
Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

IJ-OpenCV: Combining ImageJ and OpenCV for processing images in
biomedicine

César Domínguez, Jónathan Heras⁎, Vico Pascual

Department of Mathematics and Computer Science, University of La Rioja, Logroño, Spain

A R T I C L E I N F O

Keywords:
ImageJ
OpenCV
Interoperability
Image processing
Computer vision
Machine learning
Biomedicine

A B S T R A C T

Background and Objective. The effective processing of biomedical images usually requires the interoper-
ability of diverse software tools that have different aims but are complementary. The goal of this work is to
develop a bridge to connect two of those tools: ImageJ, a program for image analysis in life sciences, and
OpenCV, a computer vision and machine learning library.

Methods. Based on a thorough analysis of ImageJ and OpenCV, we detected the features of these systems
that could be enhanced, and developed a library to combine both tools, taking advantage of the strengths of each
system. The library was implemented on top of the SciJava converter framework. We also provide a
methodology to use this library.

Results. We have developed the publicly available library IJ-OpenCV that can be employed to create
applications combining features from both ImageJ and OpenCV. From the perspective of ImageJ developers,
they can use IJ-OpenCV to easily create plugins that use any functionality provided by the OpenCV library and
explore different alternatives. From the perspective of OpenCV developers, this library provides a link to the
ImageJ graphical user interface and all its features to handle regions of interest.

Conclusions. The IJ-OpenCV library bridges the gap between ImageJ and OpenCV, allowing the connection
and the cooperation of these two systems.

1. Introduction

The analysis of images is instrumental in many life science fields
and, in particular, in biomedicine [1]. Currently, the datasets of bio-
images are growing exponentially, and due to the huge size of such
datasets, visual inspection and manual measurement of the images is a
time-consuming task that lacks sensitivity, accuracy, objectivity and
reproducibility [2]. Hence, researchers need to rely on automatic or
semi-automatic imaging techniques, provided by several software tools
[3].

Since there is not a unique tool that can tackle every single aspect
(acquisition, analysis, visualisation, and so on) of biomedical image
processing, different programs are required [3]. Due to this fact,
interoperability is emerging as an important issue [1,3–6], and the
bioimaging community is working on making feasible the collaboration
of some of the most popular packages [7,8]. Achieving such a
collaboration might be challenging, due to the diversity of the tools,
and requires a deep understanding and study of the involved technol-
ogies, and both a research and development effort. In this context, the
SciJava project [8] plays a key role in bringing together projects like

CellProfiler, ImageJ, Icy, KNIME, MiToBo, OMERO or MATLAB. The
work presented in this paper uses SciJava as a frame to construct a
bridge connecting two well-known free and open-source tools em-
ployed in bioimaging: ImageJ and OpenCV.

ImageJ [5] is an image-analysis tool that has been successfully
employed to deal with many problems in life sciences [9–12]. There are
several reasons for the success of this software: its easy-to-use inter-
face, the ability to easily extend its functionality by means of plugins,
the availability of plugins to solve a great variety of problems, and the
macro system that captures the users’ interactions allowing them to
automate and reproduce their workflows. ImageJ mainly features
image processing algorithms; however, it lacks other instrumental
tools in image processing such as computer vision and machine
learning methods. Hence, the development of ImageJ plugins that
require the latter kind of algorithms needs either the from-scratch
implementation of those methods or the connection with different
external libraries.

OpenCV [13] is a widespread computer vision and machine
learning library applied in a great variety of contexts, including life
sciences [14–16]. The power of OpenCV relies on the huge amount

http://dx.doi.org/10.1016/j.compbiomed.2017.03.027
Received 29 November 2016; Received in revised form 28 March 2017; Accepted 28 March 2017

⁎ Corresponding author.
E-mail addresses: jonathan.heras@unirioja.es (J. Heras), vico.pascual@unirioja.es (V. Pascual).

Computers in Biology and Medicine 84 (2017) 189–194

0010-4825/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00104825
http://www.elsevier.com/locate/compbiomed
http://dx.doi.org/10.1016/j.compbiomed.2017.03.027
http://dx.doi.org/10.1016/j.compbiomed.2017.03.027
http://dx.doi.org/10.1016/j.compbiomed.2017.03.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2017.03.027&domain=pdf


(more than 2500) of both classic and state-of-the-art computer vision
algorithms provided by this library. OpenCV supplies algorithms for:
image processing, feature detection, object detection, machine-learn-
ing, and video analysis. The major difficulties for employing OpenCV in
life sciences are its usability and interactivity: OpenCV neither provides
a by-default graphical interface or the functionality to interact with
regions of interest (ROIs). This means that it is necessary to code the
interaction with OpenCV, and this may be a problem for life scientists.

The aforementioned drawbacks of ImageJ and OpenCV could be
tackled by combining these two systems. Recently, two libraries [17,18]
have been developed allowing ImageJ users to take advantage of some
OpenCV features, but not the other way around. In this work, we have
developed a new free and open-source Java library called IJ-OpenCV1

that allows the communication of ImageJ and OpenCV in both
directions. This library brings to the table several benefits for both
communities:

• ImageJ users can employ the wide variety of computer vision and
machine learning algorithms available in OpenCV.

• ImageJ does not need to be connected with several third-party tools
to explore different alternatives; instead, OpenCV common inter-
faces can be used to easily explore different algorithms.

• OpenCV developers do not need to implement the functionality to
handle ROIs, but they can employ ImageJ's features for ROI
management.

• ImageJ simple-to-use interface can be employed to interact with
OpenCV programs, overcoming the lack of a by-default interface in
OpenCV.

• OpenCV programs can be distributed as ImageJ plugins making its
use and dissemination easier.

Therefore, it is our belief, that this bridge between systems can have
a positive impact in both ImageJ and OpenCV communities, and avoid
unnecessary duplications of efforts.

2. Methods

2.1. Implementation

IJ-OpenCV is a Java library that is built on top of the SciJava
project [8]. On a technical level, the SciJava core components are a set
of standard Java libraries for managing extensible applications.
Socially, the SciJava initiative aims to achieve the cooperation of
organisations, reuse code, and synergise wherever possible [8]. The
SciJava Common Library is the ground floor of the ImageJ software
[19].

SciJava provides a unified mechanism for defining plugins —

extensions that add new features or behaviour to the software [19].
In the interoperability context, we can highlight SciJava's converter
plugins that provide a general way of transforming data from one type
to another. New converter plugins can be developed to extend SciJava's
conversion capabilities, allowing objects of one type to be used as
module inputs of a different type, in cases where the two types are
conceptually analogous. An example of these converter plugins is
provided by the ImageJ-Matlab library [6] that allows the conversion
from ImageJ datasets to MATLAB matrices and viceversa. Similarly, an
image converter between ImageJ and the Insight ToolKit (ITK) [20]
greatly streamlines the use of ITK-based algorithms within ImageJ
[21].

The foundations of the IJ-OpenCV library are also SciJava's
converter plugins. Namely, we have defined two kinds of SciJava
converter plugins: image converters and ROI converters.

The image converter plugins provided by IJ-OpenCV enable the

conversion from ImageJ images and stacks of images, objects of the
ImagePlus class, to OpenCV images and arrays of OpenCV images,
implemented by the classes Mat and MatVector respectively, and
viceversa. These conversions use the third-party JavaCV library [22].

The ROI converter plugins allow the conversion between ImageJ
ROIs and OpenCV ROIs (the interested reader can consult the
complete list of converters in the project webpage). Namely, we have
defined plugins to convert from both a unique ROI and a list of ROIs of
the same type. The IJ-OpenCV library supports all the kinds of ROIs
available in OpenCV and the ones that are mostly used in ImageJ:
rectangles, circles, polygons, lines, ellipses, and points. It is also worth
mentioning that OpenCV sometimes uses different encodings to
represent the same kind of ROI. For instance, a point can be
represented as an object of the class Point, but also as an object of
the class Mat; therefore, we have defined different converters for those
cases. Another issue handled by these converters is whether the
conversion is actually possible; for instance, in ImageJ, circular ROIs
are represented by means of the class OvalRoi that allows the
encoding of ovals in general, and circles in particular; however,
OpenCV only works with circles; therefore, the converter in charge of
the conversion from OvalRoi to Circle includes the functionality to
check whether the instance of the OvalRoi class is an actual circle.

In the combining process achieved thanks to the converter plugins
of IJ-OpenCV, the major contribution is a set of tools that allow ImageJ
users (and respectively OpenCV users) to employ objects and results
obtained with OpenCV (and respectively ImageJ) using a representa-
tion that is well-known for them — since it is ImageJ's (or OpenCV's)
own representation. The main problems solved in this process were:
handling different encodings to define the converters, fixing the
necessary restrictions to avoid conversion problems, facilitating the
extensibility and usability of the library (solved by using the
Converter interface of SciJava), and making the library stable to
changes in ImageJ and OpenCV (solved by employing the APIs
provided by them).

2.2. Quality of the IJ-OpenCV library

In the development of the IJ-OpenCV library, we have taken into
account the different quality criteria of the ISO/IEC 25010 [23] for
software quality. These criteria include the following characteristics.

• Functionality. The IJ-OpenCV library provides the converters
between ImageJ and OpenCV images and ROIs; this is the primary
requirement to achieve the communication between these two
systems.

• Reliability. IJ-OpenCV relies on three libraries (ImageJ, OpenCV,
and SciJava Common) that have been employed and tested by large
communities. Moreover, we have increased the reliability of IJ-
OpenCV using the Java version of QuickCheck [24] to thoroughly
test the IJ-OpenCV library. In the future, we plan to apply formal
methods, as the ones applied in [25], to verify the complete
correctness of the library.

• Usability. The IJ-OpenCV library has been documented, and we
provide several examples explaining how to use it. Moreover, thanks
to the use of the interface for converter plugins provided by SciJava,
the user can easily learn how to employ IJ-OpenCV – all the
converters are used in the same way; and, therefore, it is easy to
infer from the examples and documentation how to use any of them.
Moreover, anyone coding a SciJava module [8] can annotate @
Parameter fields of the OpenCV types, and ImageJ images will be
auto-converted.

• Efficiency. The time complexity of the ROI converters is either
constant (in the case of individual ROIs) or lineal (in the case of lists
of ROIs); and, the time complexity of the image converters is lineal.

• Maintainability. Thanks to the use of converter plugins of the
SciJava Common library, the IJ-OpenCV library can be easily1 Available at https://github.com/joheras/IJ-OpenCV.

C. Domínguez et al. Computers in Biology and Medicine 84 (2017) 189–194

190



changed and extended with new converters. Regarding the stability
of IJ-OpenCV, it has been implemented using the APIs provided by
ImageJ and OpenCV; hence, as long as those APIs are not modified,
IJ-OpenCV will keep working even if changes are made in the
internal representations employed in ImageJ and OpenCV.

• Portability. IJ-OpenCV can be easily installed by using the Maven
Central binary repository. Since, IJ-OpenCV is implemented in Java,
it is a platform independent library.

2.3. A methodology to use IJ-OpenCV

We finish this section by presenting a methodology to use the IJ-
OpenCV library in order to combine the features of OpenCV and
ImageJ — a suite of ImageJ plugins has been developed employing this
methodology, see the supplementary materials, and it can be easily
downloaded and installed in ImageJ using the ImageJ Updater [19].
We will particularise this methodology to a concrete example in the
next section.

Let us start by considering a common approach followed when
analysing images in life sciences [26–28]. That approach consists of
three steps: (1) the ROIs of the image are automatically detected
applying an image processing or computer vision algorithm; (2) the
ROIs are manually adjusted by the user; and finally, (3) measurements
are performed over those ROIs. In some cases, ImageJ will not be able
to carry out the first and third steps, and the same happens with
OpenCV for the second step. However, we could use IJ-OpenCV to
create a plugin, or more generally a program, that connects ImageJ and
OpenCV, and has the desired functionality. The workflow of such a
program could be summarised as follows:

1. The program takes as input an image loaded in the GUI of ImageJ.
2. The ImageJ image is transformed to an OpenCV image using the IJ-

OpenCV library.
3. Using OpenCV algorithms, the ROIs are detected on the OpenCV

image.
4. The OpenCV ROIs are transformed to ImageJ ROIs using the IJ-

OpenCV library, and added to the original ImageJ image.
5. The user adjusts the selected ImageJ ROIs using the ImageJ features

for managing ROIs.
6. The modified ImageJ ROIs are converted back to OpenCV ROIs

using the IJ-OpenCV library.
7. OpenCV algorithms are used to perform measurements over the

OpenCV ROIs.
8. The results are sent to ImageJ, and they are shown to the user using

its GUI.

3. Results and discussion

In this section, we present how the IJ-OpenCV library and the
methodology presented previously have been implemented in the
development of AntibiogramJ: a tool for analysing images from disk
diffusion tests [29]. Using this software as a running example, we
illustrate the benefits provided by IJ-OpenCV.

Disk diffusion testing, known as antibiogram, is widely applied in
microbiology to determine the antimicrobial susceptibility of micro-
organisms [30]. The measurement of the diameter of the zone of
growth inhibition of microorganisms around the antimicrobial disks
(see Fig. 1) in the antibiogram is frequently performed manually by
specialists using a ruler. The diameters of the inhibition zones are then
used to categorise the bacterial isolate as susceptible, intermediate or
resistant to each antimicrobial drug tested according to the clinical
breakpoints established by an international committee — there is also
the category “Not Available” when the clinical breakpoints do not
include the tested antibiogram. AntibiogramJ is a Java application,

built on top of ImageJ, that semi-automatises this reading process from
plate images by combining several features of ImageJ and OpenCV
thanks to the IJ-OpenCV library.

The process to read plate images in AntibiogramJ can be split into
the following phases: (P.0) load an image; (P.1) detect and crop the
plate from the image; (P.2) adjust brightness and contrast; (P.3) detect
the antimicrobial disks of the plate; (P.4) read the drug code written in
the antimicrobial disks; (P.5) detect and measure the diameter of the
zone of growth inhibition of microorganisms around the antimicrobial
disks; and (P.6) categorise the bacterial isolate as susceptible, inter-
mediate or resistant to each antimicrobial drug. It is worth mentioning
that the plate images in AntibiogramJ can be captured using any
camera device; hence, it is not sensible to use a fully automated process
(even if it could be applied) — due to the huge variability of the
captured images — and a semi-automated approach is more adequate.

In the aforementioned process, Phases (P.0), (P.2) and (P.5) have
been implemented directly using features of ImageJ; and Phase (P.6)
does not require image processing techniques; so, they will not be
longer discussed here. On the contrary, Phases (P.1), (P.3) and (P.4)
have required the combination of ImageJ and OpenCV.

Cropping the plate from the image, i.e. Phase (P.1), is a key pre-
processing step since it allows the user, and the algorithms, to focus on
the important part of the image. This functionality has been imple-
mented following the methodology presented in Section 2.3 as follows.
Steps S.1. and S.2. are common to all the programs following the
methodology; so, let us focus on the other steps. The plate of the image
(Step S.3.) is a circle (see Fig. 1) that can be detected using several
algorithms implemented in OpenCV like Hough circles [31] or active
contours [32]; in particular, we use Hough circles. However, the
precision of the detected ROI may not be sufficient, and the user
might need to manually correct such a region. Therefore, the OpenCV
circle is transformed to an OvalRoi object of ImageJ and added to the
original ImageJ image (Step S.4.). The OvalRoi object can be altered
using the ImageJ interface (Step S.5), and once the region has been
fixed, the user can crop the image using the ImageJ cropping
functionality. This workflow is depicted in Fig. 2.

This process to crop the plate from an image shows some of the
advantages of using IJ-OpenCV instead of only using OpenCV. The
OpenCV library is designed to carry out tasks fully automatically (e.g.
robotics [33] or quality control [34]); therefore, when OpenCV detects
ROIs in an image, those ROIs are fixed and cannot be modified by the
user. However, when analysing images in life science fields, it is
common to manually adjust the detected ROIs as in the above example.
Hence, if we implement Phase (P.1) only using OpenCV, we will need to
implement the management of ROIs in OpenCV, an arduous task.
Instead, we have combined OpenCV with ImageJ and used the
excellent ROI management features provided by the latter tool.

In addition, the implementation of this Phase (P.1) also exhibits
one of the benefits of using IJ-OpenCV instead of only using ImageJ.
The functionality to detect circles in an image using the Hough
transform for circles is not implemented in ImageJ; hence, the
ImageJ developer would need to implement such an algorithm. In this
case, the situation is not too problematic since there is an ImageJ
plugin [35] that implements the desired algorithm; unfortunately, this
is not always the case as we will show with the implementation of
Phases (P.3) and (P.4) of AntibiogramJ.

The implementation of both Phases (P.3) and (P.4) of AntibiogramJ can
be considered together, since they are closely related, and both follow the
methodology presented in Section 2.3. Since the image is already available
in AntibiogramJ from the previous steps, Steps S.1. and S.2. of the
methodology can be skipped. The antimicrobial disk of the image (Step
S.3.) are the white circles inside the plate (see Fig. 1), and they are detected
in AntibiogramJ thanks to the combination of several OpenCV algorithms
(including Gaussian blurring, change of color space from RGB to HSV, and

C. Domínguez et al. Computers in Biology and Medicine 84 (2017) 189–194

191



adaptive thresholding). However, depending on the quality of the image,
some false positive and false negative antimicrobial disk might occur;
hence, the user might need to add or remove some antimicrobial disks. To
achieve this functionality, the list of circles detected by the OpenCV
algorithm is converted to a list of OvalRois and added to the ImageJ
image (Step S.4.). The list of OvalRois can be altered using ImageJ's ROI
manager (Step S.5). Once the list of antimicrobial disks have been fixed,

AntibiogramJ invokes OpenCV to read the code written in the disks. This
requires a conversion (Step S.6) from the list of OvalRois to a list of
OpenCV circles. Subsequently, the codes are read by using a matching
procedure that compares the disk against a database of disks using the ORB
binary descriptor implemented in OpenCV (Step S.7). Finally, the results
are shown to the user (Step S.8). The workflow of this process is provided
in the supplementary materials.

Fig. 1. Screenshot of AntibiogramJ. On the left, the image of a plate is shown with the diameter and category (Intermediate, Susceptible, Resistant, Not Available) associated with each
antimicrobial disk.

Fig. 2. Workflow to crop the plate from an image.

C. Domínguez et al. Computers in Biology and Medicine 84 (2017) 189–194

192



This example shows several benefits of using the IJ-OpenCV library
instead of working only with ImageJ or OpenCV. First of all, some of
the algorithms employed in the procedure (e.g. the ORB binary
descriptor or the matching algorithm) are not available neither as a
standalone feature of ImageJ or as a third-party ImageJ plugin. In this
scenario, common in bioimaging problems that require computer
vision and machine learning techniques (see, for instance, [36–39]),
the ImageJ developer has two options: implement the computer vision
and machine learning methods, or manually exporting data from
ImageJ and importing them in a different program. Neither approach
is fully satisfactory. In the former, the developer might, sometimes,
“reinvent the wheel”; and, in the later, manually exporting and
importing data across programs is a tedious and error-prone task. A
more sensible alternative consists in connecting ImageJ with a library
that supplies the desired functionality, as we have done here; and
OpenCV is a good candidate since it provides a complete computer-
vision and machine-learning suite, avoiding the implementation of
standard algorithms and the manual exportation/importation of data
across programs.

Another improvement that is introduced in ImageJ by connecting it
with OpenCV, and that is shown with our running example, is related to
the exploration of different alternatives. For instance, there are several
algorithms for describing images using keypoint detectors (e.g. FAST,
Harris, GFTT, MSER, ORB, SIFT, SURF [40]), but they are not directly
implemented in ImageJ. Then, if an ImageJ user wants to analyse the
results obtained using different detectors, ImageJ should be connected
with several libraries and particularised for each one of them. On the
contrary, OpenCV provides a common interface for keypoint detectors,
and different algorithms can be tried by just changing the name of the
algorithm to use. Therefore, the connection of ImageJ and OpenCV
allows the developer to easily test different alternatives since OpenCV
offers a wide variety of classical and state-of-the-art algorithms that
share common representations across them. Hence, the task of trying
different alternatives is reduced to change a few lines of code; and, in
some cases, to just change a parameter of a method.

Due to the exponential growth, both in size and complexity, of
datasets of images, reproducing results on those datasets might be
difficult; especially, if it requires human corrections. However, manual
correction and analysis are sometimes necessary and inescapable. For
instance, adding and removing detected ROIs from an image is a
common issue in several problems of life sciences (e.g. in our running
example adding and removing antimicrobial disks, adding and remov-
ing bands from a DNA fingerprint image [26], or adding and removing
synapses [27]). However, as we have previously commented in the case
of cropping, OpenCV does not provide a by-default method to deal with
that problem. Hence, instead of reinventing the wheel several times,
OpenCV developers can use the IJ-OpenCV library and take advantage
of ImageJ's ROI manager, that provides a simple way to deal with this
problem.

Another place where OpenCV is improved thanks to the connection
with ImageJ is its usability. As we have previously mentioned, OpenCV
does not provide a by-default GUI, and developers are in charge of
creating special-purpose interfaces for final users. Developing good
GUIs is almost an art [41] because they must be easy-to-use and also
easy-to-learn — the creation of such interfaces is not a simple task at
all. The combination of OpenCV with ImageJ would solve this problem
since OpenCV developers could develop their programs as ImageJ
plugins and, then, use the GUI of this system (a well-known interface
for life scientists) without implementing a new interface from scratch.
Additionally, more special purpose interfaces can be built on top of
ImageJ once the connection with OpenCV is achieved — this is the
approach followed by AntibiogramJ.

As we have indicated in the Introduction, two other projects —

called CVForge [17] and IJToolsUsingOpenCV [18] — connecting
ImageJ and OpenCV were released almost at the same time that IJ-
OpenCV. IJToolsUsingOpenCV provides a suite of ImageJ plugins that

connects ImageJ with some of the algorithms implemented in OpenCV;
however, the connection between ImageJ and OpenCV is achieved
individually for each plugin, and there is not a generalisation (as in the
case of IJ-OpenCV converters) that allows developers to easily extra-
polate the approach followed by IJToolsUsingOpenCV. CVForge is an
ImageJ plugin implementing a simple interface that gives access to all
the methods of OpenCV. As IJ-OpenCV, the CVForge project provides
image converters, but, in contrast to IJ-OpenCV, it does not implement
ROI converters; hence, regions of interest detected by OpenCV algo-
rithms cannot be handled using the ROI management features of
ImageJ.

CVForge and IJToolsUsingOpenCV are focused on allowing ImageJ
users to employ some of the features of OpenCV, but not the other way
around. On the contrary, the IJ-OpenCV library provides the connec-
tion in both directions bringing several benefits to ImageJ and OpenCV
communities. Therefore, it is our belief that IJ-OpenCV is the most
complete library to connect these two systems.

4. Conclusions

IJ-OpenCV is a free and open-source library that allows the
collaboration of ImageJ and OpenCV. This library has been successfully
employed to construct a standalone application and several ImageJ
plugins proving the benefits of connecting ImageJ and OpenCV. From
our point of view, thanks to the communication provided by the IJ-
OpenCV library, and the methodology presented in this paper to
achieve it, the development efforts can be greatly reduced in both
ImageJ and OpenCV communities when developing new tools for
bioimaging.

As always when developing software, there is room for improve-
ment. As further work, we are planning to introduce several features of
the SciJava library in a future version of IJ-OpenCV. Namely, the suite
of plugins provided in the supplementary materials will be refactorized
as SciJava's Command plugins. Moreover, to achieve a greater exten-
sibility and interoperability with other systems, a future version of the
IJ-OpenCV library will employ the SciJava Convert Service to perform
the conversions.

Availability and requirements.

• Project name: IJ-OpenCV.

• Project home page: https://github.com/joheras/IJ-OpenCV

• Operating system(s): Platform independent.

• Programming language: Java.

• License: GNU GPL 3.0.

• Any restrictions to use by non-academics: None.

The project home page contains the installation instructions and
several plugins that have been developed using the IJ-OpenCV library.

Conflict of interest

All named authors hereby declare that they have no conflicts of
interest to disclose.

Acknowledgements

This work was partially supported by the Ministerio de Economía y
Competitividad (MTM2014-54151-P).

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.compbiomed.2017.03.
027.

C. Domínguez et al. Computers in Biology and Medicine 84 (2017) 189–194

193

https://github.com/joheras/IJ-OpenCV
http://dx.doi.org/10.1016/j.compbiomed.2017.03.027
http://dx.doi.org/10.1016/j.compbiomed.2017.03.027


References

[1] C. Dietz, et al., Integrative open-source software enables image analysis in
biological sciences, Photon. Int. 3 (2012) 35–38.

[2] E. Meijering, G. van Cappellen, Imaging cellular and molecular biological functions,
Springer, Ch. Quantitative Biological Image Analysis, 2007, pp. 45–70.

[3] K.W. Eliceiri, et al., Biological imaging software tools, Nat. Methods 9 (7) (2012)
697–710.

[4] A.E. Carpenter, et al., A call for bioimaging software usability, Nat. Methods 9 (7)
(2012) 666–670.

[5] J. Schindelin, et al., The ImageJ Ecosystem: an open platform for biomedical image
analysis, Mol. Reprod. Dev. 82 (2015) 518–529.

[6] M.C. Hiner, C.T. Rueden, K.W. Eliceiri, ImageJ-MATLAB: a bidirectional frame-
work for scientific image analysis interoperability, BioInformatics http://dx.doi.
org/10.1093/bioinformatics/btw681.

[7] T. Pietzsch, et al., ImgLib2 — generic image processing in Java, Bioinformatics 28
(22) (2012) 3009–3011.

[8] C. Rueden, J. Schindelin, M. Hiner, K. Eliceiri, SciJava Common (Software), 2016
〈http://scijava.org/〉.

[9] T. Abdulla, et al., Epithelial to mesenchymal transitionthe roles of cell morphology,
labile adhesion and junctional coupling, Comput. Methods Prog. Biomed. 111 (2)
(2013) 435–446.

[10] F. Ghasemian, et al., An efficient method for automatic morphological abnormality
detection from human sperm images, Comput. Methods Prog. Biomed. 122 (3)
(2015) 409–420.

[11] F. Piccinini, et al., Cancer multicellular spheroids: volume assessment from a single
2d projection, Comput. Methods Prog. Biomed. 118 (2) (2014) 95–106.

[12] E. Berry, A Practical Approach to Medical Image Processing, Series in Medical
Physics and Biomedical Engineering, Taylor & Francis, 2007.

[13] A. Kaehler, G. Bradski, Learning OpenCV 3, O'Reilly Media, 2015.
[14] Y. Wang, et al., Polyp-alert: near real-time feedback during colonoscopy, Comput.

Methods Prog. Biomed. 120 (3) (2015) 164–179.
[15] J. Sheng, S. Xu, X. Luo, Categorizing biomedicine images using novel image

features and sparse coding representation, BMC Med. Genom. 6 (2013) S8.
[16] G. Islam, K. Kahol, Application of computer vision algorithm in surgical skill

assessment, in: Proceedings of the IEEE 6th International Conference on
Broadband Communications & Biomedical Applications (IB2Com'11), 2011, pp.
108–111.

[17] J. Martens, CVForge (Software), 〈https://github.com/m4dguy/CVForge〉, 2016.
[18] T. Nishida, IJToolsUsingOpenCV (Software), 〈https://github.com/WAKU-TAKE-

A/IJToolsUsingOpenCV〉, 2016.
[19] C.T. Rueden, et al., ImageJ2: ImageJ for the next generation of scientific image

data, CoRR arXiv:1701.05940, 〈http://arxiv.org/abs/1701.05940〉.
[20] T. Yoo, et al., Engineering and algorithm design for an image processing API: a

technical report on ITK-the insight toolkit, Stud. Health Technol. Inform. 85 (2002)
586–592.

[21] C. T. Rueden, et al., ImageJ-ITK (Software), 〈https://imagej.net/ITK〉, 2016.
[22] S. Audet, et al., JavaCV (Software), 〈https://github.com/bytedeco/javacv〉, 2015.
[23] ISO, International software quality standard, ISO/IEC 25010, Systems and

Software Engineering-Systems and software Quality Requirements and Evaluation
(SQuaRE), 2011.

[24] T. Jung, QuickCheck for Java, 〈https://bitbucket.org/blob79/quickcheck〉, 2015.
[25] J. Heras, et al., Verifying a platform for digital imaging: a multi-tool strategy, in:

Proceedings of Conferences on Intelligent Computer Mathematics 2013
(Calculemus track), vol. 7961 of Lecture Notes in Computer Science, Springer,
2013, pp. 66–81.

[26] J. Heras, et al., GelJ – a Tool for Analyzing DNA Fingerprint Gel Images, BMC
Bioinformatics 16 (270).

[27] G. Mata, et al., SynapCountJ: A tool for analyzing synaptic densities in neurons, in:
Proceedings of the 9th International Joint Conference on Biomedical Engineering
Systems and Technologies (BioImaging'16), vol. 2, ScitePress, 2016, pp. 25–31.

[28] E. Meijering, et al., Design and validation of a tool for neurite tracing and analysis
in fluorescence microscopy images, Cytom. Part A 58 (2) (2004) 167–176.

[29] C. Domínguez, et al., AntibiogramJ: a tool for analysing images from disk diffusion
tests, 〈https://sourceforge.net/projects/antibiogramj/〉, 2016.

[30] S. Jenkins, A.N. Schuetz, Current concepts in laboratory testing to guide anti-
microbial therapy, Mayo Clin. Proc. 87 (3) (2012) 290–675.

[31] H.K. Yuen, et al., Comparative study of hough transform methods for circle finding,
Image Vision. Comput. 8 (1) (1990) 71–77.

[32] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J. Comput.
Vision. 1 (4) (1988) 321–331.

[33] A. Velayudhan, T. Gireeshkumar, An autonomous obstacle avoiding and target
recognition robotic system using kinect, in: Proceedings of International
Computing, Communication and Devices (ICCD'14), IEEE, vol. 1 of Advances in
Intelligent Systems and Computing, Springer, 2015, pp. 643–649.

[34] M.M.G. Ramirez, J.C.V. Rincon, J.F.L. Parada, Liquid level control of coca-cola
bottles using an automated system, in: Proceedings of IEEE International
Conference on Electronics, Communications and Computers (CONIELECOMP'14),
2014, pp. 148–154.

[35] H. Pistori, E. Rocha, Hough Circles Plugin for ImageJ, 〈https://imagej.nih.gov/ij/
plugins/hough-circles.html〉, 2009.

[36] G. Mata, et al., Automatic detection of neurons in high-content microscope images
using machine learning approaches, in: Proceedings of the 13th IEEE International
Symposium on Biomedical Imaging (ISBI'16), IEEE, 2016, pp. 330–333, http://dx.
doi.org/10.1109/ISBI.2016.7493276.

[37] V. Kayniga, B. Fischerb, E. Müllerc, J.M. Buhmann, Fully automatic stitching and
distortion correction of transmission electron microscope images, J. Struct. Biol.
171 (2) (2010) 163–173.

[38] S. Preibisch, S. Saalfeld, P. Tomancak, Globally optimal stitching of tiled 3D
microscopic image acquisitions, Bioinformatics 25 (2009) 1463–1465.

[39] V. Kaynig, T. Fuchs, J.M. Buhmann, Neuron geometry extraction by perceptual
grouping in sstem images, in: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR'10), 2010, pp. 2902–2909.

[40] T. Tuytelaars, K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Now
Publishers Inc., 2008.

[41] J. Anderson, et al., Effective UI: The Art of Building Great User Experience in
Software, O'Reilly Media, 2010.

C. Domínguez et al. Computers in Biology and Medicine 84 (2017) 189–194

194

http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref1
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref1
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref2
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref2
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref3
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref3
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref4
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref4
doi:10.1093/bioinformatics/btw681
doi:10.1093/bioinformatics/btw681
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref5
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref5
http://scijava.org/
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref6
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref6
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref6
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref7
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref7
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref7
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref8
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref8
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref9
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref9
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref10
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref10
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref11
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref11
https://github.com/m4dguy/CVForge
https://github.com/WAKU-TAKE-A/IJToolsUsingOpenCV
https://github.com/WAKU-TAKE-A/IJToolsUsingOpenCV
http://arXiv:1701.05940
http://arxiv.org/abs/1701.05940
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref12
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref12
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref12
https://github.com/bytedeco/javacv
https://bitbucket.org/blob79/quickcheck
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref13
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref13
https://sourceforge.net/projects/antibiogramj/
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref14
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref14
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref15
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref15
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref16
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref16
https://imagej.nih.gov/ij/plugins/hough-circles.html
https://imagej.nih.gov/ij/plugins/hough-circles.html
doi:10.1109/ISBI.2016.7493276
doi:10.1109/ISBI.2016.7493276
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref17
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref17
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref17
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref18
http://refhub.elsevier.com/S0010-4825(17)30082-3/sbref18

	IJ-OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine
	Introduction
	Methods
	Implementation
	Quality of the IJ-OpenCV library
	A methodology to use IJ-OpenCV

	Results and discussion
	Conclusions
	Conflict of interest
	Acknowledgements
	Supplementary data
	References




