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1 Mathematical Aspects

Most of definition and theorems that we present in this section can be found in

[3]-

Definition 1 (Reduction) A reduction p:(C, == C, is a diagram:

h T~ f
g
where:

1. C’* and C, are chain-complexes.

[\

. f and g are chain complex morphisms.
3. h is a homotopy operator (degree +1).

4. These relations are satisfied:

(a) fg=ridec..

(b) gf +dh +hd =idg .

(¢) th=hg=hh=0.
Definition 2 (Cone) Let C, and D, be two chain-complexes and ¢ : C, < D,
be a chain-complex morphism. Then the cone of ¢ denoted by Cone(¢) is the

chain complex Cone(¢) = A, defined as follows. First A4,, := C,, ® D,,—1 (or
A, = Chi1 @ D,,); then the boundary operator is given by the matrix:

_ | de. ¢
dA* B |: 0 —dD* :|

Theorem 1 (Cone Reduction Theorem) Let p = (f,g,h) : C. =% D,
and p' = (f',¢',h) : C., == D. be two reductions and ¢ : C, «— C. a chain
complex morphism. Then these data define a canonical reduction:

P = (f",g" ") : Cone(6) —> Cone(foy') -



The proof of this theorem can be found in Page 57 of [3].

Theorem 2 (Cone Equivalence Theorem) Let ¢ : Cy gy < C) gy be a
chain complex morphism between two chain-complexes with effective homol-
ogy. Then a general algorithm computes a version with effective homology
Cone(¢)gp of the cone.

Theorem 3 (SES Theorems) Let

o P
0=~ A, ==B,=—=C,<~—0
7 7

be an effective short exact sequence of chain-complexes. Then three general
algorithms are available:

SESl : (B*’EH,C*,EH) = A*7EH
SESy : (Avew,Cygr) — B pn
SES3 : (A pn, Bsgu) = Cv En

The proof of these theorems can be found in Page 71 of [3].

Definition 3 (Pushout) Let X, Y and Z three simplicial sets and f : X — Y
and g : X — Z two simplicial maps. Then the pushout of (f,g) is the disjoint

union (yHXXIHZ)/N

where the equivalence relation ~ is defined as follows. For every simplex z € X,
on one hand (z x0) is identified to f(z) € Y and (x x 1) is identified to g(z) € Z.

A more detailed description of pushouts can be found in [2].

Theorem 4 Let EFHM(X), EFHM(Y), EFHM(Z), f : X — Y and g :
X — Z we can compute EFHM (P) where P is the pushout of f and g.

Proof.
We have the short exact sequence:

0<— M—=CXxI)=—=C(X x{0}) ¢ C(X x{1}) =—0

where M is the chain complex coming from X x I but with the simplices of
X x {0} and X x {1} cancelled.



In this case the functions i, j, o and p are defined as follows:

i CX x{0h)®eC(X x{1}) — C(XxI)
x x {0} — xx {0}
x x {1} —  xx {1}

jiC(XxI) — M
x x {a} — xx{a} ifa#0,1
x x {0} — nil
x x {1} — nil
oM — C(XxI)
xx{a} — xx{a}

C(X x{0}h)®eC(X x{1})

p:C(XxI) —
x x {a} — nil ifa#0,1
x x {0} — x x {0}
x x {1} — x x {1}

From the SES; Theorem we get the sequence
M <= Cone(i) <— Cone(i) == Cone(FE1)

in the following way:
To simplify the notation, we are going to use CI for C(X x I) and CO for

C(X x{0}) & C(X x {1})
We have two equivalences O] «<——= (] =—=> ECI and CO <— 00— ECO
and the morphism i : CI «— CO.

Lhi rhi lho rho
% )
CI CO,
lgi rfi 7 lgo rfo
lfi rgi lfo rgo
CI, ECI, CO, ECO,
% Ei

The morphism 7 naturally induces “parallel” morphism i := (Igi)¢(lfo) :
CI, «— CO, and then Fi := (rfi)(lgi)p(lfo)(rgo) : ECI, «— ECO..
Applying the Cone Equivalence Theorem, we get the equivalence

Cone(i) «— Cone(?) = Cone(FEi)

g

Cone(i),
lg; rfi
Lfi T9i
Cone(i) Cone(E1i).



where

d 1 dz i d Ei
dCone(i)* = |: COI* dCO :| , dcone(i)* = [ COI* d/\ ‘| ) dCOTL@(Ei)* = |: EgI* dECO

[0 [l 0 [0
lfz_{() lfo}’lgl_[o Zgo]’lhz_{o —lho]’

[ rfi (rfi)i(rho) [ rgi —(rhi)i(rgo) [ rhi (rhi)i(rho)
Tfi_{ 0 rfo ]’Tgl_{ 0 rgo },rhz—{ 0 —rho

Now, if we apply the SES; theorem, we get:

M <= Cone(i) <= Cone(i) == Cone(FEi)

N
Cone(i)
hm lgi rfi
&\ Lfi T9i
Cone(i) Cone(Ei)s
gm
fm

M
The values for I f;,lg;,lhi, T fi,7g;, h; where described previously and fm =
7, gm =0 — pdcro and hl = p.
We can now compose the two reductions M <= Cone(i) and Cone(i) <= Cone(i)

and we obtain:
M <= Cone(i) == Cone(Ei)

Ih rh;

.

o~

Cone(i)y
lg; rfi
lff Tgi
M, Cone(F1i).

where If = fmolf;, lg, =lg; o gm and lh] = lh; + lg; o hm o lf;.
Then, if we know EFHM(CX) and EFHM(C(X x I)) we can obtain
Let us consider now, the short exact sequence:

0<— M —=CP—=CY®CZ~<——0

where C'P is the chain complex coming from the pushout.



In this case the functions i2, j2,02 and p2 are defined as follows:
2:CYe(CZ — CP
Y — y ifyeCY
z — 2z ifzeCZ
j2:CP — M
zx{a} — zx{a} ifzxzeXandael
Y — nil if yey
z — nal ifzeZ
o2: M — CcpP
xx{a} — xx{a}
p2:CP — CYa®CZ

zx{a} nil ifreXandacl
Y — Yy ifyeY
z — z ifzeZ

From EFHM(Y), EFHM(Z) and EFHM (M) we have an algorithm that
returns EFHM (CP) from the SES; theorem.

The effective short exact sequence generates a connection chain complex
morphism y : M, — (CY @ CZ)E]. The “exponent” [1] explains the suspension
functor is applied to the chain-complex (CY @ CZ),: the degree of an element is
increased by 1 and the differential is replaced by the opposite. The connection
morphism is defined as the composition xy = pdcpo

Again, we have two homotopy equivalences

M <= Cone(i) == Cone(E1)

CYoCZ<— oy gcz—>ECYa®CZ)

and the chain complex morphism y that induces two “parallel” morphisms ¥ =
(lgyz)x(Lf}) and Ex = (rfyz)(lgyz)x(Lf;)(rg:):

lhyz  rhyz lh; rhi
) V)
CYoelCZ, <— Cone(i)
y % X lg; rfi
% M % ‘M
(CY e CZ). ECYe®(C2Z), M, Cone(Ei).
X Ex

The SES; theorem said that C'P is canonically isomorphic to Cone(x), then
we have

thy  rhy
W)
Cone(X)«
lgx T fx
1fx gx
CP 2 Cone(x) Cone(Ex)«



where:

dievecz). X d,_— %
dCone(x)* = |: ( g ) dM* y dCone()Z)* = (CYGOBCZ)* d ,

Conety

_ | decyecz). Ex | lfyz 0O _ | lgyz
dCone(Ex)* - |: 0 dcone(Ei)* le = 0 lfl/ 5 ng =

hy, = [ lhoyz _?h;: ] Crf, = { Tfoyz (Tfyi)z(rhi) }

rgi —(rhyz)x(rg; rhyz (rhyz)x(rh;
r9x={g (yrg)ix(g)]’m)(:[ i (yfl);i( )}

In this way from EFHM(X), EFHM(Y) and EFHM(Z) (EFHM(X x I)
can be obtained from EFHM(X) and EFHM(I)) we have an equivalence
between C'P and an effective chain complex.

2 Kenzo Files

In order to build a concrete program to compute EF HM (CP), we are going to
follow the steps of the proof for the Theorem 4.

The organization of the next subsections is as follows (this organization is
used in the Kenzo manual [1]): first, we give a small introduction of each one of
the files and the functions of them. After that, we introduce some examples of
the use of the files, more examples can be found in each one of the files. In some
of the subsections we introduce the way of searching the homology. Finally, we
give the list of Lisp files concerned in each subsection.

2.1 Direct Sum

Let X and Y two spaces, the programs described in this subsection builds X Y
The generators of X @& Y are represented internally in the system by a lisp
object of the form:

(:direct-sum-gsm (d-sum-ind.d-sum-o0ld))
where,

1. d-sum-ind is a non negative integer with value 0 or 1. 0 indicates the
origin of the simplex is X and 1 for Y.

2. d-sum-old is a a non degenerate simplex, coming from one of the argu-
ments X or Y as indicated by the value of d-sum-ind.

direct-sum-cmpr ecmprl cmpr2 [Function]

From the comparison functions cmpr! and cmpr2, build a comparison
function to compare two generators of a direct sum.

lg.

(2



direct-sum-basis basis1 basis2 [Function]

From the functions basis! and basis2 of the chain complexes X and Y,
build a basis function for the direct sum of these chain complexes.

direct-sum-cmbn-split embn [Function]

From a combination of elements of the direct sum of X and Y, it returns
two combinations the first one with elements of X and the second one
with the elements of Y.

direct-sum-dffr dffr1 dffr2 [Function]

From the lisp differential functions df frl and df fr2 of two chain com-
plexes, build the lisp differential function of the direct sum of these chain
complexes.

direct-sum chem1 chem?2 [Method]

Build the chain complex direct sum of the chain complexes chcml and
chem?2, using the basic functions above, as shown in the following call to
build-chcm:

(the chain-complex

(build-chcm

:cmpr (direct-sum-cmpr (cmpr chcml) (cmpr chcm?2))
:basis (direct-sum-basis (basis chcml) (basis chcm2))
:bsgn (direct-sum-gsm O (bsgn chcml))

:intr-dffr (direct-sum-dffr (dffr chcmil) (dffr chcm2))
:strt :cmbn

rorgn ‘(direct-sum ,chcml ,chcm2))

direct-sum-mrph sorc trgt mrphl mrph2 [Function]

Build the direct-sum of the morphisms mrphi and mrph2. This is a mor-
phism of the same degree as mrphl. Return the morphism built by the
following call to build-mrph:

(build-mrph

1sorc sorc

trgt trgt

:degr (degr mrphi)

:intr (direct-sum-dffr mrphl mrph2)

:strt :cmbn

rorgn ‘(direct-sum-mrph ,sorc ,trgt ,mrphl ,mrph2))
direct-sum-efhm chem1 chem?2 [Function]

Build the homotopy equivalence of the direct sum of chemi and chem.

Examples

(cat-init)

---done---



(setf s3 (sphere 3))

[K1 Simplicial-Set]

(setf s3+s3 (direct-sum s3 s3))

[K6 Chain-Complex]
(homology s3+s3 0 5)
Homology in dimension
Component Z

Component Z
---done---

Homology in dimension
--—done---

Homology in dimension
--—done---

Homology in dimension
Component Z

Component Z

---done---

Homology in dimension 4 :

-——done---
(setf 1s3 (loop-space

[K17 Simplicial-Group]

(sphere 3)))

(setf 1s3+s3 (direct-sum 1s3 s3))

[K29 Chain-Complex]

(homology 1s3 0 6)

Homology in dimension O :



Component Z
---done---
Homology in
---done---
Homology in
Component Z
---done---
Homology in
---done---
Homology in
Component Z
---done---
Homology in

—---done—--

dimension 1

dimension 2 :

dimension 3 :

dimension 4 :

dimension 5 :

(homology 1s3+s3 0 6)

Homology in
Component Z
Component Z
-——done---
Homology in
-——done---
Homology in
Component Z
-——done---

Homology in

dimension O :

dimension 1

dimension 2 :

dimension 3 :



Component Z
---done---
Homology in dimension 4 :
Component Z
--—done---
Homology in dimension 5 :

---done---

Searching homology for direct sum

The comment list of a direct sum has the form (DIRECT-SUM objectl object2).
The search-efhm method applied to a wedge, looks for the value of the efhm
slot of the two objects (i.e. two homotopy equivalences), then builds the direct
sum from these homotopy equivalences.

Lisp files concerned in this chapter

direct-sum.cl

2.2 AiBjC reduction

The algorithms of this section are used to build the reduction A <= Cone(i) .

hy—~ f
Cone(1) A

* o *
g

These algorithms were extracted from the GiftQ program of Francis Serger-
aert.

AiBjC-RDCT-F A ¢ rho B j sigma C [Function]
Build the f morphism of the reduction.
AiBjC-RDCT-G A i rho B j sigma C [Function]
Build the g morphism of the reduction.
AiBjC-RDCT-H A i rho B j sigma C [Function]
Build the A morphism of the reduction.
AiBjC-RDCT A i rho B j sigma C [Function]

Build the reduction using the basic functions above, as shown in the fol-
lowing call to build-rdct:

10



(build-rdct
:f (AiBjC-rdct-f A i rho B j sigma C)
:g (AiBjC-rdct-g A i rho B j sigma C)
:h (AiBjC-rdct-h A i rho B j sigma C)
:orgn ‘(AiBjC-rdct ,A ,i ,rho ,B ,j ,sigma ,C))

Lisp files concerned in this chapter

AiBjC-rdct.cl

2.3

Remove Covers

Let X a simplicial set, the programs described in this subsection builds the
chain complex M coming from X x I but with the simplices of X x {0} and
X x {1} cancelled.

The generators of the chain complex coming from X x I are represented
internally in the system by a lisp object of the form:

(:crpr (dgopl.gmsml).(dgop2.gmsm2))

where,

1.
2.

dgopl is an integer representing a coded degeneracy operator.

gmsml is a non-degenerate simplex of X, to which is applied the degen-
eracy operator dgopl.

dgop?2 is an integer representing a coded degeneracy operator.

gmsm?2 is a non-degenerate simplex of I, to which is applied the degen-
eracy operator dgop2. I can be represented in Kenzo as the standard
simplex of dimension 1, this Simplicial Set has two vertices represented as
1 and 2 and an edge 3.

The generators of the chain complex coming from X x I are represented
internally in the system by a lisp object of the form:

(:crpr (dgopl.gmsml). (dgop2.gmsm2))

where,

1.
2.

dgopl is an integer representing a coded degeneracy operator.

gmsml is a non-degenerate simplex of X, to which is applied the degen-
eracy operator dgopl.

dgop?2 is an integer representing a coded degeneracy operator.

gmsm?2 is the non-degenerate simplex 3 of I, because the simplices of
X x {0} and X x {1} are cancelled.

remove-covers-basis basis1 [Function]

From the functions basis! of the simplicial set X, build a basis function
for the chain complex from X x I but with the simplices of X x {0} and
X x {1} cancelled.

11



direct-sum-dffr dffr1 [Function]
From the lisp differential functions df frl of a simplicial set, build the lisp
differential function of the the chain complex from X x I but with the
simplices of X x {0} and X x {1} cancelled.

remove-covers smstl [Function/

Build the chain complex from X x I but with the simplices of X x {0} and
X x {1} cancelled, using the basic functions above and the comparison
function of X x I, as shown in the following code:

(defun remove-covers (smstl)
(declare (type simplicial-set smstl))
(let ((XxI (crts-prdc smstl (delta 1))))
(the chain-complex
(build-chcm
:cmpr (cmpr XxI)
:basis (remove-covers-basis (basis XxI))
:bsgn nil
rintr-dffr (remove-covers-dffr (dffr XxI))
:strt :cmbn
rorgn ‘(remove-covers ,smstl1)))))

remove-covers-efhm smst1 [Function/

Build the homotopy equivalence of the chain complex from X x I but with
the simplices of X x {0} and X x {1} cancelled, using the functions from
the AiBjC-rdct file.

Examples

(cat-init)

-——done---

(setf s3 (sphere 3))

[K1 Simplicial-Set]

(setf rcs3 (remove-covers s3))
[K16 Chain-Complex]

(homology rcs3 0 6)

Homology in dimension O :
---done---

Homology in dimension 1 :

Component Z

12



---done---

Homology in dimension
---done---

Homology in dimension
--—done---

Homology in dimension
Component Z

Homology in dimension

—---done—--

(setf 1s3 (loop-space (sphere 3)))

[K99 Simplicial-Group]

(setf rcls3 (remove-covers 1s3))

[K116 Chain-Complex]
(homology rcls3 0 6)
Homology in dimension
---done---

Homology in dimension
Component Z
---done---

Homology in dimension
--—done---

Homology in dimension
Component Z
---done---

Homology in dimension

13



---done---
Homology in dimension 5 :
Component Z

---done---

Lisp files concerned in this chapter

remove-covers.cl, AiBjC-rdct.cl

Searching homology for remove-covers

The comment list of a direct sum has the form (remove-covers objectl).
The search-efhm method applied to a remove-covers, looks for the value of the
efhm slot of the object (i.e. a homotopy equivalences), using the functions from
AiBjC-rdct.lisp builds the homotopy equivalence for the chain complex from
X x I but with the simplices of X x {0} and X x {1} cancelled.

2.4 Suspension

In Kenzo the suspension process is realized by the function suspension. This
function has one argument, a reduced object, but if the object is not reduced,
the result is undefined. Then, we have undertaken the task of developing the
functor suspension.

suspension2-basis basis [Function]
From the functions basis of a chain complex, build a basis function for the
suspension of this chain complex.
suspension2-dffr dffr [Function]
From the lisp differential functions df fr of a chain complex, build the lisp
differential function for the suspension of this chain complex.
suspension2 chem [Method]
Build the chain complex suspension of the chain complex chem, using the

basic functions above, as shown in the following call to build-chcm:

(build-chcm
:cmpr cmpr
:basis (suspension2-basis basis)
:bsgn nil
:intr-dffr (suspension2-intr-dffr dffr)
:strt :cmbn
torgn ‘(suspension2 ,chcm))

suspension2-intr mrph [Function]

From a Kenzo morphism mrph, build an internal function corresponding
to the suspension of the initial morphism.

14



suspension2 mrph [Method]

Build the suspension of the morphism mrph.

suspension2 rdct [Method]

Build the suspension of the reduction rdct.

suspension2 hmeq [Method]

Build the suspension of the homotopy equivalence hmeg.

Examples

(cat-init)

---done---

(setf k-z (k-z 1))

[K1 Abelian-Simplicial-Group]
(setf sk-z (suspension2 k-z))
[K13 Chain-Complex]

(homology sk-z 0 6)

Homology in dimension O :
---done---

Homology in dimension 1 :
Component Z

---done---

Homology in dimension 2 :
Component Z

---done---

Homology in dimension 3 :
---done---

Homology in dimension 4 :
Homology in dimension 5 :

—--—-done—--
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Lisp files concerned in this chapter

suspension2.cl

2.5 Cones

The cones are defined in the Kenzo system, but with the definition: Let C, and
D, be two chain-complexes and ¢ : C, < D, be a chain-complex morphism.
Then the cone of ¢ denoted by Cone(¢) is the chain complex Cone(¢) = A,
defined as follows. First A, :=C,, ® D,,_1 ...

But, the SES; theorem works with the alternative definition: Let C\ and
D, be two chain-complexes and ¢ : C, < D, be a chain-complex morphism.
Then the cone of ¢ denoted by Cone(¢) is the chain complex Cone(¢) = A,
defined as follows. First A, :=Cpy1® D,y .. ..

Then, we have defined a new file for cones based on the previous one.

2.5.1 Representation of a combination in a cone

To distinguish to which chain complex belongs a generator in a combination
of a cone, the following convention has been adopted: if gc is a generator of
any degree of C, it will be represented in the cone by the list (:con 0 gc) and
printed as <CONE 0 gc>. The symbol for D is (:con 1 gd).

2.5.2 Useful functions and macros for cones

con0 gnrt [Macro]
Build the representation of the generator gnrt belonging to the chain com-
plex C.

conl gnrt [Macro]
Build the representation of the generator gnrt belonging to the chain com-
plex D.

cone-cmbn-split2 embn [Function]

Give the 2-values result constitued by the 2 combinations components of
the cone combination cmbn. These combination are valid combinations in
their respective chain complexes. If cmbn has degree n then the combina-
tion of C has degree n + 1 and the combination of D has degree n.

2.6 Construction of a cone from a morphism

From the slots of the morphism ¢ : C, «— D,, it is possible to build the cone
chain complex. The three essential functions are the following:

cone-cmpr cmpr0 cmprl [Function]

From the 2 comparison functions cmpr0 and c¢mprl, build a comparison
function adequate to compare the generators as represented in the cone
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cone2-basis basisO basisl [Function]

From the 2 basis function basis0 and basis1, build a basis function for the
cone. If at least one of the chain complex component of the cone is locally
effective, the function returns the symbol :locally-effective

cone-3mrph-triangle-impl2 cmpr0 mrph0 mrphl phi [Function]

Define the differential in the cone according to the formula:

d(ce,ed) = (de(ce), phi(cec) — dp(cd))

cone2 mrph [Method]

Build Cone(mrph), using the above functions.

cone2-efhm mrph [Function]

From the formulas of the Cone Equivalence Theorem we can build the
homotopy equivalence for the Cone(mrph).

Examples

(cat-init)

---done---

(setf k (k-z 1))

[K1 Abelian-Simplicial-Group]

(setf u (idnt-mrph k))

[K13 Morphism (degree 0): K1 -> K1]
(setf ¢ (cone2 u))

[K15 Chain-Complex]

(setf *tc*x (cmbn 3 1 (con0 (1 2 3 4)) 2 (conl °(1 2 3 4))))

<2 * <CONE 0 (1 2 3 4)>>
<1 * <CONE 0 (1 2 3)>>
<-1 * <CONE 0 (1 2 7)>>
<1 * <CONE 0 (1 5 4)>>
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<1 * <CONE 0 (2 3 4)>>
<-1 * <CONE 0 (3 3 4)>>
<2 * <CONE 1 (1 2 3)>>
<-2 % <CONE 1 (1 5 4)>>
<-2 * <CONE 1 (2 3 4)>>
<2 * <CONE 1 (3 3 4)>>

Lisp files concerned in this chapter

cones2.cl, cones.cl

3 Pushout

This is the main file and is able to build the pushout from f : X — Y and
g : X — Z simplicial morphisms, we will denote the pushout as (f, g).

The non-degenerate simplex of (f, g) are represented internally in the system
by a lisp object of the form:

(:pushout-gsm (p-ind.p-o0ld))
where,

1. p-ind is a non negative integer with value 0, 1 or 2. p-ind indicates the
origin of the simplex, 0 for X x I, 1 for Y and 2 for Z.

2. p-old is a a non degenerate simplex of dimension, coming from one of the
arguments X X I or Y or Z as indicated by the value of p-ind.

pushout-cmpr emprl ecmpr2 ecmpr3 [Function]
From the comparison functions cmpri, cmpr2 and cmpr2, build a com-
parison function to compare two generators of a pushout.
pushout-basis basis1 basis2 basis3 [Function]
From the functions basis!, basis2 and basis3 of the simplicial sets X x I
Y and Z, build a basis function for the pushout of these simplicial sets.
pushout-face facel face2 face3 f g [Function]
From the face operators facel, face2 and face8 and the morphism f and
g, builds the face operator for the pushout.
pushout f g [Method]
Build the simplicial set pushout of the simplicial morphisms f and ¢, using

the basic functions above, as shown in the following call to build-smst:

(let* ((X (sorc f))
(XxI (crts-prdc X (delta 1)))
(Y (trgt £))
(Z (trgt g)))

(the simplicial-set
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(let ((rslt (build-smst

:cmpr (pushout-cmpr (cmpr XxI) (cmpr Y) (cmpr Z))
:basis (pushout-basis (basis XxI) (basis Y) (basis Z))
:bspn (pushout-gsm 1 (bspn Y))
:face (pushout-face (face XxI) (face Y) (face Z) f g)
:orgn ‘(pushout ,f ,g))))

(declare (type simplicial-set rslt))

rslt)))

pushout-efhm f g [Function/

Applying the process explained in Section 1, this function returns the
homotopy equivalence for the pushout.
Examples

From the pushout, we can generate several constructions.

Wedge

Let Y and Z two reduced simplicial sets and X the simplicial set which have
only 1 vertex. f and g are the morphism that goes from the vertex of X to the
base point of Y and Z respectively.

(cat-init)

--—-done---

(setf bk-z (k-z 2))

[K13 Abelian-Simplicial-Group]

(setf unipunctual (build-finite-ss ’(x)))

Checking the O-simplices...
[K25 Simplicial-Set]

(setf f (build-smmr :sorc unipunctual :trgt bk-z :degr 0
:sintr #’(lambda (dmns gmsm)
(declare (ignore gmsm))
(if (= dmns 0)
(absm 0 (bspn bk-z))
nil
))

rorgn ‘(triv ,unipunctual ,bk-z)))
[K30 Simplicial-Morphism K25 -> K13]
(setf p (pushout f f))

[K41 Simplicial-Set]
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(homology p
Homology in
Component Z
---done---
Homology in
---done---
Homology in
Component Z
---done---
Homology in
--—done---
Homology in
Component Z
Component Z
---done---
Homology in
---done---
Homology in
Component Z
Component Z
--—done---
Homology in
---done---
Homology in

Component Z

0 10)

dimension O :

dimension 1

dimension 2 :

dimension 3 :

dimension 4 :

dimension 5 :

dimension 6 :

dimension 7 :

dimension 8 :
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Component Z
---done---
Homology in dimension 9 :
--—done---
Join
If Y and Z are arbitrary spaces, then the pushout of both projections f :

YxZ—=Y and g:Y X Z — Z is nothing but the join of Y and Z.
Example: The join of the spheres S™ and S™ is the sphere S™tm+1,

(cat-init)
---done---
(setf s3 (sphere 3))
[K1 Simplicial-Set]
(setf s4 (sphere 4))
[K6 Simplicial-Set]
(setf s3xs4 (crts-prdc s3 s4))
[K11 Simplicial-Set]
(setf f (build-smmr :sorc s3xs4 :trgt s3 :degr O

:sintr #’(lambda (dmns gmsm)

(declare (ignore dmns))
(absm (dgopl gmsm) (gmsml gmsm)))

rorgn ‘(projection ,s3xs4 ,s3)))
[K16 Simplicial-Morphism K11 -> K1]
(setf g (build-smmr :sorc s3xs4 :trgt s4 :degr O

:sintr #’(lambda (dmns gmsm)

(declare (ignore dmns))
(absm (dgop2 gmsm) (gmsm2 gmsm)))

torgn ‘(projection ,s3xs4 ,s4)))

[K17 Simplicial-Morphism K11 -> K1]

(setf p (pushout f g))

[K28 Simplicial-Set]
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(homology p 0 9)

Homology in dimension O :
Component Z

---done---

Homology in dimension 1
---done---

Homology in dimension 2 :
---done---

Homology in dimension 3 :
--—-done---

Homology in dimension 4 :
---done---

Homology in dimension 5 :
---done---

Homology in dimension 6 :
---done---

Homology in dimension 7 :
--—done---

Homology in dimension 8 :
Component Z

--—done---

Homology in dimension 9 :

---done---

Direct Sum
If X = (, then the pushout is simply the disjoint union of Y and Z.
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(cat-init)

-——done---

(setf 12s3 (loop-space (sphere 3) 2))
[K18 Simplicial-Group]

(setf 13s4 (loop-space (sphere 4) 3))
[K59 Simplicial-Group]

(setf nil-ss (build-finite-ss nil))

Checking the O-simplices...
[K71 Simplicial-Set]

(setf f (build-smmr :sorc nil-ss :trgt 12s3 :degr 0
:sintr #’(lambda (dmns gmsm)
nil)
rorgn ‘(triv ,nil-ss ,12s3)))
[K76 Simplicial-Morphism K71 -> K18]
(setf g (build-smmr :sorc nil-ss :trgt 13s4 :degr O
:sintr #’(lambda (dmns gmsm)
nil)
rorgn ‘(triv ,nil-ss ,13s4)))
[K77 Simplicial-Morphism K71 -> K59]
(setf p (pushout f g))
[K88 Simplicial-Set]
(setf ds (direct-sum 12s3 13s4))
[K93 Chain-Complex]
(homology p 0 6)
Homology in dimension O :
Component Z

Component Z

---done---
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Homology in dimension 1
Component Z

Component Z

---done---

Homology in dimension 2 :
Component Z/2Z

Component Z/2Z
--—done---

Homology in dimension 3 :
Component Z/2Z

Component Z/2Z
---done---

Homology in dimension 4 :
Component Z/3Z

Component Z/3Z

Component Z/2Z

Component Z/2Z

Component Z

---done---

Homology in dimension 5 :
Component Z/3Z

Component Z/3Z

Component Z/2Z

Component Z/2Z

Component Z
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—---done---

(homology ds 0 6)

Homology in dimension O :

Component Z
Component Z
---done---
Homology in dimension 1
Component Z
Component Z

—-—-done——-

Homology in dimension 2 :

Component Z/2Z
Component Z/2Z
---done---

Homology in dimension 3 :
Component Z/2Z
Component Z/2Z

—-—-done——-

Homology in dimension 4 :

Component Z/3Z
Component Z/3Z
Component Z/2Z
Component Z/2Z
Component Z

—--—-done—--



Homology in dimension 5 :
Component Z/3Z

Component Z/3Z

Component Z/2Z

Component Z/2Z

Component Z

--—done---

P2(C)

A sophisticated example giving a geometrical construction of P%(C). You
take S? and you construct the first stage of the Whitehead tower by doing:

(cat-init)

-——done---

(setf s2 (sphere 2))

[K1 Simplicial-Set]

(setf ch2 ( chml-clss s2 2))

[K12 Cohomology-Class on K1 of degree 2]
(setf f2 (z-whitehead s2 ch2))

[K25 Fibration K1 -> K13]

(setf x3 (fibration-total £2))

[K31 Simplicial-Set]

(setf unipunctual (build-finite-ss ’(x)))

[K36 Simplicial-Set]

Then x3 has the homotopy type of the 3-sphere S3. More precisely x3 =
$2 X yo K(Z,1) with f2 an appropriate twisting function producing S* as a total
space.

It is easy to deduce a projection f : X3 — S2. If you take the pushout
of this f and the only map g : X3 — *, then the pushout is P?(C), which
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homology groups are H, (P?(C)) = Z if n = 0,2,4 and H,(P?(C)) = 0 in the
rest of cases as we can see:

(setf £ (build-smmr :sorc x3 :trgt s2 :degr O

:sintr #’(lambda (dmns gmsm)
(declare (ignore dmns))
(absm (dgopl gmsm) (gmsml gmsm)))
torgn ‘(proj ,x3 ,s2)))

[K41 Simplicial-Morphism K31 -> K1]

(setf g (build-smmr :sorc x3 :trgt unipunctual :degr O

:sintr #’(lambda (dmns gmsm)
(if (and (equal dmns 0)
(equal gmsm (bsgn x3)))
’x
nil))
torgn ‘(proj ,x3 ,unipunctual)))

[K42 Simplicial-Morphism K31 -> K36]

(setf p (pushout f g))

[K53 Simplicial-Set]

(homology p

Homology in
Component Z
---done---
Homology in
---done---
Homology in
Component Z
---done---
Homology in
---done---

Homology in

0 10)

dimension O :

dimension 1 :

dimension 2 :

dimension 3 :

dimension 4 :
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Component Z
---done---
Homology in dimension 5 :
---done---
Homology in dimension 6 :
---done---
Homology in dimension 7 :
--—done---
Homology in dimension 8 :
---done---
Homology in dimension 9 :

—---done—---

Lisp files concerned in this chapter

pushout.cl, [cones2.cl], [remove-covers.cl], [suspension2.cl], [direct-sum.cl], [AiBjC-
rdct.cl].
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