
Pushout construction for the Kenzo systems

Jónathan Heras

February 3, 2010

1 Basics on Homological Algebra

The following basic definitions can be found, for instance, in [9].

Definition 1.1. Let R be a ring with a unit element 1 6= 0. A left R-module M is an
additive Abelian group together with a map p : R ×M → M , denoted by p(r,m) ≡ rm,
such that for every r, r′ ∈ R and m,m′ ∈M

(r + r′)m = rm+ r′m

r(m+m′) = rm+ rm′

(rr′)m = r(r′m)

1m = m

A similar definition is given for a right R-module. Unless the distinction being neces-
sary, we will talk of an R-module M without specifying if it is a right or a left R-module.

For R = Z (the integer ring), a Z-module M is simply an Abelian group. The map
p : Z×M →M is given by

p(n,m) =


m+

n· · · +m if n > 0
0 if n = 0

(−m)+
−n· · · +(−m) if n < 0

Definition 1.2. A subset S of an R-module M is a submodule if S is closed under addition
and for all elements r ∈ R and s ∈ S, one has rs ∈ S.

One can easily observe that a submodule S of and R-module M is itself an R-module.

Definition 1.3. Let R be a ring and M and N be R-modules. An R-module morphism
α : M → N is a function from M to N such that for every m,m′ ∈M and r ∈ R

α(m+m′) = α(m) + α(m′)

α(rm) = rα(m)

Definition 1.4. Given a ring R, a chain complex C∗ of R-modules is a pair of sequences
C∗ = (Cn, dn)n∈Z where, for each degree n ∈ Z, Cn is an R-module, the homogeneous

1

component of degree n of C =
⊕

n∈ZCn, and dn : Cn → Cn−1 (the differential map) is an
R-module morphism (of degree −1) such that dn−1 ◦ dn = 0 for all n.

The module Cn is called the module of n-chains. The image Bn = Im dn+1 ⊆ Cn is
the (sub)module of n-boundaries. The kernel Zn = Ker dn ⊆ Cn is the (sub)module of
n-cycles.

Given a chain complex C∗ = (Cn, dn)n∈Z, the identities dn−1 ◦ dn = 0 are equivalent to
the inclusion relations Bn ⊆ Zn: every boundary is a cycle. But the converse in general
is not true. Thus the next definition makes sense.

Definition 1.5. Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules. For each degree
n ∈ Z, the n-homology module of C∗ is defined as the quotient module

Hn(C∗) =
Zn
Bn

Definition 1.6. A morphism of chain complexes of R-modules (or a chain complex mor-
phism) f : C∗ → D∗ between two chain complexes of R-modules C∗ = (Cn, dCn)n∈Z and
D∗ = (Dn, dDn)n∈Z is a graded R-module morphism (degree 0) which commutes with
the differential map. In other words, f consists of R-module morphisms fn : Cn → Dn

satisfying dDn ◦ fn = fn−1 ◦ dCn for each n.

It is not difficult to prove that a chain complex morphism f : C∗ → D∗ induces an
R-module morphism on the corresponding homology modules

H∗(f) : H∗(C∗) −→ H∗(D∗)

Definition 1.7. Let f, g : C∗ → D∗ be morphisms of chain complexes of R-modules. A
(chain) homotopy h from f to g, written h : f ' g, is a set of R-module morphisms
hn : Cn → Dn+1 such that hn−1 ◦ dCn + dDn+1 ◦ hn = fn − gn for all n.

Theorem 1.8. [9] Given f, g : C∗ → D∗ chain complex morphisms and h : f ' g a chain
homotopy, then the morphisms induced by f and g on homology are the same:

Hn(f) = Hn(g) : Hn(C∗) −→ Hn(D∗) for all n ∈ Z

Definition 1.9. A chain complex morphism f : C∗ → D∗ is said to be a chain equivalence
if there exist a morphism g : D∗ → C∗ and homotopies h1 : IdC∗ ' g ◦ f and h2 : IdD∗ '
f ◦ g.

Corollary 1.10. [9] If f : C∗ → D∗ is a chain equivalence, the induced map

Hn(f) : Hn(C∗) −→ Hn(D∗)

is an isomorphism for each dimension n.

Definition 1.11. A chain complex C∗ = {Cq, dq}q∈Z is exact at degree q if ker dq =
im dq+1, in other words if Hq(C∗) = 0, or if Zq(C∗) = Bq(C∗): every q-cycle is a q-
boundary. The chain complex is exact if it is exact in every degree. In the same case, it
is frequent also to state the chain complex is acyclic.

2

Proposition 1.12. Let (C∗, d) be a chain complex. If there exists a homotopy operator
h : C∗ → C∗+1 satisfying id = dh+ hd, then the chain complex (C∗, d) is acyclic.

Definition 1.13. A short exact sequence is a sequence of modules:

0← C ′′
j←− C

i←− C ′ ← 0

which is exact, that is in this case, the map i is injective, the map j is surjective and
im i = ker j.

2 Basics on Simplicial Topology

Simplicial sets were first introduced by Eilenberg and Zilber [5], who called them semi-
simplicial complexes. They can be used to express some topological properties of spaces
by means of combinatorial notions. A good reference for the definitions and results of
this section is [11].

Definition 2.1. A simplicial set K, is a union K =
⋃
q≥0

Kq, where the Kq are disjoints

sets, together with functions:

∂qi : Kq → Kq−1, q > 0, i = 0, . . . , q,
ηqi : Kq → Kq+1, q ≥ 0, i = 0, . . . , q,

subject to the relations:

(1) ∂q−1
i ∂qj = ∂q−1

j−1∂
q
i if i < j,

(2) ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j,

(3) ∂q+1
i ηqj = ηq−1

j−1∂
q
i if i < j,

(4) ∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i ,

(5) ∂q+1
i ηqj = ηq−1

j ∂qi−1 if i > j + 1,

the ∂qi and ηqi are called face and degeneracy operators respectively.
The elements of Kq are called q-simplices. A simplex x is degenerate if x = ηiy for some

simplex y and degeneracy operator ηi; otherwise x is non degenerate. We call an abstract
simplex a pair consisting of a (possibly iterated) degeneracy operator and a simplex.

Property 2.2. Let K be a simplicial set. Any degenerate n-simplex x ∈ Kn can be
expressed in a unique way as a (possibly) iterated degeneracy of a non-degenerate simplex
y in the following way:

x = ηjk . . . ηj1y

with y ∈ Kr, k = n− r > 0, and 0 ≤ j1 < · · · < jk < n

Another useful example of simplicial set is the standard m-simplex ∆[m].

Definition 2.3. For m ≥ 0, the standard m-simplex ∆[m] is a simplicial set built as
follows. An n-simplex of ∆[m] is any (n + 1)-tuple (a0, . . . , an) of integers such that
0 ≤ a0 ≤ · · · ≤ an ≤ m, and the face and degeneracy operators are defined as

∂i(a0, . . . , an) = (a0, . . . , ai−1, ai+1, . . . , an)

ηi(a0, . . . , an) = (a0, . . . , ai, ai, ai+1 . . . , an)

3

Let K be a simplicial set and ? ∈ K0 a chosen 0-simplex (called the base point). We
will also denote by ? the degenerate simplices ηn−1 . . . η0? ∈ Kn for every n.

Definition 2.4. A simplicial set K is said to be reduced (or 0-reduced) if K0 = {?}, in
other words, if K has only one 0-simplex. Given m ≥ 1, K is m-reduced if Kn = {?} for
all n ≤ m.

The categories S of simplicial sets and C of chain complexes of Z-modules are closely
connected: given a simplicial set K, it is possible to construct, in a very easy way, an
associated chain complex.

Definition 2.5. Let K be a simplicial set, we define the chain complex associated with K,
C∗(K) = (Cn(K), dn)n∈N, in the following way:

• Cn(K) = Z[Kn] is the free Z-module generated by Kn. Therefore an n-chain c ∈
Cn(K) is a combination c =

∑m
i=1 λixi with λi ∈ Z and xi ∈ Kn for 1 ≤ i ≤ m;

• the differential map dn : Cn(K)→ Cn−1(K) is given by

dn(x) =
n∑
i=0

(−1)i∂i(x) for x ∈ Kn

and it is extended by linearity to the combinations c =
∑m

i=1 λixi ∈ Cn(K).

Let us remark that if a simplex x ∈ Kn is degenerate, x = ηjy with 0 ≤ j < n and
y ∈ Kn−1, then dn(x) is a sum of degenerate (n− 1)-simplices:

dn(ηjy) =
n∑
i=0

(−1)i∂iηjy =

j−1∑
i=0

(−1)iηj−1∂iy + (−1)jy + (−1)j+1y

+
n∑

i=j+2

(−1)iηj∂i−1y =

j−1∑
i=0

(−1)iηj−1(∂iy) +
n∑

i=j+2

(−1)iηj(∂i−1y)

As a consequence, the next definition makes sense.

Definition 2.6. The normalized (non-degenerate) chain complex associated with K, CN
∗ (K) =

(CN
n (K), dNn)n∈N, is given by

• CN
n (K) = Cn(K)/Z[Dn(K)], where Dn(K) is the set of degenerate elements of Kn.

We can also think of CN
n (K) as the free Z-module generated by the set of non-

degenerate n-simplices of K, denoted by NDn(K). This means that an n-chain
c ∈ CN

n (K) is a combination c =
∑m

i=1 λixi where λi ∈ Z and xi is a non-degenerate
n-simplex of K for all 1 ≤ i ≤ m;

• the differential map dNn : CN
n (K)→ CN

n−1(K) is given by

dNn (x) =
n∑
i=0

(−1)i∂i(x) mod NDn−1(K) for x ∈ NDn(K)

We observe that dNn (x) is obtained from dn(x) by canceling the degenerate simplices.
The definition is extended by linearity to the combinations of CN

n (K).

4

Definition 2.7. Given a simplicial set K, the n-homology group of K, Hn(K), is the
n-homology group of the chain complex C∗(K):

Hn(K) = Hn(C∗(K))

Definition 2.8. Given two simplicial sets K and L, the Cartesian product K × L is a
simplicial set with n-simplices

(K × L)n = Kn × Ln
and if (x, y) ∈ Kn × Ln, the face and degeneracy operators are defined as

∂i(x, y) = (∂ix, ∂iy) for 0 ≤ i ≤ n

ηi(x, y) = (ηix, ηiy) for 0 ≤ i ≤ n

Definition 2.9. A (Abelian) simplicial group G is a simplicial object over the category
of (Abelian) groups, in other words, it is a simplicial set where each Gn is an (Abelian)
group and the face and degeneracy operators are group morphisms.

An important case of Abelian simplicial groups are the Eilenberg-MacLane spaces.

Definition 2.10. An Eilenberg-MacLane space of type (π, n) is a simplicial group K (with
base point e0 ∈ K0 such that πn(K) = π and πi(K) = 0 if i 6= n. The simplicial group K
is called a K(π, n) if it is an Eilenberg-MacLane space of type (π, n) an in addition it is
minimal.

In order to construct the spaces K(π, n)’s several methods can be used, although the
results are necessarily isomorphic [11]. Let us consider the following one.

Let π be an Abelian group. The simplicial Abelian group K = K(π, 0) is given by
Kn = π for all n ≥ 0, and with face and degeneracy operators ∂i : Kn = π → Kn−1 = π
and ηi : Kn = π → Kn+1 = π, 0 ≤ i ≤ n, equal to the identity map of the group π.

The space K(π, n) can be built recursively by means of the classifying space construc-
tor.

Definition 2.11. Let G be a simplicial Abelian group. The classifying space of G, written
B(G), is the simplicial Abelian group built as follows. The n-simplices of B(G) are the
elements of the Cartesian product

B(G)n = Gn−1 ×Gn−2 × · · ·G0.

In this way B(G)0 is the null group and has only one element that we denote by [].
For n ≥ 1, an element of B(G)n has the form [gn−1, . . . , g0] with gi ∈ Gi. The face and
degeneracy operators are given by

η0[] = [e0]

∂i[g0] = [], i = 0, 1

∂0[gn−1, . . . , g0] = [gn−2, . . . , g0]

∂i[gn−1, . . . , g0] = [∂i−1gn−1, . . . , ∂1gn−i+1, ∂0gn−i + gn−i−1, gn−i−2, . . . , g0], 0 < i ≤ n

η0[gn−1, . . . , g0] = [en, gn−1, . . . , g0]

ηi[gn−1, . . . , g0] = [ηi−1gn−1, . . . , η0gn−i, en−i, gn−i−1, . . . , g0], 0 < i ≤ n

where en denotes the null element of the Abelian group Gn.

5

We define inductively Bn(G) = B(Bn−1(G)) for all n ≥ 1, B0(G) = G.

Theorem 2.12. [11] Let π be an Abelian group and K(π, 0) as explained before. Then
Bn(K) is a K(π, n).

3 Basics on Effective Homology

In this section, we present some definitions (including the notion of object with effective
homology) and fundamental results about the effective homology method. More details
can be found in [12] and [13].

Definition 3.1. An effective chain complex is a free chain complex of Z-modules C∗ =
(Cn, dn)n∈N where each group Cn is finitely generated, a provided algorithm returns a
(distinguished) Z-basis in each degree n, and each differential map dn is also given by an
algorithm.

If a chain complex C∗ = (Cn, dn)n∈N is effective, the differential maps dn : Cn → Cn−1

can be expressed as finite integer matrices, and then it is possible to know everything
about C∗: we can compute the subgroups Ker dn and Im dn+1, we can determine whether
an n-chain c ∈ Cn is a cycle or a boundary, and in the last case, we can obtain z ∈ Cn+1

such that c = dn+1(z). In particular an elementary algorithm computes its homology
groups using, for example, the Smith Normal Form technique (for details, see [8]).

On the other hand, in many situations we must deal with locally effective chain com-
plexes. In this case we can have an infinite number of generators for each group Cn,
so that no global information is available. For example, it is not possible in general to
compute the subgroups Ker dn and Im dn+1, which can have infinite nature. However,
“local”1 information can be obtained: we can compute, for instance, the boundary of a
given element.

More generally, we talk of locally effective objects when only “local” computations
are possible. For instance, we can consider a locally effective simplicial set; the set of
n-simplices is not necessarily of finite type, but we can compute the faces of any specific
n-simplex.

The effective homology technique consists in combining locally effective objects with
effective chain complexes by means of chain equivalences. In this way, we will be able
to compute homology groups of locally effective objects even if we cannot obtain global
information about them.

Definition 3.2. A reduction ρ (also called contraction by other authors) between two
chain complexes C∗ andD∗, denoted in this memoir by ρ : C∗⇒⇒D∗, is a triple ρ = (f, g, h)

C∗

h
�� f

++
D∗

g
kk

where f and g are chain complex morphisms, h is a graded group morphism of degree +1,
and the following relations are satisfied:

1The qualifier “componentwise” would be more appropriate, but a little heavy.

6

1) f ◦ g = IdD∗ ;

2) dC ◦ h+ h ◦ dC = IdC∗ −g ◦ f ;

3) f ◦ h = 0; h ◦ g = 0; h ◦ h = 0.

We observe that this is a particular case of chain equivalence (Definition 1.9), where
h1 = h : IdC∗ ' g ◦ f and the second homotopy h2 : IdD∗ ' f ◦ g is the null map.

These relations express that C∗ is the direct sum of D∗ and an acyclic chain complex.
This decomposition is simply C∗ = Ker f ⊕ Im g, with Im g ∼= D∗ and H∗(Ker f) = 0.
In particular, this implies that the graded homology groups H∗(C∗) and H∗(D∗) are
canonically isomorphic.

Very frequently, the small chain complex D∗ is effective, so that we can compute its
homology groups by means of elementary operations with integer matrices. On the other
hand, in many situations the big chain complex C∗ is locally effective and therefore its
homology groups cannot directly be determined. However, if we know a reduction from
C∗ over D∗ and D∗ is effective, then we are also able to compute the homology groups of
C∗ by means of those of D∗.

Given a chain complex C∗, a trivial reduction ρ = (f, g, h) : C∗⇒⇒C∗ can be con-
structed, where f and g are the identity map and h = 0.

As we see in the next proposition, the composition of two reductions can be easily
constructed.

Proposition 3.3. Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : D∗⇒⇒E∗ be two
reductions. Another reduction ρ′′ = (f ′′, g′′, h′′) : C∗⇒⇒E∗ is defined by:

f ′′ = f ′ ◦ f
g′′ = g ◦ g′

h′′ = h+ g ◦ h′ ◦ f

Definition 3.4. A strong chain equivalence ε between two chain complexes C∗ and D∗,
denoted by ε : C∗⇐⇐⇒⇒D∗, is a triple (B∗, ρ1, ρ2) where B∗ is a chain complex, and ρ1 and
ρ2 are reductions from B∗ over C∗ and D∗ respectively:

B∗
ρ1
u}u} sss

ssssss
sss ρ2

!) !)KKK
KKK

KKK
KKK

C∗ D∗

Details about the different components in the new reductions can be found in [13].
Once we have introduced the notion of equivalence, it is possible to give the definition

of object with effective homology, which is the fundamental idea of the effective homology
technique.

Definition 3.5. An object with effective homology X is a quadruple (X,C∗(X), HC∗, ε)
where

• X is a locally effective object;

• C∗(X) is a (locally effective) chain complex canonically associated with X, that
allows us to study the homological nature of X;

7

• HC∗ is an effective chain complex;

• ε is an equivalence ε : C∗(X)⇐⇐⇒⇒HC∗.

For instance, if K is a simplicial set, then the chain complex canonically associated
with K, C∗(K), is described in Definition 2.5. Equivalently, we can also consider the
normalized chain complex CN

∗ (K) introduced in Definition 2.6. It has been already said
that the homology groups of both chain complexes are isomorphic, and in fact there exists
a reduction C∗(K)⇒⇒CN

∗ (K).

Theorem 3.6. Let K be a simplicial set, C∗(K) the chain complex associated with K,
and CN

∗ (K) the normalized chain complex. Then it is possible to build a reduction
ρ : C∗(K)⇒⇒CN

∗ (K).

In this way, K is a simplicial set with effective homology if an equivalence between
C∗(K) or CN

∗ (K) and an effective chain complex is known. Clearly, using Theorem 3.6 and
the composition of reductions and equivalences, from and equivalence ε : C∗(K)⇐⇐⇒⇒HC∗
we can determine ε′ : CN

∗ (K)⇐⇐⇒⇒HC∗ and reciprocally an equivalence ε′ : CN
∗ (K)⇐⇐⇒⇒HC∗

allows us to construct ε : C∗(K)⇐⇐⇒⇒HC∗.
It is clear that if X is an object with effective homology, then the homology groups

of X (which are those of the associated chain complex C∗(X)) are isomorphic to the
homology groups of the effective chain complex HC∗, that can easily be computed using
some elementary operations. But it is important to understand that in general the HC∗
component of an object with effective homology is not made of the homology groups of X;
this component HC∗ is a free Z-chain complex of finite type, in general with a non-null
differential.

The main problem now is the following: given a chain complex C∗ = (Cn, dn)n∈N, is it
possible to determine its effective homology? We must distinguish three cases.

• First of all, if a chain complex C∗ is by chance effective, then we can choose the trivial
effective homology: ε is the equivalence C∗⇐⇐C∗⇒⇒C∗, where the two components
ρ1 and ρ2 are both the trivial reduction on C∗.

• In some cases, some theoretical results are available providing an equivalence be-
tween some chain complex C∗ and an effective chain complex. Typically, the
Eilenberg-MacLane space K(Z, 1) has the homotopy type of the circle S1 and a
reduction C∗(K(Z, 1))⇒⇒C∗(S

1) can be built.

• The most important case: let X1, . . . , Xn be objects with effective homology and
Φ a constructor that produces a new space X = Φ(X1, . . . , Xn) (for example, the
Cartesian product of two simplicial sets, the classifying space of a simplicial group,
etc). In natural “reasonable” situations, there exists an effective homology version
of Φ that allows us to deduce a version with effective homology of X, the result of the
construction, from versions with effective homology of the arguments X1, . . . , Xn.

For instance, given two simplicial sets K and L with effective homology, then the
Cartesian product K × L is an object with effective homology too, and this is also valid
for twisted Cartesian products. We will see in Section ?? how this effective homology is
obtained.

8

The next two theorems will be useful when obtaining the effective homology version
of some topological constructors. The main idea is that given a reduction, if we perturb
one of the complexes then it is possible to perturb the other one so that we obtain a new
reduction between the perturbed complexes. The first theorem (the Trivial Perturbation
Lemma) is very easy, but it can be useful. The Basic Perturbation Lemma is not trivial
at all. It was discovered by Shih Weishu [14], although the abstract modern form was
given by Ronnie Brown [1].

Definition 3.7. Let C∗ = (Cn, dn)n∈N be a chain complex. A perturbation δ of the
differential d is a collection of group morphisms δ = {δn : Cn → Cn−1}n∈N such that the
sum d+ δ is also a differential, that is to say, (d+ δ) ◦ (d+ δ) = 0.

The perturbation δ produces a new chain complex C ′∗ = (Cn, dn + δn)n∈N; it is the
perturbed chain complex.

Theorem 3.8 (Trivial Perturbation Lemma, TPL). Let C∗ = (Cn, dCn)n∈N and D∗ =
(Dn, dDn)n∈N be two chain complexes, ρ = (f, g, h) : C∗⇒⇒D∗ a reduction, and δD a
perturbation of dD. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be constructed
where:

1) C ′∗ is the chain complex obtained from C∗ by replacing the old differential dC by the
perturbed differential (dC + g ◦ δD ◦ f);

2) the new chain complex D′∗ is obtained from the chain complex D∗ only by replacing
the old differential dD by (dD + δD);

3) f ′ = f ;

4) g′ = g;

5) h′ = h.

The perturbation δD of the small chain complex D∗ is naturally transferred (using the
reduction ρ) to the big chain complex C∗, obtaining in this way a new reduction ρ′ (which
in fact has the same components as ρ) between the perturbed chain complexes. On the
other hand, if we consider a perturbation dC of the top chain complex C∗, in general it
is not possible to perturb the small chain complex D∗ so that there exists a reduction
between the perturbed chain complexes. As we will see, we need an additional hypothesis.

Theorem 3.9 (Basic Perturbation Lemma, BPL). [1] Let us consider a reduction ρ =
(f, g, h) : C∗⇒⇒D∗ between two chain complexes C∗ = (Cn, dCn)n∈N andD∗ = (Dn, dDn)n∈N,
and δC a perturbation of dC . Furthermore, the composite function h◦δC is assumed locally
nilpotent, in other words, given x ∈ C∗ there exists m ∈ N such that (h ◦ δC)m(x) = 0.
Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be constructed where:

1) C ′∗ is the chain complex obtained from the chain complex C∗ by replacing the old
differential dC by (dC + δC);

2) the new chain complex D′∗ is obtained from D∗ by replacing the old differential dD
by (dD + δD), with δD = f ◦ δC ◦ φ ◦ g = f ◦ ψ ◦ δC ◦ g;

9

3) f ′ = f ◦ ψ = f ◦ (IdC∗ −δC ◦ φ ◦ h);

4) g′ = φ ◦ g;

5) h′ = φ ◦ h = h ◦ ψ;

with the operators φ and ψ defined by

φ =
∞∑
i=0

(−1)i(h ◦ δC)i

ψ =
∞∑
i=0

(−1)i(δC ◦ h)i = IdC∗ −δC ◦ φ ◦ h,

the convergence of these series being ensured by the locally nilpotency of the compositions
h ◦ δC and δC ◦ h.

The cone constructor is important in homological algebra, and we present here the
most elementary properties, a complete study can be found in [13]. The following defini-
tions and theorems will be used in order to generate the effective homology of the pushout
as we will see in Section .

Definition 3.10. Let C∗ and D∗ be two chain complexes and φ : C∗ ← D∗ be a
chain-complex morphism. Then the cone of φ denoted by Cone(φ) is the chain complex
Cone(φ) = A∗ defined as follows. First An := Cn+1 ⊕Dn; then the boundary operator is
given by the matrix:

dA∗ :=

[
dC∗ φ
0 −dD∗

]
Theorem 3.11 (Cone Reduction Theorem). Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ =
(f ′, g′, h′) : C ′∗⇒⇒D′∗ be two reductions and φ : C∗ ← C ′∗ a chain complex morphism.
THen these data define a canonical reduction:

ρ′′ = (f ′′, g′′, h′′) : Cone(φ)⇒⇒Cone(fφg)

Theorem 3.12 (Cone Equivalence Theorem). Let φ : C∗,EH ← C ′∗,EH be a chain com-
plex morphism between two chain complexes with effective homology. Then a general
algorithm computes a version with effective homology Cone(φ)EH of the cone.

Ĉ∗

lh

��

rh

��

lf����
��

��
�� rf

!!CC
CC

CC
CC Ĉ ′∗

lh′

��

rh′

��

lf ′~~}}
}}

}}
} rf ′

!!DD
DD

DD
DD

φ̂

mm

C∗

lg
??��������

EC∗

rg

aaCCCCCCCC
C ′∗

lg′
>>}}}}}}}

φ

gg EC ′∗

rg′

aaDDDDDDDD

Eφ

hh

10

Definition 3.13. An effective short exact sequence of chain complexes is a diagram:

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

where i and j are chain complexes morphisms, ρ (retraction) and σ (section) are graded
module morphisms satisfying:

• ρi = idC∗ ;

• iρ+ σj = idB∗ ;

• jσ = idA∗ .

It is an exact sequence in both directions, but to the left it is an exact sequence of
chain complexes, and to the right it is only an exact sequence of graded modules.

Theorem 3.14 (SES Theorems). Let

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

be an effective short exact sequence of chain-complexes. Then three general algorithms
are available:

SES1 : (B∗,EH , C∗,EH) 7→ A∗,EH
SES2 : (A∗,EH , C∗,EH) 7→ B∗,EH
SES3 : (A∗,EH , B∗,EH) 7→ C∗,EH

Lemma 3.15. Let

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

be an effective short exact sequence of chain-complexes. Then the effective exact sequence
produces a reduction Cone(i)⇒⇒A∗.

Lemma 3.16. Let

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

be an effective short exact sequence of chain-complexes. Then the effective exact sequence
generates a connection chain complex morphism χ : A∗ → C

[1]
∗ . The “exponent” [1]

explains the suspension functor is applied to the chain complex C∗: the degree of an
element is increased by 1 and the differential is replaced by the opposite. Besides, B∗ is
canonically isomorphic to Cone(χ).

4 The Kenzo program

Kenzo is a 16000 lines program written in Common Lisp [6], devoted to Symbolic Compu-
tation in Algebraic Topology. It was developed by Francis Sergeraert and some co-workers,
and is www-available (see [4] for documentation and details). It works with the main

11

mathematical structures used in Simplicial Algebraic Topology, [7], (chain complexes, dif-
ferential graded algebras, simplicial sets, morphisms between these objects, reductions
and so on) and has obtained some results (for example, homology groups of iterated loop
spaces of a loop space modified by a cell attachment) which have not been confirmed nor
refuted by any other means.

The fundamental idea of the Kenzo system is the notion of object with effective ho-
mology combined with functional programming. By using these two tools, not only known
algorithms were implemented but also new methods were developed to transform the
main “tools” of Algebraic Topology, mainly the spectral sequences, not at all algorithmic
in the traditional organization, into actual computing methods.

Making use of the existing tools in Common Lisp for inheritance between classes (in
CLOS, the Common Lisp Object System), the main mathematical structures of Simplicial
Algebraic Topology and relations among them are represented in Kenzo. For instance,
the following class definition corresponds to the simplest algebraic structure implemented
in Kenzo, the Chain complexes:
. .

(DEFCLASS CHAIN-COMPLEX ()
((cmpr :type cmprf :initarg :cmpr :reader cmpr1)
(basis :type basis :initarg :basis :reader basis1)
;; BaSe GeNerator
(bsgn :type gnrt :initarg :bsgn :reader bsgn)
;; DiFFeRential
(dffr :type morphism :initarg :dffr :reader dffr1)
;; GRound MoDule
(grmd :type chain-complex :initarg :grmd :reader grmd)
;; EFfective HoMology
(efhm :type homotopy-equivalence :initarg :efhm :reader efhm)
;; IDentification NuMber
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
;; ORiGiN
(orgn :type list :initarg :orgn :reader orgn)))

. .

The relevant slots are cmpr, a function coding the equality between the generators;
basis, the function defining the distinguished ordered basis of each group of n-chains,
or the keyword :locally-effective if the chain complex is not effective; dffr, the
differential morphism, which is an instance of the class MORPHISM; efhm, which stores
information about the effective homology of the chain complex; and orgn, used to keep
record of information about the object.

The class CHAIN-COMPLEX is extended by inheritance with new slots, obtaining more
elaborate structures. For instance, extending it with an aprd (algebra product) slot, we
obtain the ALGEBRA class. Multiple inheritance is also available; for example, the class
SIMPLICIAL-GROUP is obtained by inheritance from the classes KAN and HOPF-ALGEBRA.

It is worth emphasizing here that simplicial sets have also been implemented as a
subclass of CHAIN-COMPLEX. To be precise, the class SIMPLICIAL-SET inherits from the
class COALGEBRA, which is a direct subclass of CHAIN-COMPLEX, with a slot cprd (the
coproduct). The class SIMPLICIAL-SET has then one slot of its own: face, a Lisp function
computing any face of a simplex of the simplicial set. The basis is in this case (when
working with effective objects) the list of non-degenerate simplices, and the differential
map of the associated chain complex is given by the alternate sum of the faces, where the

12

degenerate simplices are canceled.
Let us show a simple example to illustrate which is possible with the Kenzo program.

The homology group H5Ω
3Moore(Z2, 4) is “in principle” reachable thanks to old methods,

see [2], but experience shows even the most skilful topologist meet some difficulties to
determine it, see [12]. With the Kenzo program, you construct the Moore space in the
following way:
. .

> (setf m4 (moore 2 4)) z
[K1 Simplicial-Set]
. .

A Kenzo display must be read as follows. The initial > is the Lisp prompt of this Com-
mon Lisp implementation. The user types out a Lisp statement, here (setf m4 (moore 2 4))

and the maltese cross z (in fact not visible on the user screen) marks in this text the end
of the Lisp statement, just to help the reader: the right number of closing parentheses is
reached. The Return key then asks Lisp to evaluate the Lisp statement. Here the Moore
space Moore(Z2, 4) is constructed by the Kenzo function moore, taking account of the
arguments 2 and 4, and this Moore space is assigned to the Lisp symbol m4 for later use.
Also evaluating a Lisp statement returns an object, the result of the evaluation, in this
case the Lisp object implementing the Moore space, displayed as [K1 Simplicial-Set],
that is, the Kenzo object #1, a Simplicial-Set. The internal structure of this object,
made of a rich set of data, in particular many functional components, is not displayed.

It is then possible to construct the third loop space of this Moore space Ω3Moore(Z2, 4),
a simplicial group.
. .

> (setf o3m4 (loop-space m4 3)) z
[K30 Simplicial-Group]
. .

The combinatorial version of the loop space is highly infinite: it is a combinatorial
version of the space of continuos maps S3 → Moore(Z2, 4), but functionally codes as a
small set of functions in a Simplicial-Group object. This object is locally effective and no
global information is available. For instance if we try to obtain the list of non-degenerate
simplices in dimension 3, we obtain an error.
. .

> (basis o3m4 3) z
Error: The obtect [K30 Simplicial-Group] is locally-effective
. .

The key point to compute the homology groups of o3m4, it is an equivalence between
the locally effective chain complex K30= Ω3Moore(Z2, 4) and an effective chain complex
which is not detailed. We can ask for the effective homology of o3m4.
. .

> (efhm o3m4) z
[K404 Homotopy-Equivalence K30 <= K394 => K390]
. .

So, that the homology groups of Ω3Moore(Z2, 4) are computable through the effective
equivalence object K390:

13

. .

> (homology o3m4 5) z
Homology in dimension 5:
Component Z/Z2
Component Z/Z2
Component Z/Z2
Component Z/Z2
Component Z/Z2
---done---
. .

To be interpreted as stating H5Ω
3Moore(Z2, 4) = Z5

2. In this way, Kenzo computes
the homology groups of complicated spaces by means of the effective homology method.

5 Pushout preliminaries

The following definitions can be found, for instance, in [10, 3].

Definition 5.1 (Pushout). Consider two morphisms f : X → Y , g : X → Z in a category
C. A pushout of (f, g) is a triple (P, f ′, g′) where

1. P is an object of C,

2. f ′ : Y → P , g′ : Z → P are morphism of C such that f ◦ g′ = g ◦ f ′,

and for every other triple (Q, f ′′, g′′) where

1. Q is an object of C,

2. f ′′ : Y → Q, g′′ : Z → Q are morphism of C such that f ◦ g′′ = g ◦ f ′′,

there exists a unique morphism p : P → Q such that f ′′ = p ◦ f ′ and g′′ = p ◦ g′ (see the
following diagram)

X
f //

g

��

Y

f ′

�� f ′′

��<
<<

<<
<<

<<
<<

<<
<<

<<

Z
g′ //

g′′

))TTTTTTTTTTTTTTTTTTTT P
p

&&MMMMMMM

Q

Definition 5.2 (Homotopy Pushout). A homotopy commutative diagram

X
f //

g

��

Y

f ′

��
Z

g′ // P

equipped with H : f ′ ◦ f ∼ g′ ◦ g, is called a homotopy pushout when for any commu-
tative diagram

14

X
f //

g

��

Y

f ′′

��
Z

g′′ // Q

equipped with G : f ′′ ◦ f ∼ g′′ ◦ g, the following properties hold:

1. there exists a map p : P → Q and homotopies K : f ′′ ∼ p ◦ f ′ and L : p ◦ g′ ∼ g′′

such that the whole diagram

X
f //

g

��

Y

f ′

�� f ′′

��<
<<

<<
<<

<<
<<

<<
<<

<<

Z
g′ //

g′′

))TTTTTTTTTTTTTTTTTTTT P
p

&&MMMMMMM

Q

with all maps and homotopies above is homotopy commutative

2. if there exists another map p′ : P → Q and homotopies K ′ : f ′′ ∼ p ◦ f ′ and
L′ : p ◦ g′ ∼ g′′ such that the diagram

X
f //

g

��

Y

f ′

�� f ′′

��<
<<

<<
<<

<<
<<

<<
<<

<<

Z
g′ //

g′′

))TTTTTTTTTTTTTTTTTTTT P
p′

&&MMMMMMM

Q

is homotopy commutative , then there exists a homotopy M : p ∼ p′ such that the
whole diagram with all maps and homotopies above is homotopy commutative.

There is a “standard” construction of the homotopy pushout of any two maps f :
X → Y , g : X → Z as:

P(f,g)
∼= (Y qX × I q Z)/ ∼

where the equivalence relation ∼ is defined as follows. For every x ∈ X, (x×0) is identified
to f(x) ∈ Y and (x× 1) is identified to g(x) ∈ Z.

Let X, Y and Z be 1-reduced simplicial sets with effective homology such that three
equivalences are given:

DX∗

t|t| pppppp
pppppp

"* "*MMMMMM

MMMMMM

C∗(X) HX∗

DY∗

t|t| qqqqqq
qqqqqq

!) !)LLL
LLL

LLL
LLL

C∗(Y) HY∗

DZ∗

t|t| qqqqqq
qqqqqq

"* "*LLLLLL
LLLLLL

C∗(Z) HZ∗

where HX∗, HY∗ and HZ∗ are effective chain complexes; and let f : X → Y , g :
X → Z simplicial morphism. Our goal in this section is the computation of the effective

15

homology of the simplicial set P(f,g). This effective homology will be obtained from two
short exact sequence and the Theorem 3.14.

Let us consider the short exact sequence

0 Moo
σ // C(X × I)
j

oo
ρ// C(X × {0})⊕ C(X × {1})
i

oo 0oo

where I is the unit interval [0, 1] and M is the chain complex coming from X × I but
with the simplices of X × {0} and X × {1} cancelled; and the morphism i, j, σ and ρ are
defined as follows:

i : C(X × {0})⊕ C(X × {1}) → C(X × I)
x× {0} 7→ x× {0}
x× {1} 7→ x× {1}

j : C(X × I) → M
x× {a} 7→ x× {a} if a 6= 0, 1
x× {0} 7→ nil
x× {1} 7→ nil

σ : M → C(X × I)
x× {a} 7→ x× {a}

ρ : C(X × I) → C(X × {0})⊕ C(X × {1})
x× {a} 7→ nil if a 6= 0, 1
x× {0} 7→ x× {0}
x× {1} 7→ x× {1}

Besides, three algorithms are available.

Algorithm 1.
Input: two simplicial sets X and Y with effective homology.
Output: an equivalence C∗(X × Y)⇐⇐DC∗(X × Y)⇒⇒HC∗(X × Y)

Algorithm 2.
Input: two simplicial sets X and Y with effective homology.
Output: an equivalence C∗(X ⊕ Y)⇐⇐DC∗(X ⊕ Y)⇒⇒HC∗(X ⊕ Y)

Algorithm 3.
Input: a morphism i between two chain complexes C∗X and C∗Y with effective homology.

DC∗X

lhx

��

rhx

��

lfxwwooooooo rfx

''PPPPPPP DC∗Y

lhy

��

rhy

��

lfywwppppppp rfy

''PPPPPPP
î

oo

C∗X

lgx 77ooooooo

HC∗X
rgx

ggPPPPPPP
C∗Y

lgy 77ppppppp

i

hh HC∗Y
rgy

ggPPPPPPP

Hi

hh

16

Output: an equivalence Cone(i)⇐⇐Cone(̂i)⇒⇒Cone(Hi), where î := (lgx)i(lfy) and
Hi := (rfx)̂i(rgy).

From the SES1 Theorem (Theorem 3.14) we can consider the sequence:

M⇐⇐Cone(i)⇐⇐Cone(̂i)⇒⇒Cone(Hi)

defined as follows.
From algorithms 1 and 2 two equivalences can be dealt, C∗(X × I)⇐⇐DC(X ×

I)∗⇒⇒HC(X× I)∗ and C∗(X×{0}⊕X×{1})⇐⇐DC(X×{0}⊕X×{1})∗⇒⇒HC(X×
{0} ⊕X × {1})∗, and the morphism i : C∗(X × I) ← C∗(X × {0} ⊕X × {1}). In order
to simplify the notation, C∗(X × I) and C∗(X × {0} ⊕X × {1}) are called CI and CO
respectively.

DCI∗

lhi

��

rhi

��

lfixxqqqqqqq rfi

''OOOOOOO DCO∗

lho

��

rho

��

lfowwppppppp rfo

''PPPPPPP
î

oo

CI∗

lgi 88qqqqqqq
HCI∗

rgi

ggOOOOOOO
CO∗

lgo 77ppppppp

i

hh HCO∗
rgo

ggPPPPPPP

Hi

hh

The morphism i naturally induces “parallel” morphism î := (lgi)i(lfo) : DCI∗ ← DCO∗
and then Hi := (rfi)(lgi)i(lfo)(rgo) : ECI∗ ← ECO∗.

Applying the Cone Equivalence Theorem (Theorem 3.12), the next equivalence is
defined (that is algorithm 3):

Cone(̂i)∗

lhi

��

rhi

��

lfivvmmmmmmm rfi

((RRRRRRRR

Cone(i)∗

lgi 66mmmmmmm

Cone(Hi)∗
rgi

hhRRRRRRRR

where

dCone(i)∗ =

[
dCI∗ i

0 dCO∗

]
, dCone(̂i)∗ =

[
dDCI∗ î

0 dDCO∗

]
, dCone(Hi)∗ =

[
dHCI∗ Hi

0 dHCO∗

]

lfi =

[
lfi 0
0 lfo

]
, lgi =

[
lgi 0
0 lgo

]
, lhi =

[
lhi 0
0 −lho

]
,

rfi =

[
rfi (rfi)̂i(rho)
0 rfo

]
, rgi =

[
rgi −(rhi)̂i(rgo)
0 rgo

]
, rhi =

[
rhi (rhi)̂i(rho)
0 −rho

]
.

17

Now, applying the SES1 Theorem (Theorem 3.14) we have the sequenceM⇐⇐Cone(i)⇐⇐Cone(̂i)⇒⇒Cone(Hi):

Cone(̂i)∗

lhi

��

rhi

��

lfivvmmmmmmm rfi

((RRRRRRRR

Cone(i)∗

hm

��

lgi 66mmmmmmm

fmwwoooooooo
Cone(Hi)∗

rgi

hhRRRRRRRR

M

gm 77oooooooo

where the values for lfi, lgi, lhi, rfi, rgi, rhi where described previously and fm = j, gm =
σ − ρdCIσ and h1 = ρ.

Algorithm 4.

Input: the short exact sequence 0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo where A,B and C are

simplicial sets with effective homology and i, j, σ and ρ are morphism.
Output: the equivalence A⇐⇐Cone(i).

Applying Proposition 3.3 to the reductions M⇐⇐Cone(i) and Cone(i)⇐⇐ the reduc-
tion M⇐⇐Cone(̂i) is obtained. Then, the following homotopy equivalence is defined.

M ksks Cone(̂i) +3 +3 Cone(Ei)

Cone(̂i)∗

lh′i

��

rhi

��

lf ′izzvvvvvvvvv rfi

&&NNNNNNNNNNN

M∗

lg′i
::vvvvvvvvv

Cone(Hi)∗

rgi

ffNNNNNNNNNNN

where lf ′i = fm ◦ lfi, lg′i = lgi ◦ gm and lh′i = lhi + lgi ◦ hm ◦ lfi.

Algorithm 5.
Input: a simplicial set X.
Output: an equivalence M⇐⇐DM⇒⇒HM , where M is the chain complex coming from
X × I but with the simplices of X × {0} and X × {1} cancelled.

Let us consider, the short exact sequence:

0 Moo
σ2 //

CP
j2

oo
ρ2//
CY ⊕ CZ

i2
oo 0oo

where CP is the chain complex coming from the pushout P(f,g) with f : X → Y and
g : X → Z.

18

In this case the functions i2, j2, σ2 and ρ2 are defined as follows:

i2 : CY ⊕ CZ → CP
y 7→ y if y ∈ CY
z 7→ z if z ∈ CZ

j2 : CP → M
x× {a} 7→ x× {a} if x ∈ X and a ∈ I

y 7→ nil if y ∈ Y
z 7→ nil if z ∈ Z

σ2 : M → CP
x× {a} 7→ x× {a}

ρ2 : CP → CY ⊕ CZ
x× {a} 7→ nil if x ∈ X and a ∈ I

y 7→ y if y ∈ Y
z 7→ z if z ∈ Z

Applying SES2 Theorem (Theorem 3.14) the above effective short exact sequence

generates a connection chain complex morphism: χ : M∗ → (CY ⊕ CZ)
[1]
∗ . The “expo-

nent” [1] explains the suspension functor is applied to the chain-complex (CY ⊕ CZ)∗:
the degree of an element is increased by 1 and the differential is replaced by the opposite.
The connection morphism is defined as the composition χ = ρdCPσ.

Algorithm 6.
Input: a chain complex X with effective homology.
Output: an equivalence X [1]⇐⇐DX [1]⇒⇒HX [1], where X [1] is the chain complex coming
from applying the suspension functor to X.

From the two equivalencesM⇐⇐Cone(̂i)⇒⇒Cone(Hi), C∗(Y⊕Z)⇐⇐DC∗(Y⊕Z)⇒⇒HC∗(Y⊕
Z) and the chain complex morphism χ that induces two “parallel” morphisms χ̂ =
(lgyz)χ(lf ′i) and Hχ = (rfyz)(lgyz)χ(lf ′i)(rgi):

D(CY ⊕ CZ)∗

lhyz

��

rhyz

��

lfyzttiiiiiiiii rfyz

**VVVVVVVVVV Cone(̂i)∗

lh′i

��

rhi

��

lf ′iwwooooooo
rfi

))SSSSSSS
χ̂

nn

(CY ⊕ CZ)∗

lgyz 44iiiiiiiii

H(CY ⊕ CZ)∗
rgyz

jjVVVVVVVVVV
M∗

lg′i 77ooooooo

χ

kk
Cone(Hi)∗

rgi

iiSSSSSSS

Hχ

jj

The fact that CP is canonically isomorphic to Cone(χ) is stated in SES2 Theorem,

19

then the following equivalence is defined:

Cone(χ̂)∗

lhχ

��

rhχ

��

lfχttjjjjjjjjj rfχ

))SSSSSSSS

CP ∼= Cone(χ)∗

lgχ 44jjjjjjjjj

Cone(Hχ)∗
rgχ

iiSSSSSSSS

where:

dCone(χ)∗ =

[
d(CY⊕CZ)∗ χ

0 dM∗

]
, dCone(χ̂)∗ =

[
d ̂(CY⊕CZ)∗

χ̂

0 dConêi∗

]
,

dCone(Hχ)∗ =

[
dH(CY⊕CZ)∗ Hχ

0 dCone(Hi)∗

]
, lfχ =

[
lfyz 0

0 lf ′i

]
, lgχ =

[
lgyz 0

0 lg′i

]
,

lhχ =

[
lhyz 0

0 −lh′i

]
, rfχ =

[
rfyz (rfyz)χ̂(rhi)

0 rfi

]

rgχ =

[
rgi −(rhyz)χ̂(rgi)
0 rgi

]
, rhχ =

[
rhyz (rhyz)χ̂(rhi)

0 −rhi

]
Algorithm 7.
Input: two morphism f : X → Y and g : X → Z where X, Y and Z are 1-reduced
simplicial sets with effective homology.
Output: an equivalence CP⇐⇐DP⇒⇒HP , where CP is the chain complex coming from
the pushout of f and g.

The pushout is a generic construction that can be particularized to different construc-
tions, such as wedge and join.

Definition 5.3. Given X and Y 1-reduced spaces with chosen points x0 ∈ X and y0 ∈ Y ,
then the wedge X ∨Y is the quotient of the disjoint union X qY obtained by identifying
x0 and y0 to a single point.

Consider the pushout diagram

X
i1 //

i2
��

Y

��
Z // P

where X is the one-point simplicial set and Y, Z are 1-reduced simplicial sets and i1, i2 are
morphism from X to the base point of Y and Z respectively. Then, P(i1,i2) is the wedge
Y ∨ Z.

20

Algorithm 8.
Input: two 1-reduced simplicial sets X and Y with effective homology.
Output: an equivalence C(X ∨ Y)⇐⇐DC(X ∨ Y)⇒⇒HC(X ∨ Y), where C(X ∨ Y) is the
chain complex coming from the wedge of X and Y .

Definition 5.4. Given X and Y spaces, one can define the space of all lines segments
joining points in X to points in Y . This is the join X ∗ Y , the quotient space of X ×
Y × I/ ∼, under the identifications (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1). Thus
we are collapsing the subspace X × Y × {0} to X and X × Y × {1} to Y .

Consider the pushout diagram

X × Y pX //

pY
��

X

��
Y // P

where pX and pY are the projections. Then, P(pX ,pY) is the join X ∗ Y .

Algorithm 9.
Input: two simplicial sets X and Y with effective homology.
Output: an equivalence C(X ∗ Y)⇐⇐DC(X ∗ Y)⇒⇒HC(X ∗ Y), where C(X ∗ Y) is the
chain complex coming from the join of X and Y .

6 Implementation

The algorithms explained in Section 5 have been implemented as a new module for the
Kenzo system. The set of programs we have developed (with about 1600 lines) allows the
computations of the pushout of two morphisms f : X → Y and g : X → Z when the
effective homology of X, Y and Z is available.

In Subsubsection 6.1 we explain the essential part of these programs, describing the
functions with the same format as in the Kenzo documentation [4]. In Subsubsection 6.2
we will see some examples of calculations.

6.1 A new module for the Kenzo system

In the development of the new module for Kenzo that allows one to compute the pushout
associated with two morphism, the first step has been to define algorithms 2, 3, 4, 5 and
6 (the algorithm 1 is already implemented in the Kenzo system).
Direct Sum Algorithm (algorithm 2):

Let X and Y two simplicial sets, the programs described here builds X⊕Y , an object
with effective homology.

The generators of X ⊕ Y are represented internally in the system by a lisp object of
the form:

(:direct-sum-gsm (d-sum-ind.d-sum-old))

where,

21

1. d-sum-ind is a non negative integer with value 0 or 1. 0 indicates the origin of the
simplex is X and 1 for Y .

2. d-sum-old is a a non degenerate simplex, coming from one of the arguments X or
Y as indicated by the value of d-sum-ind.

We have written several functions that allow us to construct the direct sum of two
chain complexes. The description of some of these methods is shown here:

direct-sum-cmpr cmpr1 cmpr2 [Function]

From the comparison functions cmpr1 and cmpr2, build a comparison function to
compare two generators of a direct sum.

direct-sum-basis basis1 basis2 [Function]

From the functions basis1 and basis2 of the chain complexes X and Y , build a basis
function for the direct sum of these chain complexes.

direct-sum-cmbn-split cmbn [Function]

From a combination of elements of the direct sum of X and Y , it returns two
combinations the first one with elements of X and the second one with the elements
of Y .

direct-sum-dffr dffr1 dffr2 [Function]

From the lisp differential functions dffr1 and dffr2 of two chain complexes, build
the lisp differential function of the direct sum of these chain complexes.

direct-sum chcm1 chcm2 [Method]

Build the chain complex direct sum of the chain complexes chcm1 and chcm2, using
the basic functions above, as shown in the following call to build-chcm:

. .

(the chain-complex
(build-chcm
:cmpr (direct-sum-cmpr (cmpr chcm1) (cmpr chcm2))
:basis (direct-sum-basis (basis chcm1) (basis chcm2))
:bsgn (direct-sum-gsm 0 (bsgn chcm1))
:intr-dffr (direct-sum-dffr (dffr chcm1) (dffr chcm2))
:strt :cmbn
:orgn ‘(direct-sum ,chcm1 ,chcm2))

. .

direct-sum-mrph sorc trgt mrph1 mrph2 [Function]

Build the direct-sum of the morphisms mrph1 and mrph2. This is a morphism
of the same degree as mrph1. Return the morphism built by the following call to
build-mrph:

22

. .

(build-mrph
:sorc sorc
:trgt trgt
:degr (degr mrph1)
:intr (direct-sum-dffr mrph1 mrph2)
:strt :cmbn
:orgn ‘(direct-sum-mrph ,sorc ,trgt ,mrph1 ,mrph2))

. .

direct-sum-efhm chcm1 chcm2 [Function]

Build the homotopy equivalence of the direct sum of chcm1 and chcm2.

Cone Algorithm (algorithm 3):
The cones are defined in the Kenzo system, but instead of using definition 3.10 it uses

definition 6.1

Definition 6.1. Let C∗ and D∗ be two chain-complexes and φ : C∗ ← D∗ be a chain-
complex morphism. Then the cone of φ denoted by Cone(φ) is the chain complex
Cone(φ) = A∗ defined as follows. First An := Cn ⊕Dn−1 . . .

SES2 Theorem (Theorem 3.14) works with Definition 3.10, then it has been necessary
to implement this definition of the cone, of course based on the already implemented in
Kenzo, as follows:

To distinguish to which chain complex belongs a generator in a combination of a cone,
the following convention has been adopted: if gc is a generator of any degree of C, it will
be represented in the cone by the list (:con 0 gc) and printed as <CONE 0 gc>. The
symbol for D is (:con 1 gd).

We have written several functions that allow us to construct the cone of a simplicial
morphism. The description of some of these methods is shown here:

cone-cmpr cmpr0 cmpr1 [Function]

From the 2 comparison functions cmpr0 and cmpr1, build a comparison function
adequate to compare the generators as represented in the cone

cone2-basis basis0 basis1 [Function]

From the 2 basis function basis0 and basis1, build a basis function for the cone.
If at least one of the chain complex component of the cone is locally effective, the
function returns the symbol :locally-effective

cone-3mrph-triangle-impl2 cmpr0 mrph0 mrph1 phi [Function]

Define the differential in the cone according to the formula:

d(cc, cd) = (dC(cc), phi(cc)− dD(cd))

cone2 mrph [Method]

Build Cone(mrph), using the above functions.

23

cone2-efhm mrph [Function]

From the formulas of the Cone Equivalence Theorem we can build the homotopy
equivalence for the Cone(mrph).

AiBjC Algorithm (algorithm 4)
These algorithms were extracted from the GiftQ program of Francis Sergeraert, a

Lisp program analogous to Kenzo but devoted to commutative algebra which is not yet
www-available.

The main methods which allows the construction of the reduction A⇐⇐Cone(i) from

the effective short exact sequence 0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo are :

AiBjC-RDCT-F A i rho B j sigma C [Function]

Build the f morphism of the reduction.

AiBjC-RDCT-G A i rho B j sigma C [Function]

Build the g morphism of the reduction.

AiBjC-RDCT-H A i rho B j sigma C [Function]

Build the h morphism of the reduction.

AiBjC-RDCT A i rho B j sigma C [Function]

Build the reduction using the basic functions above, as shown in the following call
to build-rdct:

. .

(build-rdct
:f (AiBjC-rdct-f A i rho B j sigma C)
:g (AiBjC-rdct-g A i rho B j sigma C)
:h (AiBjC-rdct-h A i rho B j sigma C)
:orgn ‘(AiBjC-rdct ,A ,i ,rho ,B ,j ,sigma ,C))

. .

Remove Covers Algorithm (algorithm 5)
Let X a simplicial set, the programs described here builds the chain complex M coming

from X × I but with the simplices of X × {0} and X × {1} cancelled.
The generators of the chain complex coming from X × I are represented internally in

the system by a lisp object of the form (:crpr (dgop1.gmsm1).(dgop2.gmsm2)) where,

1. dgop1 is an integer representing a coded degeneracy operator.

2. gmsm1 is a non-degenerate simplex of X, to which is applied the degeneracy op-
erator dgop1.

3. dgop2 is an integer representing a coded degeneracy operator.

4. gmsm2 is a non-degenerate simplex of I, to which is applied the degeneracy oper-
ator dgop2. I can be represented in Kenzo as the standard simplex of dimension 1,
this Simplicial Set has two vertices represented as 1 and 2 and an edge 3.

24

The generators of the chain complex coming from X × I but with the simplices of
X × {0} and X × {1} cancelled are represented internally in the system by a lisp object
of the form (:crpr (dgop1.gmsm1).(dgop2.gmsm2)) where,

1. dgop1 is an integer representing a coded degeneracy operator.

2. gmsm1 is a non-degenerate simplex of X, to which is applied the degeneracy op-
erator dgop1.

3. dgop2 is an integer representing a coded degeneracy operator.

4. gmsm2 is the non-degenerate simplex 3 of I, because the simplices of X ×{0} and
X × {1} are cancelled.

We have written several functions that allow us to construct the chain complex M
coming from X × I but with the simplices of X × {0} and X × {1} cancelled. The
description of some of these methods is shown here:

remove-covers-basis basis1 [Function]

From the function basis1 of the simplicial set X, build a basis function for the chain
complex from X × I but with the simplices of X × {0} and X × {1} cancelled.

remove-covers-dffr dffr1 [Function]

From the lisp differential functions dffr1 of a simplicial set, build the lisp differential
function of the the chain complex from X × I but with the simplices of X × {0}
and X × {1} cancelled.

remove-covers smst1 [Function]

Build the chain complex from X× I but with the simplices of X×{0} and X×{1}
cancelled, using the basic functions above and the comparison function of X × I.

remove-covers-efhm smst1 [Function]

Build the homotopy equivalence of the chain complex from X × I but with the
simplices of X × {0} and X × {1} cancelled, using the functions from the AiBjC-
rdct algorithm.

Suspension Algorithm (algorithm 6)
In Kenzo the suspension process is realized by the function suspension. This function

has one argument, a reduced object, but if the object is not reduced, the result is unde-
fined. Then, we have undertaken the task of developing the functor suspension described
in Subsection 5.

suspension2-basis basis [Function]

From the functions basis of a chain complex, build a basis function for the suspension
of this chain complex.

25

suspension2-dffr dffr [Function]

From the lisp differential functions dffr of a chain complex, build the lisp differential
function for the suspension of this chain complex.

suspension2 chcm [Method]

Build the chain complex suspension of the chain complex chcm, using the basic
functions above.

suspension2-intr mrph [Function]

From a Kenzo morphism mrph, build an internal function corresponding to the
suspension of the initial morphism.

suspension2 mrph [Method]

Build the suspension of the morphism mrph.

suspension2 rdct [Method]

Build the suspension of the reduction rdct.

suspension2 hmeq [Method]

Build the suspension of the homotopy equivalence hmeq.

Finally, the core of this new module consists in several functions that construct the
pushout of two simplicial morphisms, implementing the algorithm 7.

The non-degenerate simplex of (f, g) are represented internally in the system by a lisp
object of the form (:pushout-gsm (p-ind.p-old)) where,

1. p-ind is a non negative integer with value 0, 1 or 2. p-ind indicates the origin of
the simplex, 0 for X × I, 1 for Y and 2 for Z.

2. p-old is a a non degenerate simplex of dimension, coming from one of the arguments
X × I or Y or Z as indicated by the value of p-ind.

The main functions to build the pushout are:

pushout-cmpr cmpr1 cmpr2 cmpr3 [Function]

From the comparison functions cmpr1, cmpr2 and cmpr2, build a comparison func-
tion to compare two generators of a pushout.

pushout-basis basis1 basis2 basis3 [Function]

From the functions basis1, basis2 and basis3 of the simplicial sets X × I Y and Z,
build a basis function for the pushout of these simplicial sets.

pushout-face face1 face2 face3 f g [Function]

From the face operators face1, face2 and face3 and the morphism f and g, builds
the face operator for the pushout.

26

pushout f g [Method]

Build the simplicial set pushout of the simplicial morphisms f and g, using the basic
functions above, as shown in the following call to build-smst:

. .

(let* ((X (sorc f))
(XxI (crts-prdc X (delta 1)))
(Y (trgt f))
(Z (trgt g)))

(the simplicial-set
(let ((rslt (build-smst

:cmpr (pushout-cmpr (cmpr XxI) (cmpr Y) (cmpr Z))
:basis (pushout-basis (basis XxI) (basis Y) (basis Z))
:bspn (pushout-gsm 1 (bspn Y))
:face (pushout-face (face XxI) (face Y) (face Z) f g)
:orgn ‘(pushout ,f ,g))))

(declare (type simplicial-set rslt))
rslt)))

. .

pushout-efhm f g [Function]

Applying the process explained in Subsection 5, this function returns the homotopy
equivalence for the pushout.

For the implementation of algorithms 8 and 9 two functions have been developed:

wedge smst1 smst2 [Function]

From the simplicial sets smst1 and smst2 build the wedge of them.

join smst1 smst2 [Function]

From the simplicial sets smst1 and smst2 build the join of them.

To provide a better understanding of these new tools, some elementary examples of
their use are shown in the next subsubsection.

6.2 Examples

In this subsection we present some examples of application of the programs we have
developed for building the pushout of two morphisms. First, we consider the particular
case of the wedge of Eilenberg Mac Lane spaces (K(Z, 2)∨K(Z, 2)). As a second example,
we will show the computation of the join of spheres. Finally, a sophisticated example
giving a geometrical construction of P 2(C) is presented.
Wedge of K(Z, 2) and K(Z, 2)

27

. .

> (cat-init) z
---done---
> (setf bkz (k-z 2)) z
[K13 Abelian-Simplicial-Group]
> (setf bkzwbkz (wedge bkz bkz)) z
[K41 Simplicial-Set]
> (homology bkzwbkz 0 9) z
Homology in dimension 0 :
Component Z
Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Component Z
Homology in dimension 3 :

Homology in dimension 4 :
Component Z
Component Z
Homology in dimension 5 :

Homology in dimension 6 :
Component Z
Component Z
Homology in dimension 7 :

Homology in dimension 8 :
Component Z
Component Z
. .

Join of S3 and S4

The join of the spheres Sn and Sm spheres is the sphere Sn+m+1.

28

. .

> (cat-init) z
---done---
> (setf s3 (sphere 3)) z
[K1 Simplicial-Set]
> (setf s4 (sphere 4)) z
[K6 Simplicial-Set]
> (setf s3js4 (join s3 s4)) z
[K28 Simplicial-Set]
> (homology s3js4 0 9) z
Homology in dimension 0 :
Component Z
Homology in dimension 1 :

Homology in dimension 2 :

Homology in dimension 3 :

Homology in dimension 4 :

Homology in dimension 5 :

Homology in dimension 6 :

Homology in dimension 7 :

Homology in dimension 8 :
Component Z
. .

That is the expected result from the definition of the sphere.
P 2(C)

This example gives a geometrical construction of P 2(C). Take S2 and construct the
first stage of the Whitehead tower by doing:
. .

> (cat-init) z
---done---
> (setf s2 (sphere 2)) z
[K1 Simplicial-Set]
> (setf ch2 (chml-clss s2 2)) z
[K12 Cohomology-Class on K1 of degree 2]
> (setf f2 (z-whitehead s2 ch2)) z
[K25 Fibration K1 -> K13]
> (setf x3 (fibration-total f2)) z
[K31 Simplicial-Set]
. .

Then x3 has the homotopy type of the 3-sphere S3. More precisely x3= s2×f2K(Z, 1)
with f2 an appropriate twisting function producing S3 as a total space. It is easy to
deduce a projection f : X3 → S2. Taking the pushout of this f and the only map
g : X3→ ∗, then the pushout is P 2(C). It can be checked that our programs obtain the
right homology groups that are (Z, 0,Z, 0,Z, 0, 0, . . .):

29

. .

> (setf f (build-smmr :sorc x3 :trgt s2 :degr 0
:sintr #’(lambda (dmns gmsm)

(declare (ignore dmns))
(absm (dgop1 gmsm) (gmsm1 gmsm)))

:orgn ‘(proj ,x3 ,s2))) z
[K36 Simplicial-Morphism K31 -> K1]
> (setf unipunctual (build-finite-ss ’(x))) z
[K37 Simplicial-Set]
(setf g (build-smmr :sorc x3 :trgt unipunctual :degr 0

:sintr #’(lambda (dmns gmsm)
(if (and (equal dmns 0)

(equal gmsm (bsgn x3)))
’x

nil))
:orgn ‘(proj ,x3 ,unipunctual))) z

[K42 Simplicial-Morphism K31 -> K37]
> (setf p (pushout f g)) z
[K53 Simplicial-Set]
> (homology p 0 10) z
Homology in dimension 0 :
Component Z
Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Homology in dimension 3 :

Homology in dimension 4 :
Component Z
Homology in dimension 5 :

Homology in dimension 6 :

Homology in dimension 7 :

Homology in dimension 8 :

Homology in dimension 9 :

. .

Bibliography

[1] R. Brown. The twisted Eilenberg-Zilber theorem. Celebrazioni Archimedi de Secolo
XX, Simposio di Topologia, pages 34–37, 1967.

[2] G. Carlsson and R. J. Milgram. Handbook of Algebraic Topology, chapter Stable
homotopy and iterated loop spaces, pages 505–583. North-Holland, 1995.

[3] J. P. Doeraene. Homotopy pull backs, homotopy push outs and joins. Bulletin of the
Belgian Mathematical Society, 5:15–37, 1998.

30

[4] X. Dousson, J. Rubio, F. Sergeraert, and Y. Siret. The Kenzo program. Insti-
tut Fourier, Grenoble, 1998. http://www-fourier.ujf-grenoble.fr/~sergerar/

Kenzo/.

[5] S. Eilenberg and J. A. Zilber. Semi-simplicial complexes and singular homology.
Annals of Mathematics, 51(3):499–513, 1950.

[6] P. Graham. ANSI Common Lisp. Prentice Hall, 1996.

[7] P. J. Hilton and S. Wylie. Homology Theory. Cambridge University Press, 1967.

[8] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology, volume
157 of Applied Mathematical Sciences. Springer, 2004.

[9] S. MacLane. Homology. Springer, 1963.

[10] M. Mather. Pull-Backs in Homotopy Theory. Canadian Journal of Mathematics,
28(2):225–263, 1976.

[11] J. P. May. Simplicial objects in Algebraic Topology, volume 11 of Van Nostrand
Mathematical Studies. 1967.

[12] J. Rubio and F. Sergeraert. Constructive Algebraic Topology. Bulletin des Sciences
Mathématiques, 126(5):389–412, 2002.

[13] J. Rubio and F. Sergeraert. Constructive Homological Algebra and Applications,
Lecture Notes Summer School on Mathematics, Algorithms, and Proofs. Univer-
sity of Genova, 2006. http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/
Genova-Lecture-Notes.pdf.

[14] W. Shih. Homologie des espaces fibrés. Publications mathématiques de l’Institut des
Hautes Études Scientifiques, 13, 1962.

31

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf

	Basics on Homological Algebra
	Basics on Simplicial Topology
	Basics on Effective Homology
	The Kenzo program
	Pushout preliminaries
	Implementation
	A new module for the Kenzo system
	Examples

	Bibliography

