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Weighted Norm Inequalities for Polynomial Expansions
Associated to Some Measures with Mass Points

J. J. Guadalupe, M.e€?éz, F. J. Ruiz, and J. L. Varona

Abstract. Fourier series in orthogonal polynomials with respect to a measore
[—1, 1] are studied when is a linear combination of a generalized Jacobi weight and
finitely many Dirac deltas in|1, 1]. We prove some weighted norm inequalities for
the partial sum operato,, their maximal operato®*, and the commutatoMp, S],
whereMp, denotes the operator of pointwise multiplicationtby BMO. We also prove
some norm inequalities foB, whenv is a sum of a Laguerre weight dR* and a
positive mass on 0.

Introduction

Let v be a positive Borel measure &with infinitely many points of increase and such
that all the moments

/xndv (n=0,1,..)
R

are finite. For each suitable functidn let S, f denote thenth partial sum of the Fourier
expansion off with respect to the system of orthogonal polynomials associated.to

The uniform boundedness of the operat&ysLP(dv) — LP(dv) (1 < p < o0) and
some weighted versionsS,(v1-): LP(dv) — LP(dv) have been characterized when
vis:

(a) a Jacobi or generalized Jacobi weight e [1] (see P], [M1], and [B]); and
(b) aLaguerre weight oR™ or a Hermite weight ol (see RW], [M2], and M3]).

This uniform boundedness is equivalent, in rather general settings, kd’tbenver-
gence of, f to f.

Let us consider for simplicity the unweighted case. For a generalized Jacobi weight,
not only the uniform boundedness of the operarhas been studied, but also that of
the maximal operato®* defined by

S f(X) = sup|& f (X)]
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(see B]). For some orthogonal systems which include Jacobi polynomials and Bessel
functions, the maximal operat@* has been considered by Gilbeft][by means of
transference theorems.

Obviously, the boundedness 8f on L P(dv) implies the uniform boundedness &f
(and theL P(dv) convergence o§, f to f). But it also implies, by standard arguments,
thev-a.e. convergence & f to f. For these weights, the typical situation is that the
operatorss,: LP(dv) — LP(dv) and evers* are uniformly bounded if and only § be-
longs to some explicitly given open interv@y, p1) (the interval ofmean convergenge
In short, in this case th&, are said to be adtrong(p, p)-type.

Then, for the endpointp = po, p; of the interval of mean convergence it is natural
to study theweak(p, p)-type, i.e., the uniform boundedness of the operators

Sy LP@dv) — LP>(dv),
as well as theestricted weak p, p)-type, i.e., the uniform boundedness
S LPYdv) — LP>(dv).

Here, L' (dv) stands for the classical Lorentz space of all measurable funcfions
satisfying

ro[® dt\ ¥’
I fller@y = (B/ [tl/pf*(t)]rT) <00 I<p<oo, 11 <00),
0

I FllLee@n = I FllLr =sugotl/pf*(t) <00 (1< p<o0),
t>

where f* denotes the nonincreasing rearrangement.ofVe refer the reader t&Gpy,
Section V.3] for further information on these topics.

Fordv = dxon[—1, 1] (Fourier—Legendre seriepy = 4/3, p1 = 4), S. Chanillo (]
proved that theg, are not of weak p, p)-type for p = 4 but they are of restricted weak
(p, p)-typeforp = 4/3andp = 4.In[GPV1 and [GPVZthese results were established
for any Fourier—Jacobi seriedy( = (1 — x)*(1 + x)’ dxon [-1,1], «, B > —1) and
P = po, P = p1. TheLP" behavior ofS, was also studied by L. ColzanCp)] for
Fourier-Legendre series.

In this paper, we consider these problems for Fourier expansions with respect to
measures of the form

k
vV=pu+ M8,
i=1

whereM; > 0(i =1, ..., k), §; denotes the Dirac delta @ne R andu is a generalized
Jacobi weight or, in some cases, a Laguerre or Hermite weight. In the particular case
of a Jacobi weight and two mass points on 1 arfd the corresponding orthonormal
polynomials were studied by Koornwinder i][from the point of view of differential
equations (see alscf], [AE], [Kr], and [Li]). Our method consists of relating the
operatorss, to some other operators similar to (and expressible in terms of) the Fourier
expansions with respect toand polynomial modifications of.

This method also applies to the commutatbt,[ S,], where My, is the operator of
pointwise multiplication by a given functidn, i.e., M, f = bf. Given a linear operator
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T acting on functions, say: LP(dv) — LP(dv), and a functiorb, the commutator of
My andT is defined by

[Mp, T]f = bT(f) — T(bf).

The first results on this commutator were obtained by R. R. Coifman, R. Rochberg,
and G. Weiss (see€CRW)). They proved that ifT is the classical Hilbert transform and
1 < p < oo, then My, T]is a bounded operator doP(R) if and only ifb € BMO(R).
The boundedness of this commutator has been studied in more general settings by several
authors (see, e.gBL], [ST1, [STZ, [ST], and [GHST])).
Let us also mention that the boundedness of the commuteiorT] (or, in our case,
[Mp, S]) for b in some real Banach spaéeis closely related to the analyticity (in our
case, uniform analyticity) of the operator-valued function

7: B — L£(LP(dv), LP(dv)),
b T(b) =MsT Mgs

in a neighborhood of 0Oc B, where B denotes the complexification o8 and
L(LP(dv), LP(dv)) is the space of bounded linear operators flokidv) into itself. In
fact, the first @teaux differential of at 0 in the directiorb € B is

d
5.7(sb = [Mp, T]

(see EM] and [L] for further details). It is via this relationship that R. R. Coifman and
M. A. M. Murray proved [CM] the uniform boundedness of the commutator

[Mp, S)]: L2(dv) — L%(dv),

whendyv is a Jacobi weightdy = (1 — x)*(1 + x)? dx on [-1, 1]) with o, 8 > —1/2
andb € BMO.

Here, we prove the uniform boundednessidf] S] (as well as a weighted version)
in LP(dv), 1 < p < oo, wheredv is a generalized Jacobi weight with possibly a finite
collection of Dirac deltas orH1, 1] and agairb € BMO.

This paper is organized as follows: in Section 1 we present the basic notation and tech-
nical results. In Section 2 we consider the maximal oper&toelated to a generalized
Jacobi weight function with finitely many Dirac masses eri[1]. As a consequence,
theLP and a.e. convergence of the Fourier series follow. For these measures (with some
restriction), the commutatoMy, Sy] is studied in Section 3. Weak and restricted weak
boundedness at the endpoint of the interval of mean convergence for Jacobi weights
with Dirac masses on{1, 1] are the subject of Section 4. Finally, in Section 5 we point
out howL P boundedness of Fourier expansions with respect to a Laguerre or Hermite
weight with a positive mass on 0 can be established.

1. Notations and Technical Results

Let u be a positive Borel measure &with infinitely many points of increase and such
that all the moments

fx”d,u (n=0,1,..)
R
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are finite. Letgy e R(i = 1, ..., k) with & # a; fori # j and assume({a}) = 0
(i=1....kl.LetM; >0( =1,...,K) and write
k

(1) V:,bL+ Misas

i=1

wheres, denotes a Dirac delta an

/ fdsy = f(a).
R

Then, there is a sequen{@, },-o of polynomials,
Pa(X) = kX" +---, kn>0, degP, =n,

such that

/ Pandl): {0 Ifn#m;
R

1 ifn=m.
Thenth partial sum operator of the Fourier expansion in termB.0f the operatof§,
given by

S Tx) =/RLn(X, y) f(y) dv(y),

where

j
is thenth kernel relative to the measude. If we denote

Lan(X,y) = ) PF)P(y)
=0

T f (0 =/RLn(x, V1Y) du),

then, according to (1), we have

k

(2 SIF0=Taf00+ Y MiLn(x, &) f(@).

i=1

By a weight function we mean a nonnegative, measurable function. We are interested in
finding conditions for the uniform boundedness of the operators

uSi(v): LP(dv) — LP(dv)
whereu andv are weights, i.e., for the inequality
IUS @™ H)llLran < Cll Flleeay
to hold forn > 0 andf € LP(dv), and also for the weaker boundedness
uS(vt): LP(dv) — LP>®(@dv)
or
uSi(vt): LPHdy) — LP®(dv).
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Actually, the last one is equivalent (s€&/J/, Theorem 3.13]) to

-1
US (™" xe)llLpe@yy < ClixellLe@y

for every measurable s&t In this context, notice that the value&y;), v(g) are signif-
icant here, since({a;}) > 0.

In what follows, given 1< p < oo we will denote byp’ the conjugate exponent, i.e.,
1<p <o0,1/p+1/p = 1. Also, we will take 0 co = 0 and byC we will mean a
constant, not depending on) f, but possibly different at each occurrence.

Then, we have the following results:

Lemma l. With the above notatigdetl < p < o0, 1 < q < 00,1 <71 < 00,
andl < s < o¢; let u, v be two weight functions oR with u(a) < oo, 0 < v(g),
i =1,..., k. Then there exists some constant-C0 such that

(3) IUSi @™ ) [Lorny < CIlf llLasan)
for every fe L%5(dv), n > 0, if and only if there exists G- 0 such that

(@) ||UTn(U_1f)|||_PAr(dM) <C| fllLas@w. Tf e Lq_’s(dﬂ), n=>o0;
(b) u@)llvLn(X, @)l a5 @ < C. n>0,i=1...,kand
(€) v@@) HuLn(X, @)llLer @ < C, n>0,i=1...,k

We can state a similar result about the maximal oper&tatefined by

S f(x) =sup|S f(X)|.

Let us also take
T*f(x) = sup|Ty f ()]
n

and
L*(X, y) = sup|Ln(X, y)I.
n
Lemma 2. With the above notatigetl < p < o0,1 < q<o00,1 <71 < 00,

andl < s < o0; let u, v be two weight functions oR with u(a) < oo, 0 < v(g),
i =1,..., k. Thenthere exists some constant-0 such that

IuS' @™ )llLor e < Cll fllasan,
for every fe L93(dv) if and only if there exists G- 0 such that

@ IuT*@ 2 )llLer@w < Cllflles@n, f € Lq:s(du);
(b) u@)llvtLn(X, @)l a5 @ < C. n=0,i=1...,kand
(©) v@) HuL*(X, &)llLer@u < C, i=1...,k

Finally, we also have the analogous result for the commutator (noticéo¢aatis
significant here, to0):
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Lemma 3. With the above notatigetl < p < o0, 1 < q < 00,1 <71 < 00,
andl < s < o0; let u, v be two weight functions oR with u(a) < oo, 0 < v(g),

i =1,...,k. Letb be afunction oR with b(a;) < 0o,i =1, ..., k. Then there exists
some constant G 0 such that

Iu[Mp, S1 @™ F)llLer @y < Cl f llLasqan)
for every fe L%5(dv), n > 0, if and only if there exists G- 0 such that
(@) [lu[Mp, Tl ) llLer ) < CIl F llLasips f e L9S(dw),n>0;
(b) u@)[lv=*Ln(x, &)[b(x) — b@)]ll a5 @,y <C. Nn=0,i=1,...,kand
(©) v(@) tuLn(x, a)[b(x) —b@)]llLrr@y <C. n=0,i=1....k

Remark. From the definition, we havigxe ||Lrr 4oy = o (E)Y/P for any measurer
and any measurable sEt In particular, any function is a.e. a characteristic function
with respect to a measure of the fors,, thus || f|lLerms,) = MYP|f(@)|. As a
conseqguence, we obtain in our case

k
I leran ~ I Flleran + Y MYPIE @),
i=1

where ~" means that the ratio is bounded above and below by two positive constants.
Actually, theM; can be removed.

Proof of Lemma 1. (I) Suppose (3) holds. Lef € L%5(du) and putg(a) = 0
(i=1,...,k),09(x) = f(x)otherwise. Clearlyf = g (u-a.e.), so that from relation (2)
and the definition of, it follows

uS (g =uT(v'g) =uT(wv ' f).
It is also easy to deduce
l9llLas@vy = 19llLas@wy = Il FllLasu)

(g has the same distribution function with respect tand . and it coincides with the
distribution function off with respect tqu). Therefore, from (3) applied tg, we have

(4) IUTa @™ ) |Lpr vy < CII F llLascdn

for every f € L95(dw) andn > 0.

Now, setf = x(a3; then,
UGS F(X) = ux)MiLn(x, a)v(@) ™,
_ M.l/q

I flliLasany = M;

(for the last equality, see the previous remark). Therefore, from (3), applidd io
follows

(5) (@) HuLa(X, @) llLrran < C
foreveryn>0andi =1,... k.



Weighted Norm Inequalities for Polynomial Expansions 347

(1) Conversely, suppose (4) and (5) hold. Then, for every L%5(dv) we have, from
),

A

SO ) llLery < IUTa@ F)llLer v

k
+ ) MilluLn(x, @)v(@) ™ f (@) [l @)
i=1

IA

k
Cll fllLas@m +C D Mil f @) < Cll fllLasian
i=1

using the previous remark. That is: (3) is equivalent to (4) and (5). We will see now that
(5) is the same as (c) and that (4) is equivalent to (a) and (b).
(I Fixani € {1,...,k}. Then

k
luLn(X, &)llLer vy ~ lULn(X, @) lLpr @) + Z Mjl/pu(aj)ILn(aj,aa)L
j=1
Now, from the Cauchy—Schwarz inequality we have
ILn(a. &)| < Ln(ay, 8)"*La(ai, &)"?

and the sequencés (g, 8j)}n=0 (j = 1,..., k) are bounded, since({a;}) > 0 (see
[N, p. 4]). Hence,

lULn(X, @)l Lerdy < IULR(X, @) [ILer vy < IULA(X, &) |lLpr @) + C.

This means that (5) is actually equivalent to (c).
(IV) Let us now take condition (4). From the previous remark again,

-1 -1
uTa(™ F)llLeryy ~ TUTa(@™ F)llLprdp

k
+> MY Pu@) Taw (@)1,
i=1

Thus, (4) is equivalent to condition (a), together with

u@)|Ta ) @) < CIl f llLascy-

Having in mind that

u@)Th(v @) = u(a.-)f v(X)tLn(X, &) f (X) du(x),
R
that means, by duality,

u@)lv () Ln(X, &)l a5 @y < C,

i.e., condition (b). ]

The proofs of Lemmas 2 and 3 are essentially the same, so we omit them.
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The following result provides sufficient conditions for the uniform boundedness of
the operatorg, in terms of the boundedness of the Fourier series corresponding to the
measure: and other related measures. Recalling that

k
v=u+ M; 8a,
i=1
we define, for each s&& C {ay, ..., ac}, the measure
duh0 = [Tox—a)? dux)

g eA
(for A = ¢ we just getdu) and the associated partial sum opera@“rsWe also define
the weight

wh0oo = [ Ix—al*?P.
aeA
With this notation, we have:

Lemma 4. Ifforeach AC {ay, ..., a} there exists a constant C such that

Iuw” SN Qow] ™ F)llLe@e < CIlF e
for every n> 0and f € LP(du?), then there also exists a constant C such that
IuTa@™ ) llLe < Cl Flliew
forn>0and f € LP(du).

Proof. Let us denote bk A(x, y) the nth kernel relative to the measude”. In the
casek = 1, we have

La(X, ¥) = CaKA(X, y) + (1 — Co) (X — ap)(y — a) K2 (X, y)
with 0 < C, < 1,Vn € N (see [GPRV3 Proposition 5]). By induction oR, it can be
shown that

Lo, y) =>»_ C» { [[x—any- a—)} Ko 1 O )
A g eA
where the sum is taken over all the subsits {ay, ..., ak}, |A| is the cardinal ofA
and for eacn
dYcr=1 0<Cl<1 VA
A

From this expression, we deduce

_ = v(y) "t (y)
T tHx =) Cch x—a) | S0l 5——.x].
“ 2l N\ Maer -2
Thus, for the uniform boundedness of the operalgrs is enough to have

g Wy
ueo [ Jox—an s vi,x <C| flLe
a!:[A i (Ha- caly — &) ) Lo (RN IRICm

forn > 0andf e LP(du). This is simply our hypothesis, except for a change of
notation. n

Analogous results can be stated about the maximal opefatand the commutator.
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2. The Maximal Operator S* for a Generalized Jacobi Weight
with Mass Points on[—1, 1]

Letdu = wdx, with w a generalized Jacobi weight, that is:

N
w) =he)@ =0 A+ T[Ix-t1",  xe[-11],
i=1

where:

@ o, By >—-Lte(=LD,t#tfori #j;
(b) his a positive, continuous function oa L, 1]andw(h, §)6~* € L(0, 2), w(h, §)
being the modulus of continuity df.

Let

Mis, withM; >0, ae[-1,1 (=1....k.

k
v=pu-+

i=1

Let us also take two weightsandv defined on {1, 1] as follows:

N
u) = A=A +x° [ Ix-t°, if x#£aVi: 0<u@)<oo:
i=1
N
6 v =@-0"A+x][Ix=t% if x#aVi 0<uv@) <o,

i=1
wherea, b, g;, A, B, G; € R.
Theorem 5. Letl < p < oco. Then there exists a constant & 0 such that
luS' @™ )o@y < Cll FllLen
for every fe LP(dv) if and only if the inequalities

A+ (a+1)(% — 1) < min(}, <1,

(7 B+ (B+D(5 -3 < min{g, 22),
Gi+(i+DGE -3 <min{}, 12} (=1....N),

a+(@+ (5 —3) > —min(z, 4%},
(8) b+ (8+ (3 — 3 > —min{3, 5}
g+»+DE -3 >-minf}, 25 (i=1...,N),
and
(9) A<a, B <b, G <g (i=1...,N)

hold.
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Remark. This result is true in the case of a generalized Jacobi weight, with no mass
points. It was proved by V. M. Badkov (se®]) for one weight (I = v). In the two weight
case, the “if” part can be obtained as a consequence, by inserting a suitable wyeight
u < p < v. Regarding the “only if" part,

[uS ™ )lILe@wy < CII fllLrw
implies

IuS @™ H)llLean < Cll flleeay
and this, in turn, implies (7), (8), and (9) (seeHRV1).

Proof of the Theorem. Assume
[uS" (™ )llLew < Cll fllLen

for f € LP(dv). Proceeding as inrdPRV], Theorem 6], we obtain (7), (8), and (9).
Assume now that (7), (8), and (9) hold. Accordingto Lemma 2 wite g =r = s
and the analogue of Lemma 4, we only need to prove the following inequalities:

@) [uwAE* (wwA Ollsaes < Cll fllisaen,  f € LPAu);
(b) v Ln(X, @)l p ) < C. n>0i=1...kand
(©) luL*(x, &) llLew) < C, i=1...,k

Condition (a) refers to the boundedness of the maximal operators related to the mea-
suresdu”, which are generalized Jacobi weights, with no mass points. In this case, the
corresponding inequalitie), (8) and(9), with the appropriate exponents, imply the
boundedness. It is easy to see that they actually hold.

To check inequalities (b) and (c), we can use the following estimates for the kernels
La(X, &) (see GPRVY): if g # £1,

(10) ILn(X, )] < C(1—x+n"2)~@+D/Aq 4 x 4 n=2)~@+D/4
x [Tax =t +n"bHn
tj#a;

if 1 is a mass point,

N
(12) ILa(, DI < CA+x+n"2) @DATT(x — ] +n7H /%
i=1

if —1is a mass point,

N
(12) ILa(x, =] < C(L—x+n72)~ @A (x —t;| + n~h) /2,

i=1
Itis not difficult to see that these inequalities, together with (7), (8), and (9), lead to (b)
and (c). n

Corollary 6. With the notation of Theoref the uniform boundedness

IUS\ W™ ) lLrn < Cll FllLew

holds for every n> 0 and f € LP(dv) if and only if the inequalitie$7), (8), and (9)
are verified
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Proof. The “if” part follows directly from the theorem and the “only if” part can be
proved again as ingPRV1]. [ ]

Corollary 7. Letv be a weight verifying6). Then
VXS THX) - f(x),  v-ae,
for every fe LP(dv) if and only if the inequality7) holds

Proof. The “only if” part is a consequence cBPRV2 Theorem 3]. For the “if” part,
we can take a weight such that the paifu, v) satisfies the conditions of Theorem 5
and it follows by standard arguments. Notice that the weigtibes not play any role
for the almost everywhere convergence. ]

3. The Commutator [Mp, §] for a Generalized Jacobi Weight
with Mass Points on[—1, 1]

In this section we will adopt the notation of Section 2, with the additional restriction
¥ >0,i =1,..., N. We will write | =[-1, 1].

The space BM@) (in the sequel, BMO) consists of the functions (modulus the
constants) of bounded mean oscillation, i.e., with

1
[bllemo = sup— | |b—b;| < oo,
SREIEA

where the supremum is taken over all the intenéhls 1, |J| means the Lebesgue

measure ofl and
1
b :—/b
KT

(the integrals are taken with respect to the Lebesgue measure). Givem & oo, we
also have (se€jR])

1 1/p
(19) ||b||BMo~sup(— / |b—bJ|p) .
3\l J;

Given 1< p < oo and a weigh in Muckenhoupt's clas#,, the commutatortfl, My]
of the Hilbert transform on is bounded inLP(y) if and only if b € BMO (see BL]).
The norm of the commutator depends on fgconstant okp. We refer the reader to
[GR] for further references oA, weights.

Our result is the following:

Theorem 8. If b € BMO, 1 < p < oo, and the inequalitieg7), (8), and (9) hold
(withy; > 0,i = 1,..., N), then there exists some constantQ0 such that

IU[Mp, SJ @™ ) [[Loen) < CIlFllLrin)

foreachn> 0and f € LP(dv).

For the proof of Theorem 8 we first state the following result:
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Lemma 9. With the hypothesis of TheoreBnwe have
(@) u@)llv=La(x, @)[b) —b@)]llLr@,y <C, n=0,i =1,...,k and
(b) v@) HuLn(x, &)[b(x) —b@)]le@ny <C, n=0,i=1,... k
Proof. Taker, ssuchthat Ir 4+ 1/s = 1/p’. By Hoélder’s inequality,
o™ La(X, @) [b(X) — b@)]Il Lo gy < 107 Ln(X, @) 1Ly 11000 — b@)]lILsen)-
From the John—Nirenberg inequality (13) it follows
Ib(X) — b@)llLs@w = C,
while (10), (11), and (12) lead to
v La(X, @) llLr@ < C

providedr is near enough t@'. This proves (a). Part (b) follows in a similar way. =

Now, according to Lemma 3, we only need to prove
Iu[Mp, Tl D)oy < Cll Fllte@n,  f e LP@dw), nx=o.
From the analogue of Lemma 4, it is enough to show
luw Mo, S 0wl ) lsesy < ClF il
foreachA C {ay, ..., a}. For the sake of simplicity, we will prove this inequality only
for A= @. Then,w” = 1,du” = du. Let us denot&, = 5.
Lemma 10. With the hypothesis of TheoreBnwe have

IU[Mb, S1@ ™ ) llo < CIl FllLea

foreachn> 0, f € LP(du).

Proof. Let us denote byK,(X, y) the nth kernel relative tadu = w(x) dx, by 5n
the orthonormal polynomials relative thx, and by Q, the orthonormal polynomials
relative to(1 — x?) du. Then,

Sg(x) = /. Kn(X, Y)3(y)w(y) dy.

Also,

N
IPa()| < CL—x+n2) 2D A4 x4 n ) B2 TT(x —ti| + n Y72,
i=1

N
1Qn(0)] < CA—x+n"2)~ @234 x4 n=2)~FEDTT(x — ] + 07/
i=1
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(see B]). Now, we have Pollard’s decomposition kf, (see P] and [M1]):

Kn(X, ¥) = InPop1(X) Prsa(y)
(1- yz) Qn(y)
-y
n+1(y)
— X

+ 5Py (0)

+ 50(1 — x3) Qn(x) 22

for some bounded sequendes}, {s,} of real numbers. Actually, from’ > 0 a.e., it
follows limr, = —1/2, lims, = 1/2 (it can be deduced fron[ and either R] or
[MNT]). Therefore, we can write

[Mb, §1] = rn\I'l.n - rn\l"2,n + Sn‘*p&n - Sn"IJ4,n,

where

W1ag(x) = [b(X) — by]Prsa(X) /. Bra(y)gw(y) dy.

Wong(X) = Poya(x) f. [b(y) — bi]Pa1(Y)g(y)w(y) dy,
W3ng(X) = Poya(x) [Mo. H]((l—yzléngw)(xx
Wyng(X) = (1—x%)Qn(X) [Mp, HI(Pri1gw)(X).

Lemma 11 below shows that the operatdrsg, are uniformly bounded; the proof for
W, is entirely similar. Lemma 12 shows that the operatbyg are uniformly bounded
and the proof fons, ,, is again similar. [ ]

Lemma 11. Withthe hypothesis of Theordythere exists a constant & 0 such that

-1
Uz (o™ F)llLe@w < Cll fliLedu

foreachn> 0and f € LP(du).

Proof. According to the definition o¥; ,, we must show

”[Mbv H]g|||_p(up|Pn+1\Pw) C”g”LP(vD‘QM P(1—-x2)~Pwl-p)"

By the result of S. BloomBL], it is enough to find weightp,} and positive constants
K1, K2 > 0 such that:

(@) Kau(x)P|Pry100Pw(X) < gn(X) < Kau(x)P|Qn(x)|~P(1—x?)~Pw(x)*~P; and
(b) ¢n € Ap(—1, 1), with an Ap-constant independent of

We takeg, of the form
on(¥) = 1=x)"°1L—x+n"?

N
x [T =t (x =t +n7H3
i=1

X (14 X)M1 (1 + X + 2
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Then, condition (b) is equivalent to
14) -1<ri<p-1, —1<ri+s<p-1 i=01...,N+1

(see GPVY). Now, it is not difficult to see from (7), (8), (9), and > 0 that we can
taker; such that

“1<ri<p-1 i=01...,N+1),

Ap—p+a(l-p)
Bp—p+8(1—-p)

o < ap+a,
rntt < bp+ 8,

=
=

Gip+y@—p =<r<gpt+wu i=1....,N),
and thers such that

-l<ri+s<p-1 (i=01...,N+1),
Ap—p+al-p + g+§ <l +s<ap+a-— g+1
IOIOOlIOIO24_oSo_IO0£I024,
3 1
Bp_p+ﬂ(1_p)+p(§+z) < YN+1+SN+1§bp+,B—p<§+Z>,
Gip+)4(1—p)+p%§ri+s fgip+y.—p% i=1,...,N).

Using the estimates fdP, and Q, and (14), we can see that these conditions imply (a)
and (b). [ ]

Lemma 12. With the hypothesis of Theordéythere exists a constant € 0 such that

-1
”u"pl,n(v f)”Lp(d/t) < C” f ”Lp(d/l.)

foreachn> 0and f e LP(duw).

Proof. Taking anyr > p and applying Hlder’'s inequality twice and then (13), it
follows:

-1 B 1 -15
luwsn@ ™ F)llLean < ClibllemollUP 2w Pl ™ Paralluw o Il FlLpa)-
Therefore, it is enough to have, for some- p,
~ 1 e
UPrpaw /p”L’(dx) o™ Poyall ey < C.

This can be verified using the estimates ﬁar [ |



Weighted Norm Inequalities for Polynomial Expansions 355

4. Weak Behavior for Jacobi Weights with Mass Points
on the Interval [—1, 1]

Let us now consider, as a particular case, a measure of the form

k
dv = (1= "1+ %/ dx+ ) Mis,
i=1
andu = v = 1. If eithere > —1/2 or 8 > —1/2, then Corollary 6 determines an open
interval of mean convergendgo, p1), where 1< pg < p1 < oo, and the$, are not
uniformly bounded irL ™ (dv) or LP(dv). By symmetry, we can suppose> —1/2,
a > B > —1, so that

A+
T 2043

A+

= a1

In the absolutely continuous case ane: 8 = 0 (i.e., for Legendre polynomials), when
the mean convergence interva{4g'3, 4), Chanillo proved (se€]]) that the partial sums

S, are not of weak type fop = 4, that is, there exists no constaht> 0 such that for
everyn > 0 andf e L*(dx)

1S fllLacc@x) < Cll fllLaax-

Itwas also shown that these operators are of restricted weak typefat (andp = 4/3,
by duality), that is, the previous inequality is verified if we replaceltAaorm by the
L P! norm. Actually, this is equivalent to the inequality

IS xellLac@x < ClixellLadx

for every measurable sEt(see W, Theorem 3.13]). The authors obtained (seBY/1],
[GPVZ) similar results for Jacobi weights. The weak boundedness at the endpoints has
also been considered for other operators of Fourier Analysis. An important previous
paper on the subject is due to Kenig and Toni&g][ who studied the disk multiplier
for radial functions.

We can now prove that these results also hold with mass points:

Theorem 13. Leta > —1/2,a > B > —1.If

A+ o _Aa+1])
T 2041 b= 20 +3°

then there exists no constant C such that for evesy®and f € LP(dv)

1S FllLeoo@dvy < Cll FllLocw)-

Theorem 14. Under the hypothesis of Theordr, there exists a constant & 0 such
that for every measurable set € [—1, 1] and every r> 0

1S xellLee@y < CllxellLrdy-
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Let us take now

u(x) = (L —x)3(1+ x)°, X € (=1, 1);

0 < u(£l) < oc.
We can extend Theorems 13 and 14 to the weighted case, when botlB are greater
than or equal ta-1/2.
Theorem 15. Leta, 8 > —1/2,1 < p < oc. If there exists a constant G 0 such
that

IuS U™ H)llees@n < CIl f llLan

for every n> 0and f € LP(dv), then the inequalities

a+(a+1 1 1 1 b+(@B+1 1.1 1
)<= -z =

“ p 2 4’ p 2 =7

are verified

Theorem 16. Letwa, 8 > —1/2,1 < p < oo. If the inequalities
1<a+( +1 1 1 ! 1<b+(/8+1) 1 1 !
=T p 2) " & 4= p 2) "4

hold, then there exists a constant£ 0 such that

—1
IuSi (U™ xe) llLrec@dvy < CllxellLpy)

for every n> 0 and every measurable setE[—1, 1].

Remark. By standard arguments of duality (s€HV7), Theorem 16 also holds when
= a+(+1 1 1 <1 ! b+(B+1) 1 1 <1
g =T p 2)=% 4= 0 2) 7

Proof of Theorems 14 and 16. We only need to show that conditions (a), (b), and (c)
in Lemma 1 are verified, witlp = g, r = oo, s = 1. The estimates (10), (11), (12) are
now

ILn(X, )] < C(1—x+n"2)~@+D/4q 4 x 4 n=2)-@+D/4
if & # +£1;
ILn(X, D] < C(L+ X +n~2)~ @b/
if 1 is a mass point; and
ILn(X, —1)| < C(1 — X + n~2)~@+D/4
if —1is a mass point, witlC independent of > 0 andx € [—1, 1]. Since either
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or
(1 — X+ n72)7(2a+l)/4 S (1 _ X)7(2(X+l)/4’
conditions (b) and (c) can be checked out taking into account that
1-x"elP®(1-x)%dx) <= pr+s+1>0, (r,s) #(0,-1)

(see PV, for example).
In order to prove condition (a), we can use Pollard’s decomposition for the kedrpels
(see P] and [M1]) and write

Tn f = l'nWl,n f + SnW2,n f— SnW3,n f,
with
limr, =-1/2, lims, =1/2,

1
Winf(0 = Poya(X) / P Ty .
Waon f(X) = Prpa(OH (L= y)2Qn(y) f (Y)w(y), X),
Wanf(X) = (1= x3)Qn(x)H (Pnsa(y) f (Y)w(y), X),

where{P,}ns0 is the sequence of orthonormal polynomials relativel o { Qn}nso iS
the sequence associated 10— x2) dv, w(x) = (1 — x)*(1+ x)#, andH is the Hilbert
transform on the intervaH1, 1].

The polynomialg P, }n=0 and{Qn}n>0 have the estimates (seB8pRVJ)

IPh(X)| < C(1— X +n~2)~@+D/4q 4 x 4 n=2)=@+D/4,
and
|Qn(X)| < C(L— X +n2)~@+3/41 4 x 4 n=2)=@H3/4

with C independent oh > 0 andx € [—1, 1], as in the absolutely continuous case.
We can now proceed exactly as in this case and showthat W5 ,, andWj , are of
restricted weak type (se&PV7). ]

Proof of Theorems 13 and 15. If
IuS U™ )o@ < Cll FllLew
for everyn > 0 andf € LP(dv), then
u e LP®dy),
ut e LP(dv),
uw Y21 — x?) V4 e LP>®(w),
and

u w21 — x3) V4 e LP (w),
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with w(x) = (1 — x)*(1 + x)? (see [EPV1)). This proves Theorem 13 fop =
A(a 4+ 1)/(2x 4+ 3) and implies

L cat@rn(2-2)<2 L obrprn(E-2)<2
1 e O R R
=T p 2) "4 4= p 2)"4

in Theorem 15. For

L an 1)(1 1)
_Z_ + (a + B—E

or
1 1 1

in Theorem 15 ang = 4(« + 1)/(2« + 1) in Theorem 13, it can be proved thak

andWj , are of weak type, whil&\V, , is not (like in [GPV1], [GPVY). ]

5. Laguerre Weights with a Positive Mass or0

Lemma 1 is also useful to study the mean boundedness of the Fourier series in the
polynomials orthonormal with respect to the measure

dv =e*x*dx+ Még

on [0, o) (i.e., a Laguerre weight with a mass > 0 at 0). In this case, parts (b) and
(c) can be handled having in mind that the kerriglgx, 0) admit the formula

(15) Lna(X,0) =r,Qn(X),

whereQ), is thenth orthonormal Laguerre polynomial relative to the measu¥e*+* d x.
This formula follows from the fact that

/OO Ln(X, )X Ry_1(X)[€7*x*dX + M&g] =0
0
and
f Qu)XRo_1(x)[e™*x* dx + Mdg] = 0
0

for any polynomialR,_; of degree at most — 1. The constants, = L,(0, 0)/Qn(0)

can be asymptotically estimated. As we mentioned in the proof of Lemifia, 10, 0)}

is an increasing, bounded sequence, since 0 is a mass pointi(geel]). On the other
hand, if we denote b{l.%*1} the classical, not normalized Laguerre polynomials relative
to e Xx**1dx, then it is well known that

atl _F(n+a+2)
L0 = n'T'(a+2)

(see ] and [M3]) and

'n+a+2

1
” LﬁJr ”Lz(e*xx“*ldx) = nl
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what, with our notation, implies

1/2
Frh+a+2)V% @t+D/2

©O= T

Therefore,
(16) I~ n-@+b/2,

According to (15) and (16), in order to find bounds for the kerng|éx, 0) we only

need bounds for the normalized classical Laguerre polynomials. These bounds, as well
as boundedness results for Laguerre series, can be found in Muckenhoupt's\pgper [
Thus, we can use Lemma 1 as in the generalized Jacobi case to find that Muckenhoupt’s
result (M3, Theorem 7] remains valid in the case of a Laguerre weight with a positive
mass on 0. The same can be done for Hermite seriesNs&zeTheorem 1]).
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