

with 0 < Cn < 1, ∀n ∈ N (see [GPRV3, Proposition 5]). By induction onk, it can be
shown that

Ln(x, y) =
∑

A

CA
n

[ ∏
ai∈A

(x − ai )(y− ai )

]
K A

n−|A|(x, y),

where the sum is taken over all the subsetsA ⊆ {a1, . . . ,ak}, |A| is the cardinal ofA
and for eachn ∑

A

CA
n = 1, 0< CA

n < 1, ∀A.

From this expression, we deduce

Tn(v
−1 f )(x) =

∑
A

CA
n

[ ∏
ai∈A

(x − ai )

]
S̃A

n−|A|

(
v(y)−1 f (y)∏

ai∈A(y− ai )
, x

)
.

Thus, for the uniform boundedness of the operatorsTn it is enough to have∥∥∥∥∥u(x)
∏
ai∈A

(x − ai )S̃
A
n

(
v(y)−1 f (y)∏

ai∈A(y− ai )
, x

)∥∥∥∥∥
L p(dµ)

≤ C‖ f ‖L p(dµ)

for n ≥ 0 and f ∈ L p(dµ). This is simply our hypothesis, except for a change of
notation.

Analogous results can be stated about the maximal operatorT∗ and the commutator.
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2. The Maximal Operator S∗ for a Generalized Jacobi Weight
with Mass Points on[−1, 1]

Let dµ = w dx, with w a generalized Jacobi weight, that is:

w(x) = h(x)(1− x)α(1+ x)β
N∏

i=1

|x − ti |γi , x ∈ [−1, 1],

where:

(a) α, β, γi > −1, ti ∈ (−1, 1), ti 6= tj for i 6= j ;
(b) h is a positive, continuous function on [−1, 1] andw(h, δ)δ−1 ∈ L1(0, 2),w(h, δ)

being the modulus of continuity ofh.

Let

ν = µ+
k∑

i=1

Mi δai with Mi > 0, ai ∈ [−1, 1] (i = 1, . . . , k).

Let us also take two weightsu andv defined on [−1, 1] as follows:

u(x) = (1− x)a(1+ x)b
N∏

i=1

|x − ti |gi , if x 6= ai ∀i ; 0< u(ai ) <∞;

v(x) = (1− x)A(1+ x)B
N∏

i=1

|x − ti |Gi , if x 6= ai ∀i ; 0< v(ai ) <∞,(6)

wherea, b, gi , A, B,Gi ∈ R.

Theorem 5. Let1< p <∞. Then, there exists a constant C> 0 such that:

‖uS∗(v−1 f )‖L p(dν) ≤ C‖ f ‖L p(dν)

for every f ∈ L p(dν) if and only if the inequalities
A+ (α + 1)( 1

p − 1
2) < min{ 14, α+1

2 },
B+ (β + 1)( 1

p − 1
2) < min{ 14, β+1

2 },
Gi + (γi + 1)( 1

p − 1
2) < min{ 12, γi+1

2 } (i = 1, . . . , N),
(7)


a+ (α + 1)( 1

p − 1
2) > −min{ 14, α+1

2 },
b+ (β + 1)( 1

p − 1
2) > −min{ 14, β+1

2 },
gi + (γi + 1)( 1

p − 1
2) > −min{ 12, γi+1

2 } (i = 1, . . . , N),
(8)

and

A ≤ a, B ≤ b, Gi ≤ gi (i = 1, . . . , N)(9)

hold.
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Remark. This result is true in the case of a generalized Jacobi weight, with no mass
points. It was proved by V. M. Badkov (see [B]) for one weight (u = v). In the two weight
case, the “if” part can be obtained as a consequence, by inserting a suitable weightρ,
u ≤ ρ ≤ v. Regarding the “only if” part,

‖uS∗(v−1 f )‖L p(dν) ≤ C‖ f ‖L p(dν)

implies

‖uSn(v
−1 f )‖L p(dν) ≤ C‖ f ‖L p(dν)

and this, in turn, implies (7), (8), and (9) (see [GPRV1]).

Proof of the Theorem. Assume

‖uS∗(v−1 f )‖L p(dν) ≤ C‖ f ‖L p(dν)

for f ∈ L p(dν). Proceeding as in [GPRV1, Theorem 6], we obtain (7), (8), and (9).
Assume now that (7), (8), and (9) hold. According to Lemma 2 withp = q = r = s

and the analogue of Lemma 4, we only need to prove the following inequalities:

(a) ‖uwA(S̃A)∗([vwA]−1 f )‖L p(dµA) ≤ C‖ f ‖L p(dµA), f ∈ L p(dµA);
(b) ‖v−1Ln(x,ai )‖L p′ (w) ≤ C, n ≥ 0, i = 1, . . . , k; and
(c) ‖uL∗(x,ai )‖L p(w) ≤ C, i = 1, . . . , k.

Condition (a) refers to the boundedness of the maximal operators related to the mea-
suresdµA, which are generalized Jacobi weights, with no mass points. In this case, the
corresponding inequalities(7), (8) and(9), with the appropriate exponents, imply the
boundedness. It is easy to see that they actually hold.

To check inequalities (b) and (c), we can use the following estimates for the kernels
Ln(x,ai ) (see [GPRV3]): if ai 6= ±1,

|Ln(x,ai )| ≤ C(1− x + n−2)−(2α+1)/4(1+ x + n−2)−(2β+1)/4(10)

×
∏
tj 6=ai

(|x − tj | + n−1)−γj /2;

if 1 is a mass point,

|Ln(x, 1)| ≤ C(1+ x + n−2)−(2β+1)/4
N∏

i=1

(|x − ti | + n−1)−γi /2;(11)

if −1 is a mass point,

|Ln(x,−1)| ≤ C(1− x + n−2)−(2α+1)/4
N∏

i=1

(|x − ti | + n−1)−γi /2.(12)

It is not difficult to see that these inequalities, together with (7), (8), and (9), lead to (b)
and (c).

Corollary 6. With the notation of Theorem5, the uniform boundedness

‖uSn(v
−1 f )‖L p(dν) ≤ C‖ f ‖L p(dν)

holds for every n≥ 0 and f ∈ L p(dν) if and only if the inequalities(7), (8), and (9)
are verified.
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Proof. The “if” part follows directly from the theorem and the “only if” part can be
proved again as in [GPRV1].

Corollary 7. Letv be a weight verifying(6). Then,

v(x)Sn(v
−1 f )(x)→ f (x), ν-a.e.,

for every f ∈ L p(dν) if and only if the inequality(7) holds.

Proof. The “only if” part is a consequence of [GPRV2, Theorem 3]. For the “if” part,
we can take a weightu such that the pair(u, v) satisfies the conditions of Theorem 5
and it follows by standard arguments. Notice that the weightu does not play any role
for the almost everywhere convergence.

3. The Commutator [Mb, Sn] for a Generalized Jacobi Weight
with Mass Points on[−1, 1]

In this section we will adopt the notation of Section 2, with the additional restriction
γi ≥ 0, i = 1, . . . , N. We will write I = [−1, 1].

The space BMO(I ) (in the sequel, BMO) consists of the functions (modulus the
constants) of bounded mean oscillation, i.e., with

‖b‖BMO = sup
J

1

|J|
∫

J
|b− bJ | <∞,

where the supremum is taken over all the intervalsJ ⊆ I , |J| means the Lebesgue
measure ofJ and

bJ = 1

|J|
∫

J
b

(the integrals are taken with respect to the Lebesgue measure). Given 1< p < ∞, we
also have (see [GR])

‖b‖BMO ∼ sup
J

(
1

|J|
∫

J
|b− bJ |p

)1/p

.(13)

Given 1< p <∞ and a weightϕ in Muckenhoupt’s classAp, the commutator [H,Mb]
of the Hilbert transform onI is bounded inL p(ϕ) if and only if b ∈ BMO (see [BL]).
The norm of the commutator depends on theAp constant ofϕ. We refer the reader to
[GR] for further references onAp weights.

Our result is the following:

Theorem 8. If b ∈ BMO, 1 < p < ∞, and the inequalities(7), (8), and (9) hold
(with γi ≥ 0, i = 1, . . . , N), then there exists some constant C> 0 such that:

‖u[Mb, Sn](v−1 f )‖L p(dν) ≤ C‖ f ‖L p(dν)

for each n≥ 0 and f ∈ L p(dν).

For the proof of Theorem 8 we first state the following result:
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Lemma 9. With the hypothesis of Theorem8, we have:

(a) u(ai )‖v−1Ln(x,ai )[b(x)− b(ai )]‖L p′ (dµ) ≤ C, n ≥ 0, i = 1, . . . , k; and
(b) v(ai )

−1‖uLn(x,ai )[b(x)− b(ai )]‖L p(dµ) ≤ C, n ≥ 0, i = 1, . . . , k.

Proof. Taker , s such that 1/r + 1/s= 1/p′. By Hölder’s inequality,

‖v−1Ln(x,ai )[b(x)− b(ai )]‖L p′ (dµ) ≤ ‖v−1Ln(x,ai )‖Lr (dµ)‖[b(x)− b(ai )]‖Ls(dµ).

From the John–Nirenberg inequality (13) it follows

‖b(x)− b(ai )‖Ls(dµ) ≤ C,

while (10), (11), and (12) lead to

‖v−1Ln(x,ai )‖Lr (dµ) ≤ C

providedr is near enough top′. This proves (a). Part (b) follows in a similar way.

Now, according to Lemma 3, we only need to prove

‖u[Mb, Tn](v−1 f )‖L p(dµ) ≤ C‖ f ‖L p(dµ), f ∈ L p(dµ), n ≥ 0.

From the analogue of Lemma 4, it is enough to show

‖uwA[Mb, S̃A
n ]([vwA]−1 f )‖L p(dµA) ≤ C‖ f ‖L p(dµA)

for eachA ⊆ {a1, . . . ,ak}. For the sake of simplicity, we will prove this inequality only
for A = ∅. Then,wA = 1, dµA = dµ. Let us denotẽSn = S̃∅n .

Lemma 10. With the hypothesis of Theorem8, we have

‖u[Mb, S̃n](v−1 f )‖L p(dµ) ≤ C‖ f ‖L p(dµ)

for each n≥ 0, f ∈ L p(dµ).

Proof. Let us denote byKn(x, y) the nth kernel relative todµ = w(x) dx, by P̃n

the orthonormal polynomials relative todµ, and byQ̃n the orthonormal polynomials
relative to(1− x2) dµ. Then,

S̃ng(x) =
∫

I
Kn(x, y)g(y)w(y) dy.

Also,

|P̃n(x)| ≤ C(1− x + n−2)−(α/2+1/4)(1+ x + n−2)−(β/2+1/4)
N∏

i=1

(|x − ti | + n−1)−γi /2,

|Q̃n(x)| ≤ C(1− x + n−2)−(α/2+3/4)(1+ x + n−2)−(β/2+3/4)
N∏

i=1

(|x − ti | + n−1)−γi /2
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(see [B]). Now, we have Pollard’s decomposition ofKn (see [P] and [M1]):

Kn(x, y) = rn P̃n+1(x)P̃n+1(y)

+ sn P̃n+1(x)
(1− y2)Q̃n(y)

x − y

+ sn(1− x2)Q̃n(x)
P̃n+1(y)

y− x
,

for some bounded sequences{rn}, {sn} of real numbers. Actually, fromµ′ > 0 a.e., it
follows lim rn = −1/2, limsn = 1/2 (it can be deduced from [P] and either [R] or
[MNT]). Therefore, we can write

[Mb, S̃n] = rn91,n − rn92,n + sn93,n − sn94,n,

where

91,ng(x) = [b(x)− bI ] P̃n+1(x)
∫

I
P̃n+1(y)g(y)w(y) dy,

92,ng(x) = P̃n+1(x)
∫

I
[b(y)− bI ] P̃n+1(y)g(y)w(y) dy,

93,ng(x) = P̃n+1(x) [Mb, H ]((1− y2)Q̃ngw)(x),

94,ng(x) = (1− x2)Q̃n(x) [Mb, H ](P̃n+1gw)(x).

Lemma 11 below shows that the operators93,n are uniformly bounded; the proof for
94,n is entirely similar. Lemma 12 shows that the operators91,n are uniformly bounded
and the proof for92,n is again similar.

Lemma 11. With the hypothesis of Theorem8, there exists a constant C> 0 such that:

‖u93,n(v
−1 f )‖L p(dµ) ≤ C‖ f ‖L p(dµ)

for each n≥ 0 and f ∈ L p(dµ).

Proof. According to the definition of93,n, we must show

‖[Mb, H ]g‖L p(up|P̃n+1|pw) ≤ C‖g‖L p(v p|Q̃n|−p(1−x2)−pw1−p)
.

By the result of S. Bloom [BL], it is enough to find weights{ϕn} and positive constants
K1, K2 > 0 such that:

(a) K1u(x)p|P̃n+1(x)|pw(x) ≤ ϕn(x) ≤ K2v(x)p|Q̃n(x)|−p(1−x2)−pw(x)1−p; and
(b) ϕn ∈ Ap(−1, 1), with an Ap-constant independent ofn.

We takeϕn of the form

ϕn(x) = (1− x)r0(1− x + n−2)s0

×
N∏

i=1

|x − ti |ri (|x − ti | + n−1)si

×(1+ x)r N+1(1+ x + n−2)sN+1
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Then, condition (b) is equivalent to

−1< ri < p− 1, −1< ri + si < p− 1 (i = 0, 1, . . . , N + 1)(14)

(see [GPV2]). Now, it is not difficult to see from (7), (8), (9), andγi ≥ 0 that we can
taker i such that

−1< ri < p− 1 (i = 0, 1, . . . , N + 1),

Ap− p+ α(1− p) ≤ r0 ≤ ap+ α,
Bp− p+ β(1− p) ≤ r N+1 ≤ bp+ β,

Gi p+ γi (1− p) ≤ ri ≤ gi p+ γi (i = 1, . . . , N),

and thensi such that

−1< ri + si < p− 1 (i = 0, 1, . . . , N + 1),

Ap− p+ α(1− p)+ p

(
α

2
+ 3

4

)
≤ r0+ s0 ≤ ap+ α − p

(
α

2
+ 1

4

)
,

Bp− p+ β(1− p)+ p

(
β

2
+ 3

4

)
≤ r N+1+ sN+1 ≤ bp+ β − p

(
β

2
+ 1

4

)
,

Gi p+ γi (1− p)+ p
γi

2
≤ ri + si ≤ gi p+ γi − p

γi

2
(i = 1, . . . , N).

Using the estimates for̃Pn andQ̃n and (14), we can see that these conditions imply (a)
and (b).

Lemma 12. With the hypothesis of Theorem8, there exists a constant C> 0 such that

‖u91,n(v
−1 f )‖L p(dµ) ≤ C‖ f ‖L p(dµ)

for each n≥ 0 and f ∈ L p(dµ).

Proof. Taking anyr > p and applying H¨older’s inequality twice and then (13), it
follows:

‖u91,n(v
−1 f )‖L p(dµ) ≤ C‖b‖BMO‖uP̃n+1w

1/p‖Lr (dx)‖v−1P̃n+1‖L p′ (w)‖ f ‖L p(w).

Therefore, it is enough to have, for somer > p,

‖uP̃n+1w
1/p‖Lr (dx) ‖v−1P̃n+1‖L p′ (w) < C.

This can be verified using the estimates forP̃n.
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4. Weak Behavior for Jacobi Weights with Mass Points
on the Interval [−1, 1]

Let us now consider, as a particular case, a measure of the form

dν = (1− x)α(1+ x)β dx+
k∑

i=1

Mi δai

andu = v = 1. If eitherα > −1/2 orβ > −1/2, then Corollary 6 determines an open
interval of mean convergence(p0, p1), where 1< p0 < p1 < ∞, and theSn are not
uniformly bounded inL p0(dν) or L p1(dν). By symmetry, we can supposeα > −1/2,
α ≥ β > −1, so that

p0 = 4(α + 1)

2α + 3
, p1 = 4(α + 1)

2α + 1
.

In the absolutely continuous case andα = β = 0 (i.e., for Legendre polynomials), when
the mean convergence interval is(4/3, 4), Chanillo proved (see [C]) that the partial sums
Sn are not of weak type forp = 4, that is, there exists no constantC > 0 such that for
everyn ≥ 0 and f ∈ L4(dx)

‖Sn f ‖L4,∞(dx) ≤ C‖ f ‖L4(dx).

It was also shown that these operators are of restricted weak type forp = 4 (andp = 4/3,
by duality), that is, the previous inequality is verified if we replace theL4 norm by the
L p,1 norm. Actually, this is equivalent to the inequality

‖SnχE‖L4,∞(dx) ≤ C‖χE‖L4(dx)

for every measurable setE (see [SW, Theorem 3.13]). The authors obtained (see [GPV1],
[GPV2]) similar results for Jacobi weights. The weak boundedness at the endpoints has
also been considered for other operators of Fourier Analysis. An important previous
paper on the subject is due to Kenig and Tomas [KT], who studied the disk multiplier
for radial functions.

We can now prove that these results also hold with mass points:

Theorem 13. Letα > −1/2,α ≥ β > −1. If

p = 4(α + 1)

2α + 1
or p = 4(α + 1)

2α + 3
,

then there exists no constant C such that for every n≥ 0 and f ∈ L p(dν)

‖Sn f ‖L p,∞(dν) ≤ C‖ f ‖L p(dν).

Theorem 14. Under the hypothesis of Theorem13,there exists a constant C> 0 such
that for every measurable set E⊆ [−1, 1] and every n≥ 0

‖SnχE‖L p,∞(dν) ≤ C‖χE‖L p(dν).
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Let us take now

u(x) = (1− x)a(1+ x)b, x ∈ (−1, 1);

0< u(±1) <∞.
We can extend Theorems 13 and 14 to the weighted case, when bothα andβ are greater
than or equal to−1/2.

Theorem 15. Let α, β ≥ −1/2, 1< p < ∞. If there exists a constant C> 0 such
that

‖uSn(u
−1 f )‖L p,∞(dν) ≤ C‖ f ‖L p(dν)

for every n≥ 0 and f ∈ L p(dν), then the inequalities∣∣∣∣a+ (α + 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
,

∣∣∣∣b+ (β + 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
,

are verified.

Theorem 16. Letα, β ≥ −1/2, 1< p <∞. If the inequalities

−1

4
≤ a+ (α + 1)

(
1

p
− 1

2

)
<

1

4
, −1

4
≤ b+ (β + 1)

(
1

p
− 1

2

)
<

1

4
,

hold, then there exists a constant C> 0 such that

‖uSn(u
−1χE)‖L p,∞(dν) ≤ C‖χE‖L p(dν)

for every n≥ 0 and every measurable set E⊆ [−1, 1].

Remark. By standard arguments of duality (see [GPV2]), Theorem 16 also holds when

−1

4
< a+ (α + 1)

(
1

p
− 1

2

)
≤ 1

4
, −1

4
< b+ (β + 1)

(
1

p
− 1

2

)
≤ 1

4
.

Proof of Theorems 14 and 16. We only need to show that conditions (a), (b), and (c)
in Lemma 1 are verified, withp = q, r = ∞, s = 1. The estimates (10), (11), (12) are
now

|Ln(x,ai )| ≤ C(1− x + n−2)−(2α+1)/4(1+ x + n−2)−(2β+1)/4

if ai 6= ±1;

|Ln(x, 1)| ≤ C(1+ x + n−2)−(2β+1)/4

if 1 is a mass point; and

|Ln(x,−1)| ≤ C(1− x + n−2)−(2α+1)/4

if −1 is a mass point, withC independent ofn ≥ 0 andx ∈ [−1, 1]. Since either

(1− x + n−2)−(2α+1)/4 ≤ C
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or

(1− x + n−2)−(2α+1)/4 ≤ (1− x)−(2α+1)/4,

conditions (b) and (c) can be checked out taking into account that

(1− x)r ∈ L p,∞((1− x)sdx) ⇐⇒ pr + s+ 1≥ 0, (r, s) 6= (0,−1)

(see [GPV2], for example).
In order to prove condition (a), we can use Pollard’s decomposition for the kernelsLn

(see [P] and [M1]) and write

Tn f = rnW1,n f + snW2,n f − snW3,n f,

with

lim rn = −1/2, lim sn = 1/2,

W1,n f (x) = Pn+1(x)
∫ 1

−1
Pn+1(y) f (y)w(y) dy,

W2,n f (x) = Pn+1(x)H((1− y)2Qn(y) f (y)w(y), x),

W3,n f (x) = (1− x2)Qn(x)H(Pn+1(y) f (y)w(y), x),

where{Pn}n≥0 is the sequence of orthonormal polynomials relative todν, {Qn}n≥0 is
the sequence associated to(1− x2) dν,w(x) = (1− x)α(1+ x)β , andH is the Hilbert
transform on the interval [−1, 1].

The polynomials{Pn}n≥0 and{Qn}n≥0 have the estimates (see [GPRV3])

|Pn(x)| ≤ C(1− x + n−2)−(2α+1)/4(1+ x + n−2)−(2β+1)/4,

and

|Qn(x)| ≤ C(1− x + n−2)−(2α+3)/4(1+ x + n−2)−(2β+3)/4,

with C independent ofn ≥ 0 andx ∈ [−1, 1], as in the absolutely continuous case.
We can now proceed exactly as in this case and show thatW1,n, W2,n, andW3,n are of
restricted weak type (see [GPV2]).

Proof of Theorems 13 and 15. If

‖uSn(u
−1 f )‖L p,∞(dν) ≤ C‖ f ‖L p(dν)

for everyn ≥ 0 and f ∈ L p(dν), then

u ∈ L p,∞(dν),
u−1 ∈ L p′(dν),

uw−1/2(1− x2)−1/4 ∈ L p,∞(w),

and

u−1w−1/2(1− x2)−1/4 ∈ L p′(w),
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with w(x) = (1 − x)α(1 + x)β (see [GPV1]). This proves Theorem 13 forp =
4(α + 1)/(2α + 3) and implies

−1

4
≤ a+ (α + 1)

(
1

p
− 1

2

)
<

1

4
, −1

4
≤ b+ (β + 1)

(
1

p
− 1

2

)
<

1

4

in Theorem 15. For

−1

4
= a+ (α + 1)

(
1

p
− 1

2

)
or

−1

4
= b+ (β + 1)

(
1

p
− 1

2

)
in Theorem 15 andp = 4(α + 1)/(2α + 1) in Theorem 13, it can be proved thatW1,n

andW3,n are of weak type, whileW2,n is not (like in [GPV1], [GPV2]).

5. Laguerre Weights with a Positive Mass on0

Lemma 1 is also useful to study the mean boundedness of the Fourier series in the
polynomials orthonormal with respect to the measure

dν = e−xxα dx+ Mδ0

on [0,∞) (i.e., a Laguerre weight with a massM > 0 at 0). In this case, parts (b) and
(c) can be handled having in mind that the kernelsLn(x, 0) admit the formula

Ln(x, 0) = rnQn(x),(15)

whereQn is thenth orthonormal Laguerre polynomial relative to the measuree−xxα+1 dx.
This formula follows from the fact that∫ ∞

0
Ln(x, 0)x Rn−1(x)[e

−xxα dx+ Mδ0] = 0

and ∫ ∞
0

Qn(x)x Rn−1(x)[e
−xxα dx+ Mδ0] = 0

for any polynomialRn−1 of degree at mostn− 1. The constantsrn = Ln(0, 0)/Qn(0)
can be asymptotically estimated. As we mentioned in the proof of Lemma 1,{Ln(0, 0)}
is an increasing, bounded sequence, since 0 is a mass point (see [N, p. 4]). On the other
hand, if we denote by{Lα+1

n } the classical, not normalized Laguerre polynomials relative
to e−xxα+1 dx, then it is well known that

Lα+1
n (0) = 0(n+ α + 2)

n! 0(α + 2)

(see [S] and [M3]) and

‖Lα+1
n ‖L2(e−x xα+1dx) = 0(n+ α + 2)

n!
,
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what, with our notation, implies

Qn(0) = 0(n+ α + 2)1/2

0(α + 2)(n!)1/2
∼ n(α+1)/2.

Therefore,

rn ∼ n−(α+1)/2.(16)

According to (15) and (16), in order to find bounds for the kernelsLn(x, 0) we only
need bounds for the normalized classical Laguerre polynomials. These bounds, as well
as boundedness results for Laguerre series, can be found in Muckenhoupt’s paper [M3].
Thus, we can use Lemma 1 as in the generalized Jacobi case to find that Muckenhoupt’s
result [M3, Theorem 7] remains valid in the case of a Laguerre weight with a positive
mass on 0. The same can be done for Hermite series (see [M3, Theorem 1]).
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[GPV1] J. J. GUADALUPE, M. PÉREZ, J. L. VARONA (1990): Weak behaviour of Fourier–Jacobi series.
J. Approx. Theory,61:222–238.
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