
Improving the usability of Kenzo,

a Common Lisp system for Algebraic Topology∗

Jónathan Heras Vico Pascual Julio Rubio
Francis Sergeraert

{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es,
francis.sergeraert@ujf-grenoble.fr

Abstract

Kenzo is a symbolic computation system devoted to Algebraic Topol-

ogy. Written in Common Lisp, this program succeeded in computing

homology and homotopy groups so far unreachable. The challenge is now

to increase the number of users and to improve its usability. Instead of

designing simply a friendly front-end, we have undertaken the task of de-

vising a mediated access to the system, constraining its functionality, but

providing guidance to the user in his navigation on the system. This ob-

jective is reached by constructing in Common Lisp an intermediary layer,

allowing us an intelligent access to some features of the system. This in-

termediary layer is supported by XML technology and interplays between

a graphical user interface and the pure Kenzo system.

1 Introduction

Kenzo [10] is a Common Lisp system, devoted to Symbolic Computation in
Algebraic Topology. It was developed under the direction of the fourth author
of this paper, and has been successful, in the sense that it has been capable of
computing homology groups unreachable by any other means.

The main features of Kenzo as a Common Lisp system are: (1) the using of
the Common Lisp Object System (CLOS) to organize a hierarchy of complex
algebraic structures, and (2) the intensive use of higher-order functional pro-
gramming, allowing us to represent and manipulate in�nite spaces on a com-
puter. Its power stems from an explicit link between (functional) in�nite data
structures and some �nite counterparts. The �rst ones are used to encode the
complex structures of Algebraic Topology; the second data (as lists, matrices,
and the like) are used to compute e�ectively the invariants associated to the
spaces.

Kenzo is in production since 1999. Having detected the accessibility and
usability as two weak points in it (implying di�culties in increasing the number
of users of the system), several proposals have been studied to interoperate with
Kenzo (being the original user interface Common Lisp itself, the search for other

∗Partially supported by Comunidad Autónoma de La Rioja, project Colabora2007/16, and
Ministerio de Educación y Ciencia, project MTM2006-06513.

1

ways of interaction seems convenient to extend the use of the system). The aim
of this paper is to present a report on our project for giving a new user interface
to Kenzo.

Traditionally, symbolic computation systems, and Kenzo is no exception,
have been oriented to research. This implies in particular, that development
e�orts in the area of Computer Algebra systems have been centered in aspects
such as the improvement of the e�ciency (or the accuracy, in symbolic-numerical
systems) or the extension of the scope of the applications. Things are a bit
di�erent in the case of widely spread commercial systems such as Mathematica
or Maple, where some attention is also payed to connectivity issues or to special-
purpose user interfaces (usually related to educational applications). But even
in these cases the central focus is on the results of the calculations and not on
the interaction with other kind of (software or human) agents.

The situation is, in any sense, similar in the area of interoperability among
symbolic computation systems (including here both computer algebra systems
and proof assistants). The emphasis has been put in the universality of the mid-
dleware (see, for instance, [5]). Even if important advances have been achieved,
severe problems have appeared, too, such as di�culties in reusing previous pro-
posals and the �nal obstacle of the speculative existence of a de�nitive mathe-
matical interlingua. The irruption of XML technologies (and, in our context, of
MathML [2] and OpenMath [4]) has allowed standard knowledge management,
but they are located at the infrastructure level, depending always on higher-level
abstraction devices to put together di�erent systems. Interestingly enough, the
initiative SAGE [21] producing an integrated environment seems to have no
use for XML standards, intercommunication being supported by ad-hoc SAGE
mechanisms.

In summary, in the symbolic computation area, we are always looking for
more powerful systems (with more computation capacities or with more general
expressiveness). However, it is the case that our systems became so powerful,
that we can lose some interesting kinds of users or interactions. We have en-
countered this situation when designing and developing the TutorMates project
[13]. TutorMates is aimed at linking an educational front-end with the Max-
ima system [19]. Since the �nal users were students (and teachers) at the high
school level it was clear from the beginning of the project that Maxima should
be weakened in any sense, in order to make its outputs meaningful for non
mathematics-trained users. This approach is now transferred to the �eld of
symbolic computation in Algebraic Topology, where the Kenzo system [10] pro-
vides a complete set of calculation tools, which can be considered di�cult to use
by a non-Common Lisp trained user (typically, an Algebraic Topology student,
teacher or researcher). The key concept is that of mediated access by means of
an intermediary layer aimed at providing an intelligent middleware between a
user interface and the kernel Kenzo system.

The paper is organized as follows. In the next section a short description of
Kenzo as a Common Lisp system is presented. In Section 3 antecedents of our
current project are commented, reporting on previous attemps to interoperate
with Kenzo and on the TutorMates system. Section 4 gives some insights on
methodological and architectural issues, both in the development of the client
interface and in the general organization of the software systems involved. The
central part of the paper can be found in Section 5, where the basics on the
intermediary layer are explained. The concrete state of our project to interface

2

with Kenzo is the aim of Section 6. The paper ends with two sections devoted
to open problems and conclusions, and �nally the bibliography.

2 Kenzo as a Common Lisp system

The Kenzo program shows a concrete example of use of CLOS for a relative large
implementation work (16000 Common Lisp lines and a 340pp documentation).
It is the �rst signi�cant machine program about classical Algebraic Topology.
It is not only a program implementing various known algorithms; new meth-
ods have been developed to transform the main �tools� of Algebraic Topology,
mainly the spectral sequences, not at all algorithmic in the traditional organi-
zation, into actual computing methods. With these �tools� the Kenzo program
is able to produce mathematical results that are unreachable otherwise.

2.1 An example of Kenzo work.

Let us show a simple example to illustrate which is possible with this program.
The homology group H5Ω3Moore(Z2, 4)1 is �in principle� reachable thanks to
old methods, see [6], but experience shows even the most skilful topologists
meet some di�culties to determine it, see [18, 20]. With the Kenzo program,
you construct the Moore space.
. .

> (setf m4 (moore 2 4)) z
[K1 Simplicial-Set]
. .

The program returns the Kenzo-object #1, a simplicial set, that is, a combi-
natorial version of the Moore space which is asked for, and this object is assigned
to the symbol m4. Then you construct the third loop-space of this Moore space.
. .

> (setf o3m4 (loop-space m4 3)) z
[K15 Simplicial-Group]
. .

The combinatorial version of the loop space is highly in�nite: it is a com-
binatorial version of the space of continuous maps S3 → Moore(Z2, 4) but
functionally coded as a small set of functions in a simplicial-group object, that
is, a simplicial set with an added group structure compatible with the simplicial
structure. Finally the �fth homology-group is asked for.
. .

> (homology o3m4 5) z
Homology in dimension 5 :

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

---done---
. .

and the result H5Ω3Moore(Z2, 4) = Z5
2 is obtained in some seconds in a stan-

dard PC. In natural situations a little more complicated, the Kenzo program
has already computed new homology groups unreachable so far with �classical�
Algebraic Topology, even from a theoretical point of view.

1The space Moore(Z2, 4) is a �canonical� space having only non-trivial homology in dimen-
sion 4, namely Z2, and Ω3Moore(Z2, 4), its third loop space, is the space of continuous maps
from the 3-sphere S3 to this Moore space; the challenge is to determine the �fth homology
group of this functional space.

3

kenzo-object

chain-complex

�
�
�
��

reduction

@
@
@
@I

equivalence

A
A
A
A
A
A
A
A
A
AK

morphism

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BM

coalgebra

�
�
�
��

algebra

@
@

@
@I

simplicial-set

6

hopf-algebra

6

HH
H

HH
H

HHY

simplicial-mrph

6

kan

A
A
A
AK

simplicial-group

A
A
A
AK

�
�
�
�
�
�
�
�
�
��

ab-simplicial-group

6

Figure 1: The Kenzo class diagram.

2.2 Kenzo classes.

Figure 1 shows the class diagram of Kenzo objects. The lefthand part of the
class diagram is made of the main mathematical categories that are used in com-
binatorial Algebraic Topology. A chain complex is a graded di�erential module;
an algebra is a chain complex with a compatible multiplicative structure, the
same for a coalgebra but with a comultiplicative2 structure. If a multiplicative
and a comultiplicative structures are added and if they are compatible with each
other in a natural sense, then it is a Hopf algebra, and so on.

The hopf-algebra and simplicial-group classes are typical cases where a
multi-heritage situation is met; we show the actual Kenzo de�nitions of these
classes.

2That is, some cooperator A→ A⊗A.

4

. .

(DEFCLASS HOPF-ALGEBRA (coalgebra algebra)

())

(DEFCLASS SIMPLICIAL-GROUP (kan hopf-algebra)

((grml :type simplicial-mrph :reader grml1)

(grin :type simplicial-mrph :reader grin1)))
. .

You see the de�nition of the hopf-algebra class is particularly striking; it
explains that a Hopf-algebra is nothing but an algebra and a coalgebra; the com-
patibility conditions between both structures cannot be veri�ed by a program
and they necessarily depend on the programmer's �lucidity�. In the same way,
a simplicial group is a kan object and a hopf-algebra object sharing some com-
mon data, namely a coalgebra structure, with two further slots, grml (group
multiplication) and grin (group inversion), those slots being some simplicial
morphisms.

In such a multi-heritage situation, it is important the call-next-method func-
tion works as hoped-for. Look at this arti�cial situation just to show the process;
the C class has two subclasses CD and CE, which have in common the subclass CDE;
the arti�cial initialize-instance methods let you verify that call-next-method
remembers its story when deciding what really the next method must be. Here,
when processing the CD-level, call-next-method �remembers� the process was
initiated from the CDE-level, so that the CE-level stage is not forgotten.

�
�� @

@@
CD

C

CE

@
@@ �

��

CDE

. .

> (defclass C () ()) z
#<STANDARD-CLASS C>

> (defclass CD (C) ()) z
#<STANDARD-CLASS CD>

> (defclass CE (C) ()) z
#<STANDARD-CLASS CE>

> (defclass CDE (CD CE) ()) z
#<STANDARD-CLASS CDE>

> (defmethod initialize-instance ((c c) &rest rest)

(print "C-initialization")) z
#<STANDARD-METHOD INITIALIZE-INSTANCE (C)>

> (defmethod initialize-instance ((cd cd) &rest rest)

(print "beginning CD-initialization")

(call-next-method)

(print "finishing CD-initialization")) z
#<STANDARD-METHOD INITIALIZE-INSTANCE (CD)>

> (defmethod initialize-instance ((ce ce) &rest rest)

(print "beginning CE-initialization")

(call-next-method)

(print "finishing CE-initialization")) z
#<STANDARD-METHOD INITIALIZE-INSTANCE (CE)>

> (defmethod initialize-instance ((cde cde) &rest rest)

(print "beginning CDE-initialization")

(call-next-method)

(print "finishing CDE-initialization")) z
#<STANDARD-METHOD INITIALIZE-INSTANCE (CDE)>

5

> (make-instance 'C) z
"C-initialization"

#<C @ #x212184da>

> (make-instance 'CD) z
"beginning CD-initialization"

"C-initialization"

"finishing CD-initialization"

#<CD @ #x21220e8a>

> (make-instance 'CE) z
"beginning CE-initialization"

"C-initialization"

"finishing CE-initialization"

#<CE @ #x2122698a>

> (make-instance 'CDE) z
"beginning CDE-initialization"

"beginning CD-initialization"

"beginning CE-initialization" ←−←−←−!!!

"C-initialization"

"finishing CE-initialization"

"finishing CD-initialization" ←−←−←−!!!

"finishing CDE-initialization"

#<CDE @ #x2122c03a>
. .

And you may also play with the auxiliary :before, :after and :around meth-
ods to order as you like the various initialization steps. As a typical example,
when the essential part of the initialization work of any kenzo-object is done,
then the object is �nally pushed in a list which is used later as explained in the
next section. This is obtained as follows.
. .

(DEFMETHOD INITIALIZE-INSTANCE :after ((k kenzo-object) &rest rest)

(push k *k-list*))
. .

In this way this is done if and only if the initialization work is successfully
�nished, even for the more specialized structures: if for example the specialized
initialization work for a simplicial set fails and stops on error, then the pushing
statement concerning the weakest structure is not run.

2.3 Optimizing computations.

The Kenzo program is certainly a functional system. It is frequent that several
thousands of functions are present in memory, each one being dynamically de-
�ned from other ones, which in turn are de�ned from other ones, and so on. In
this quite original situation, the same calculations are frequently asked again.
To avoid repeating these calculations, it is better to store the results and to sys-
tematically examine for each calculation whether the result is already available
(memoization strategy).

Because of this situation, it is very important not to have several copies of the
same function; otherwise it is impossible for one copy to guess some calculation
has already been done by another copy. This is a very important question in
this program, so that the following idea has been used. Each Kenzo object has
a rigorous de�nition, stored as a list in the orgn slot of the object (orgn stands
for origin of the object). This is the main reason of the top class kenzo-object:
making easier this process. The actual de�nition of the kenzo-object class:

6

. .

(DEFCLASS KENZO-OBJECT ()

((idnm :type fixnum :reader idnm)

(orgn :type list :reader orgn)

(prpr :type list :reader prpr)

(cmmn :type list :reader cmmn)))
. .

Then, when any kenzo-object is to be considered, its de�nition is constructed
and the program �rstly looks in *k-list* whether some object corresponding to
this de�nition already exists; if yes, no kenzo-object is constructed, the already
existing one is simply returned. Look at this small example where we construct
the second loop space of S3, then the �rst loop space, and then again the second
loop space. In fact the initial construction of the second loop space required the
�rst loop space, and examining the identi�cation number K?? of these objects
shows that when the �rst loop space is later asked for, Kenzo is able to return
the already existing one.
. .

> (setf s3 (sphere 3)) z
[K372 Simplicial-Set]

> (setf o2s3 (loop-space s3 2)) z
[K380 Simplicial-Group]

> (setf os3 (loop-space s3 1)) z
[K374 Simplicial-Group]

> (setf o2s3-2 (loop-space s3 2)) z
[K380 Simplicial-Group]

> (eq o2s3 o2s3-2) z
T
. .

The last statement shows the symbols o2s3 and o2s3-2 points to the same
machine address. In this way we are sure any kenzo-object has no duplicate, so
that the memory process for the values of numerous functions cannot miss an
already computed result. Let us look some orgn slots:
. .

> (orgn o2s3) z
(LOOP-SPACE [K374 Simplicial-Group])

> (orgn (k 374)) z
(LOOP-SPACE [K372 Simplicial-Set])

> (orgn (k 372)) z
(SPHERE 3)
. .

You see in this way the history of the construction process can be freely
examined by the user, which is important in the development stage.

2.4 Delaying initializations.

The complete structure of a Kenzo object is extremely complicated, and many
components are often useless. Another CLOS feature is therefore used to avoid
the maybe non-necessary initialization works. The following arti�cial example
explains how this is possible; it is a kind of autoloading mechanism, elegant,
easy to be used, and useful to avoid initializing needless slots. We assume a F

class, where each F object has two slots, sl1 and sl2; the �rst one is necessary,
but the second one would be the result of a complex process here simulated as
being 1000 times the value of the �rst one.
. .

> (DEFCLASS F ()

((sl1 :type integer :initarg :sl1 :reader sl1)

(sl2 :type integer :reader sl2))) z
#<STANDARD-CLASS F>

7

> (DEFMETHOD SLOT-UNBOUND (class (fi f) (slot-name (eql 'sl2)))

(declare (ignore class))

(setf (slot-value fi 'sl2) (* 1000 (sl1 fi)))

(sl2 fi)) z
#<STANDARD-METHOD SLOT-UNBOUND (T F (EQL SL2))>

> (SETF FI (make-instance 'f :sl1 23)) z
#<F @ #x213a7b8a>

> (SLOT-BOUNDP fi 'sl2) z
NIL

> (sl2 fi) z
23000

> (SLOT-BOUNDP fi 'sl2) z
T
. .

You see the generic function slot-unbound is available which is called by the
error manager when a non-initialized slot is asked for. The standard process
�nally does generate an error. But the user can write specialized methods
for this generic function, allowing him instead to initialize the missing slot by
some process using the available information. You see the initialization process
lets uninitialized the sl2 slot of the F-instance located by fi, but when this
slot is asked for, the �right� value is in fact returned! A new examination by
slot-boundp shows the slot is now bound.

This process is extremely convenient to organize the data as a living object
where each time some missing component is questionned, an automatic �repair-
ing process� is started, computing the missing information. The process may be
recursive, so that if, in the repairing process, some other datum is again missing,
an other repairing process is recursively started, and so on.

This possibility is intensively used in the Kenzo program. Look at this small
experience. Firstly we reinitialize the environment by cat-init. When the
fourth loop space Ω4S5 is constructed, you see only 26 Kenzo objects are present
in the environment. Then the homology group H2Ω4S5 is asked for. The answer,
Z2 is quickly obtained, but the number of present Kenzo objects is now 504; an
enormous set of slot-unbound calls has generated the construction of 478 new
Kenzo objects, necessary to do the calculation. Furthermore a :before method
had been added just to count the number of slot-unbound calls, a convenient
debugging trick; you see the homology calculation has recursively generated 240
slot-unbound calls.
. .

> (cat-init) z
---done---

> (setf s5 (sphere 5)) z
[K1 Simplicial-Set]

> (setf o4s5 (loop-space s5 4)) z
[K21 Simplicial-Group]

> (length *k-list*) z
26

> (setf counter 0) z
0

> (defmethod slot-unbound :before (class instance slot)

(declare (ignore class instance slot))

(incf counter)) z
#<STANDARD-METHOD SLOT-UNBOUND :BEFORE (T T T)>

> (homology o4s5 2) z
Homology in dimension 2 :

Component Z/2Z

---done---

8

> (length *k-list*) z
504

> counter z
240
. .

2.5 Mixing low level and high level programming.

Computing time is crucial for the applications of the Kenzo program. The
complexity of the implemented algorithms is highly exponential, so that the
developer must carefully consider how he can improve the computing time of
the written down Lisp code. In particular, if the heart of the program may be
written close to the machine language, large amounts of computing time can be
saved. But conversely this must not penalize the readability and the modularity
of the program.

Which is striking with Common Lisp is the possibility of easily mixing low
level and high level programming. The features about OOP show how Common
Lisp is powerful in high level programming, allowing the user to directly han-
dle the sophisticated objects of Algebraic Topology such as chain complexes,
products and coproducts, Hopf algebras, simplicial sets and simplicial groups.

But on the other hand, the Kenzo program intensively uses the low level
part of the Common Lisp language, that is, the quasi-assembler language which
is the very root of the language, such as the popular car, cdr, and cons. This
is possible thanks to the Common Lisp macrogenerator. Let us consider the
case of the type absm, that is, abstract simplex. These objects are really the
most elementary constituents of the Kenzo geometric objects, and they are so
intensively used, billions of times for every signi�cant Kenzo run, that you must
not use CLOS for these kernel structures. Kenzo de�nes the absm type as follows:
. .

(DEFUN ABSM-P (object)

(declare (type any object))

(the boolean

(and (consp object)

(eq :absm (car object))

(typep (cdr object) 'iabsm))))

(DEFTYPE ABSM () '(satisfies absm-p))
. .

The absm-p function explains an absm is a cons (pair) where the lefthand
component is the keyword :absm and the righthand one is an iabsm, that is,
an internal absm; in the same way, elsewhere in the program, it is explained
an iabsm is again a cons where the righthand component is anything and the
lefthand component is a �xnum coding a degeneracy operator. Most of compu-
tations in Algebraic Topology are in fact low level computations about degen-
eracy operators where such an operator is a decreasing list of small integers,
like (5 2 0); because this list is strictly decreasing, it can be represented by
the �xnum 37 because 37 = 25 + 22 + 20, so that all the standard calculations
about degeneracy operators become �ne calculations at the bit level on binary
�xnums. But Common Lisp has all the prede�ned functions to do such a job,
so that the programmer can e�ciently work according to this strategy. A con-
siderable memory space is saved so and furthermore the calculations are much
faster.

If a degeneracy operator is to be extracted from an absm, the dgop macro is
used:

9

. .

> (DEFMACRO DGOP (absm)

`(the dgop (cadr (the cadr ,absm))) z
DGOP

> (macroexpand '(dgop argument)) z
(THE DGOP (CADR (THE ABSM ARGUMENT)))
. .

which explains that in fact the call of dgop is synonymous with a call of the
assembler-like cadr, but the types of argument and result are veri�ed:
. .

> (dgop (absm 37 'something)) z
37

> (dgop 'not-an-absm) z
Error: object "NOT-AN-ABSM" is not of type "ABSM".

[condition type: PROGRAM-ERROR]
. .

When the program is compiled, the compiler �rstly translates the source code
when a macro call is found, so that it is an assembler-like statement which is
compiled; furthermore an appropriate compiler option allows the compiled code
to ignore or not the type veri�cations through the `the' statements. When the
program is �nalized for production work, of course these type veri�cations are
discarded to save computing time. You see in this way the Lisp code is readable,
this code being �rstly translated in low level Lisp statements, therefore very
e�ciently compiled, without loosing if necessary the type veri�cations.

3 Antecedents of our project

As explained in the Introduction, several proposals have been studied to inter-
operate with Kenzo. The most elaborated approach was reported in [1]. There,
we devised a remote access to Kenzo, using CORBA [17] technology. An XML
extension of MathML played a role there too, but just to give genericity to the
connection (avoiding the de�nition in the CORBA Interface Description Lan-
guage [17] of a di�erent speci�cation for each Kenzo class and datatype). There
was no intention of taking pro�t from the semantics possibilities of MathML.
Being useful, this approach ended in a prototype, and its enhancement and
maintenance were di�cult, due both to the low level characteristics of CORBA
and to the pretentious aspiration of providing full access to Kenzo functional-
ities. We could classify the work of [1] in the same line as [5] or the initiative
IAMC [15], where the emphasis is put into powerful and generic access to sym-
bolic computation engines.

On the contrary, the TutorMates project [13] had, from its very beginning,
a much more modest objective. The idea was to give access just to a part of
Maxima, but guiding the user in his interaction. Since the purpose of Tutor-
Mates was educational (high school level), it was clear that many outputs given
by Maxima were unsuitable for the �nal users, depending on the degree and the
topic learned in each TutorMates session. To give just an example, an imagi-
nary solution to a quadratic equation has meaning only in certain courses. In
this way, a mediated access to Maxima was designed. The central concept is an
intermediary layer that communicates, by means of an extension of XML, be-
tween the graphical user interface (Java based) and Maxima. The extension of
MathML allows us to encode a pro�le for the interaction. A pro�le is composed
of a role (student or teacher), a level and a lesson. In the case of a teacher (sup-
posed to be preparing material for his students), full access to Maxima outputs
is given, but a warning indicates to him whether the answer would be suitable

10

Figure 2: A fragment of the control and navigation graph.

inside the level and the lesson encoded in the pro�le. In this way, the intermedi-
ary layer allows the programmer to get an intelligent interaction, di�erent from
the �dummy� remote access obtained in [1].

Now, our objective is to emulate this TutorMates organization in the Kenzo
context. The �nal users could be researchers in Algebraic Topology or students
of this discipline. The problems to be tackled in the intermediary layer are dif-
ferent from those of TutorMates. The methodological and architectural aspects
of this new product are presented in the following section.

4 Methodological and Architectural Issues

We have tried to guide our development with already proven methodologies
and patterns. In the case of the design of the interaction with the user in
our GUI front-end3, we have followed the guidelines of the Noesis method [7].
In particular, our development has been supported by some Noesis models for
control and navigation in user interfaces (see an example in Figure 2).

Even if graphical speci�cation mechanisms have well-known problems (re-
lated with their scalability), Noesis models provide modular tools, allowing the
designer to control the complexity due to the size of graphics. These models
enable an exhaustive traversal of the interfaces, detecting errors, disconnected
areas, lack of homogeneity, etc.

With respect to the general organization of the software system, we have
been inspired by the Microkernel architectural pattern [3]. This pattern gives
a global view as a platform, in terminology of [3], which implements a virtual

3The GUI has been implemented using the package Common Graphics and the Integrated
Development Environment of Allegro Common Lisp [11].

11

Figure 3: Microkernel architecture of the system.

machine with applications running on top of it, namely a framework (in the
same terminology). A high level perspective of the system as a whole is shown
in Figure 3. Kenzo itself, wrapped with an interface based on XML-RPC [22],
is acting as internal server. The microkernel acting as intermediary layer is
based on an XML processor, allowing both a link with the standard XML-RPC
used by Allegro Common Lisp [11], and intelligent processing. The view of
the external server is again based on an XML processor, with a higher level
of abstraction (since mathematical knowledge is included there) which can map
expressions from and to the microkernel, and which is decorated with an adapter
(the Proxy pattern, [12], is used to implement the adapter), establishing the �nal
connection with the client, a Graphical User Interface in our case. A simpli�ed
version of the Microkernel pattern (without the external server) would su�ce
if our objective was to build a GUI for Kenzo. But we also pursue extending
Kenzo by wrapping it in a framework which will link any possible client (other
GUIs, web applications, web services, . . .) with the Kenzo system. In this sense,
our GUI is a client of our framework. The framework should provide each client
with all necessary mathematical knowledge.

Which aspects of the intelligent processing must be dealt with in the exter-
nal server or in the microkernel, is still controversial (in the current version, as
we will explain later, we have managed the questions related to the input spec-
i�cations in the external server and the most important mediations are done at
the microkernel level). Moreover, the convenience of a double level of processing
is clear, being based on, at least, two reasons. On the one hand the more con-
crete one (microkernel) is to be linked to Kenzo (via XML-RPC) and the more
abstract one is aimed at being exported and imported, rendered by (extended)
MathML engines, and so on. On the other hand, this double level of abstraction
re�ects the di�erent languages in which the knowledge has to be expressed. The
external one is near to Algebraic Topology, and it should o�er a communication
based on the concepts of this discipline to the �nal clients (this gives a small type
system; see Section 5). The internal part must communicate with Kenzo, and
therefore a low level register of each session must be maintained (for instance,
the unique identi�er referring to each object, in order to avoid recalculations).

12

Figure 4: Description of the Internal XML Kenzo Schema.

Figure 5: Fragment of the External XML Kenzo Schema.

There, a procedural language based on Kenzo conventions is needed.
As explained before, XML gives us the universal tool to transmit informa-

tion along the di�erent layers of the system. Besides the XML-RPC mechanism
used by Allegro Common Lisp, two more XML formats (de�ned by means of
XML schemas) are to be considered. The �rst one (used in the microkernel) is
diagrammatically described in Figure 4, by using the Noesis method [9] again.
The second format, used in the external server, will be (it is not completely de-
�ned yet) presented as an extension of the MathML schema [2]. Figure 5 shows
a diagram corresponding to a part of this schema. The structure of this XML
schema allows us to represent some knowledge on the process (for instance, it
di�erentiates constructors from other kinds of algebraic manipulations); other
more complex mathematical knowledge can not be represented in the syntax
of the schema (see Section 5). In Figure 6, we show how a Kenzo command
(namely, the calculation of the third group of homology of the sphere of dimen-
sion 3) will be transformed from the user command on the GUI (top part of the
�gure) to the �nal XML-RPC format (the conventional Lisp call is shown, too;
however our internal server, Kenzo wrapped with an XML-RPC interface, will
execute the command directly).

In the next section the behavior pursued with this architecture is explained.

13

Figure 6: Transforming XML representations.

5 Knowledge Management in the Intermediary

Layer

The system as a whole will improve Kenzo including the following �intelligent�
enhancements:

1. Controlling the input speci�cations on constructors.

2. Avoiding some operations on objects which will raise errors.

3. Chaining methods in order to provide the user with new tools.

4. Determining if a calculation can be done in a local computer or should be
derived to a remote server.

The �rst aspect is attained, in an integrated manner, inside the Graphical
User Interface. The three last ones are dealt with in the intermediary layer.
From another point of view, the �rst three items are already partially pro-
grammed in the current version of the system; the last one is further work.

In order to explain the di�erences between points 1 and 2, it is worth noting
that in Kenzo there are two kinds of data. The �rst one is representing spaces
in Algebraic Topology (by spaces we mean here, any data structure having both
behavior and elements belonging to it, such as a simplicial set, a simplicial group,
a chain complex, and so on). The second kind of data is used to represent ele-
ments of the spaces. Thus, in a typical session with Kenzo, the users proceed in
two steps: �rst, constructing some spaces, and second, applying some operators
on the (elements of the) spaces previously built. This organization in two steps
has been described by using Algebraic Speci�cation methods in [16] and [8], for
instance. Therefore, the �rst item in the enumeration refers to the inputs for

14

the constructors of spaces, and the second item refers to some operations on
concrete spaces. As we are going to explain, the �rst kind of control is naturally
achieved in the GUI client (from the mathematical knowledge provided by the
external XML format) but the second one, which needs some expert knowledge
management, is better dealt with in the intermediary layer.

Kenzo is, in its pure mode, an untyped system (or rather, a dynamically
typed system), inheriting its power and its weakness from Common Lisp. Thus,
for instance, in Kenzo a user could apply a constructor to an object without
satisfying its input speci�cation. For example, the method constructing the
classifying space of a simplicial group could be called on a simplicial set without
a group structure over it. Then, at runtime, Common Lisp would raise an error
informing the user of this restriction. This is shown in the following fragment
of a Kenzo session:
. .

> (loop-space (sphere 4)) z
[K6 Simplicial-Group]

> (classifying-space (loop-space (sphere 4))) z
[K18 Simplicial-Set]

> (sphere 4) z
[K1 Simplicial-Set]

> (classifying-space (sphere 4)) z
;; Error: No method in generic function CLASSIFYING-SPACE

;; is applicable to arguments: [K1 Simplicial-Set]
. .

With the �rst command, namely (loop-space (sphere 4)), we construct
a simplicial group. Then, in the next step we are verifying that a simplicial
group has a classifying space (which is, in general, just a simplicial set). In the
third command, we check that the sphere of dimension 4 is constructed in Kenzo
as a simplicial set. Thus, when in the last command we try to construct the
classifying space of a simplicial set, the Common Lisp Object System (CLOS)
raises an error.

In the current version of our system this kind of error is controlled, because
the inputs for the operations between spaces can be only selected among the
spaces with suitable characteristics. The equivalent in our system of the example
introduced before in pure Kenzo, is shown in Figure 7, where it can be seen
that for the classifying operation just the spaces which are simplicial groups are
candidates to be selected. This enriches Kenzo with a small (semantical) type
system which will be de�ned into the external XML schema.

With respect to the second item in the previous enumeration, the most
important example in the current version is the management of the connection
degree of spaces. Kenzo allows the user to construct, for instance, the loop
space of a non simply connected space (as the sphere of dimension 1). The
result is a simplicial set on which some operations (for instance, to compute
the set of faces of a simplex) can be achieved without any problems. On the
contrary, theoretical results ensure that the homology groups are not of �nite
type, and then they cannot be computed. In pure Kenzo, the user could ask for
a homology group of such an space, catching a runtime error.

In our current version of the system, the intermediary layer includes a small
expert system, computing, in a symbolic way (that is to say, working with the
description of the spaces, and not with the spaces themselves considered as
Common Lisp objects), the connection degree of a space. The set of rules gives
a connection degree to each space builder (for instance, a sphere of dimension n
has connection degree n− 1), and then a rule for each operation on spaces. For

15

Figure 7: Screen-shot of Kenzo Interface with a session related to classifying
spaces.

instance, loop space decreases the connection degree of its input in one unity,
suspension increases it in one unity, a cartesian product has, as connection
degree, the minimum of the connection degrees of its factors, and so on. From
the design point of view, a Decorator pattern [12] was used, decorating each
space with an annotation of its connection degree in the intermediary layer.
Then, when a computation (of a homology group, for instance) is demanded
by a user, the intermediary layer monitors if the connection degree allows the
transferring of the command to the Kenzo kernel, or a warning must be sent
through the external server to the user.

As for item three, the best example is that of the computation of homotopy
groups. In pure Kenzo, there is no �nal function allowing the user to compute
them. Instead, there is a number of complex algorithms, allowing a user to
chain them to get some homotopy groups. Our current user interface has an
option to compute homotopy groups. The intermediary layer is in charge of
chaining the di�erent algorithms present in Kenzo to reach the �nal objective.
In addition, Kenzo, in its current version, has limited capabilities to compute
homotopy groups (depending on the homology of Eilenberg-Mac Lane spaces
that are only partially implemented in Kenzo), so the chaining of algorithms
cannot be universal (in this case, a possibility would be to wire the enhancement
in the GUI, by means of the external XML schema, as in the case of item 1).
Thus, the intermediary layer should process the call for a homotopy group,
making some consultations to the Kenzo kernel (computing some intermediary
homology groups, for instance) before deciding if the computation is possible or
not (this is still work in progress).

Regarding point four, our system can be distributed, at present, in two man-
ners: (a) as a stand-alone application, with a heavy client containing the Kenzo
kernel to be run in the local host computer; (b) as a light client, containing
just the user interface, and every operation and computation is done in a re-

16

mote server (with the AllegroServe technology). The second mode has obvious
drawbacks related to the reliability of Internet connections, to the overhead of
management where several concurrent users are allowed, etc. But option (a)
is not fully satisfactory since interesting Kenzo computations used to be very
time and space consuming (requiring, typically, several days of CPU time on
powerful computing servers). Thus a mixed strategy should be convenient: the
intermediary layer should decide if a concrete calculation can be done in the
local computer or it deserves to be sent to a specialized remote server. (In this
second case, as it is not sensible to maintain open an Internet connection for
several days waiting for the end of a computation, some reactive mechanism
should be implemented, allowing the client to disconnect and to be subscribed
in some way, to the process of computation in the remote server). The di�-
culties of this point have two sources: (1) the knowledge here is not based on
well-known theorems (as was the case in our discussion on the connection de-
gree in the second item of the enumeration), since it is context-dependent (for
instance, it depends on the computational power of a local computer), and so it
should be based on heuristics; (2) the technical problems to obtain an optimal
performance are complicated, due, in particular, to the necessity of maintaining
a shared state between two di�erent computers. These technical aspects are
brie�y commented in the Open Problems section.

With respect to the kind of heuristic knowledge to be managed into the
intermediary level, there is some part of it that could be considered obvious:
for instance, to ask for an homology group Hn(X) where the degree n is big,
should be considered harder than if n is small, and then one could wonder about
a limit for n before sending the computation to a remote server. Nevertheless,
this simplistic view is to be moderated by some expert knowledge: it is the case
that in some kinds of spaces, di�culties decrease when the degree increases. The
heuristics should consider each operation individually. For instance, it is true
that in the computation of homology groups of iterated loop spaces, di�culties
increase with the degree of iteration. Another measure of complexity is related to
the number of times a computation needs to call the Eilenberg-Zilber algorithm
(see [10]), where a double exponential complexity bound is reached. Further
research is needed to exploit the expert knowledge in the area suitably, in order
to devise a systematic heuristic approach to this problem.

6 State of the Project

The work done up to now has allowed us to reach one of the objectives: code
reuse. This reusing has two aspects:

1. We have left the Kenzo kernel untouched. This was a goal since the team
developing the framework and the user interface, and the team maintaining
and extending Kenzo are di�erent. Therefore, it is convenient to keep both
systems as uncoupled as possible.

2. The intermediary level has been used, without changes, both in the stand-
alone local version and in the light client with remote server version. A
�rst partial prototype, moving the view towards a web application client
(by using AllegroWebActions), seems to con�rm that the degree of abstrac-
tion and genericity reached in our architecture (note that our framework

17

Figure 8: Screen-shot of Kenzo Interface with an example of session.

including several XML formats, each one with di�erent abstraction level)
is suitable.

In Figure 8, a screen-shot of our GUI is presented. The main toolbar is
organized into 8 menus: File, Edit, Builders, Operations, Complexes, Computing,
Spaces and Help. The rest of the screen is separated into three areas. On the
left side, a list with the spaces already constructed during the current session is
maintained. When a space is selected (the one denoted by SS 1 in Figure 8), a
description of it is displayed in the right area. At the bottom of the screen, one
�nds a history description of the current session, which can be cleared or saved
into a �le. It is important to understand that a history �le is di�erent from
a session �le. The �rst one is just a plain text description of the commands
selected by the user. The second kind of �les is described in the next paragraph.

In the current version the File menu has just three options: Exit, Save
Session and Load Session. When saving a session, a �le is produced containing
an XML description of the commands executed by the user in that session. In
Figure 9 an example of session �le can be found, together with a correspondence
with their Kenzo counter-parts. At this time, these session �les are stored using
the standard XML-RPC but our goal, as we show in Figure 9, is to use the
external XML schema described in Section 4 (see Figure 5). In this way the
session �les will be exportable (to be rendered in standard displays, for instance)
and even editable from di�erent applications.

The constructors of the spaces we have referred to the �rst point of Section 5,
are collected by the menus Builders, Operations and Complexes. More specif-
ically, the menu Builders includes the main ways of constructing new spaces
from scratch in Kenzo as options: spheres, Moore spaces, Eilenberg-Mac Lane
spaces, and so on. The menu Operations refers to the ways where Kenzo allows
the construction of new simplicial spaces from other ones: loop spaces, clas-
sifying spaces, Cartesian products, suspensions, etc. The menu Complexes is

18

Figure 9: Sample of a session �le.

similar, but related to chain complexes instead of simplicial objects (here, for
instance, the natural product is the tensorial product instead of the cartesian
one).

The menus Computing and Spaces collect all the operations on concrete
spaces (instead of constructing spaces, as in the previous cases). Both of them
provide their items with all the necessary �intelligence� in order to avoid raising
runtime errors. In Computing we concentrate on calculations over a space.
We o�er to compute homology groups, to compute the same but with explicit
generators and to compute homotopy groups, in this last case we �nd the third
kind of enhancement. In menu Spaces currently we only o�er the possibility of
showing the structure of a simplicial object (this is only applicable to e�ective,
�nite type spaces).

To consider a �rst complete (beta) version of the system, it is necessary to
complete the questions already mentioned in the text relating to �nishing the
external XML schema de�nition and to controlling the cases in which homotopy
groups can be e�ectively computed by Kenzo.

Moreover, we have planned to develop two more tools:

1. In the menu Builders, there is a still inactivated slot called Build-�nite-ss,
aimed at emulating, in our environment, the utility present in pure Kenzo
which allows the user to construct step-by-step, in an interactive manner,
a �nite simplicial set (checking, in each step, whether faces are glued
together in a coherent way). To this aim, we are thinking of designing a
graphical tool.

2. In the menu Spaces, it is necessary to include the possibility of operating
locally inside a selected space. For instance, given a simplex to compute
one of its faces or given two simplexes in the same dimension we can
compute its product in a selected simplicial group. The di�culty here is
related to designing an editor for elements (data of the second kind, using
the terminology in Section 5), which can be given as inputs to the local
operations. This will give content to the Edit menu, in the main toolbar,
which is now inactivated.

19

These extra functionalities are rather a matter of standard programming,
and it is foreseen that no research problem will appear when tackling them. The
questions discussed in the next section, on the contrary, could imply important
challenges.

7 Open Problems

The most important issue to be tackled in the next versions of the system is
how organizing the decision on when (and how) a calculation should be derived
to a remote server. To understand the nature of the problem it is necessary
to consider that there are two kinds of state in our context. Starting from the
most simple, the state of a session can be described by means of the spaces
that have been constructed so far. Then, to encode (and recover) such a state,
a session �le as explained in the previous section would be enough: an XML
document containing a sequence of calls to di�erent constructors and methods.
In this case, when a calculation is considered too hard to be computed in a
local computer, the whole session �le could be transmitted to the remote server.
There, executing step-by-step the session �le, the program will re-�nd the same
state of the local session, proceeding to compute the desired result and sending it
to the client. Of course, as mentioned previously, some kind of subscription tool
should be enabled, in such a way that the client could stop its running, and then
to receive the result (or a noti�cation indicating the result is already available
somewhere), after some time (perhaps some days or weeks of computation on
the remote server).

Even if this approach can be considered reasonable as a �rst step, it has
turned out to be too simplistic to deal with the richness of Kenzo. A space in
Kenzo consists in a number of methods describing its behavior (explaining, for
instance, how to compute the faces of its elements). Due to the high complex-
ity of the algorithms involved in Kenzo, a strategy of memoization has been
systematically implemented, as we already commented in Section 2.3. As a con-
sequence, the state of a space evolves after it has been used in a computation
(of a homology group, for instance). Thus, the time needed to compute, let
us say, a face, depends on the concrete states of every space involved in the
calculation (in the more explicit case, to re-calculate a face on a space could be
negligible in time, even if in the �rst occasion this was very time consuming).
This notion of state of a space is transmitted to the notion of state of a session.
We could speak of two states of a session: the one sallow evoked before, that
is essentially static and can be recovered by simply re-executing the top-level
constructor calls; and the other deep state which is dynamic and depends on
the computations performed on the spaces.

To analyse the consequences of this Kenzo organization, we should play
with some scenarios. Imagine during a local session a very time consuming
calculation appears; then we could simply send the sallow state of the session
to the remote server, because even if some intermediary calculations have been
stored in local memory, they can be re-computed in the remote server (�nally,
if they are cheap enough to be computed on the local computer, the price of
re-computing them in the powerful remote server would be low). Once the
calculation is remotely �nished, there is no possibility of sending back the deep
state of the remote session to the local computer because, usually, the memory

20

used will exhaust the space in the local computer. Thus, it could seem that to
transmit the sallow state would be enough. But, in this picture, we are losing
the very reason why Kenzo uses the memoization (dynamic programming) style.
Indeed, if after obtaining a di�cult result (by means of the remote server) we
resume the local session and ask for another related di�cult calculation, then
the remote server will initialize a new session from scratch, being obligated to re-
calculate every previous di�cult result, perhaps making the continuation of the
session impossible. Therefore, in order to take advantages of all the possibilities
Kenzo is o�ering now on powerful scienti�c servers, we are faced with some
kind of state sharing among di�erent computers (the local computers and the
server), a problem known as di�cult in the �eld of distributed object-oriented
programming.

In short, even if our initial goal was not related to distributed computing, we
found that in order to enable our intermediary layer as an intelligent assistant
with respect to the classi�cation of calculations as simple (runnable on a stan-
dard local computer) or complicated (to be sent to a remote server), we should
solve problems of distributed systems. Thus, a larger perspective is necessary,
and we are working with the Broker architectural pattern, see [3], in order to
�nd a natural organization of our intermediary layer.

8 Conclusions

The current state of our project can be considered solid enough to be a good
point of continuation for all our objectives. We have showed how some intelligent
guidance can be achieved in the �eld of Computational Algebraic Topology,
without using standard Arti�cial Intelligence techniques. The idea is to build
an intermediary layer, giving a mediated access to an already-written symbolic
computation system. Putting together both Kenzo itself and the intermediary
layer, we have produced a framework which is able to be connected to di�erent
clients (desktop GUIs, web applications and so on). In addition, with this
framework, several pro�les of interaction can be considered. In general, this can
imply a restriction of the full capabilities of the kernel system, but the interaction
with it is easier and enriched, contributing to the objective of increasing the
number of users of the system.

References

[1] Andrés M., Pascual V., Romero A., Rubio J., Remote Access to a Symbolic
Computation System for Algebraic Topology: A Client-Server Approach,
Lecture Notes in Computer Science 3516 (2005) 635�642.

[2] Ausbrooks R. et al., Mathematical Markup Language (MathML) Version
2.0 (second edition), 2003. http://www.w3.org/TR/2003/REC-MathML2-
20031021/.

[3] Buschmann, F., Meunier, R., Rohnert H., Sommerland P., Stal M., Pattern-
oriented software architecture. A system of patterns, Volume 1, Wiley, 1996.

[4] Buswell S., Caprotti O., Carlisle D.P., Dewar M.C., Gaëtano M., Kohlhase
M. OpenMath Version 2.0, 2004. http://www.openmath.org/.

21

[5] Calmet, J., Homann, K., Towards the Mathematics Software Bus, Theoret-
ical Computer Science 187 (1997) 221�230.

[6] Carlsson G., Milgram R. J., Stable homotopy and iterated loop spaces. in
[14], pp 505-583.

[7] Cordero C. C., De Miguel A. , Domínguez E., Zapata Mª A., Modelling
Interactive Systems: an architecture guided by communication objects in
HCI related papers of Interacción 2004, Springer (2006) 345�357.

[8] Domínguez C., Lambán L., Rubio J., Object oriented institutions to specify
symbolic computation systems, Rairo - Theoretical Informatics and Appli-
cations 41 (2007) 191-214.

[9] Domínguez E., Zapata M.A., Noesis: Towards a situational method engi-
neering technique, Information Systems 32,2 (2007) 181-222.

[10] Dousson X., Rubio J., Sergeraert F., Siret Y., The Kenzo program.
http://www-fourier.ujf-grenoble.fr/�sergerar/Kenzo/

[11] Franz Inc. Allegro Common Lisp. http://www.franz.com/.

[12] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[13] González-López M. J., González-Vega L., Pascual A., Callejo E., Recio T.,
Rubio J., TutorMates. http://www.tutormates.es/.

[14] Handbook of Algebraic Topology (Edited by I.M. James). North-Holland
(1995).

[15] Internet Accessible Mathematical Computation (IAMC).
http://icm.mcs.kent.edu/research/iamc.html.

[16] Lambán L., Pascual V., Rubio J., An object-oriented interpretation of the
EAT system, Applicable Algebra in Engineering, Communication and Com-
puting 14 (2003) 187�215.

[17] Object Management Group. Common Object Request Broker Architecture
(CORBA). http://www.omg.org.

[18] Rubio J., Sergeraert F., Constructive Algebraic Topology, Bulletin des Sci-
ences Mathématiques 126 (2002) 389-412.

[19] Schelter W., Maxima. http://maxima.sourceforge.net/index.shtml.

[20] Sergeraert F., zk, objet du 3e type. Gazette des Mathématiciens, 2000, vol.
86, pp 29-45.

[21] Stein W., SAGE mathematical software system.
http://sage.scipy.org/sage/.

[22] Winer D., Extensible Markup Language-Remote Procedure Call (XML-
RPC). http://www.xmlrpc.com.

22

