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Abstract Fungi have diverse biotechnological appli-

cations in, among others, agriculture, bioenergy gen-

eration, or remediation of polluted soil and water. In

this context, culture media based on color change in

response to degradation of dyes are particularly rele-

vant; but measuring dye decolorisation of fungal strains

mainly relies on a visual and semiquantitative classifi-

cation of color intensity changes. Such a classification

is a subjective, time-consuming and difficult to repro-

duce process. In order to deal with these problems,

we have performed a systematic evaluation of differ-

ent image-classification approaches considering ad-hoc

expert features, traditional computer vision features,

and transfer-learning features obtained from deep neu-

ral networks. Our results favor the transfer learning ap-

proach reaching an accuracy of 96.5% in the evaluated

dataset. In this paper, we provide the first, at least up

to the best of our knowledge, method to automatically

characterise dye decolorisation level of fungal strains

from images of inoculated plates.
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1 Introduction

Fungi are important sources of metabolites and en-

zymes which have diverse biotechnological applications

in agriculture; the food, paper, and textile industries;

the synthesis of organic compounds and metabolites

with pharmaceutical activities; cosmetic production;

bioenergy generation; and remediation of polluted soil

and water [26,10]. Because of the considerable diversity

of fungal species, that are distributed in all ecosystems

of the planet and occupy diverse niches as biotrophs

or saprophytes [53], the isolation and characterisation

of new strains with potential for biotechnological ap-

plications remains to be a dynamic field of mycological

research [76,49,39].

Despite the revolution of fungal biotechnology that

happened during the past two decades due to devel-

opment of omic sciences [3,22] and massive data anal-

ysis [37,64]; isolation of fungal strains with biotechno-

logical relevance, their identification, and their morpho-

logical and physiological characterisation continue to be

relevant, for which selective media are routinely used for

strain isolation and for detection of their extracellular

metabolites or enzymes [39].

In that context, culture media based on color

change, in response to degradation of dyes or evidenc-

ing production of extracellular hydrolytic of oxidative

enzymes, are particularly relevant. Most color-change

assays rely on a visual and semiquantitative classifica-

tion of color intensity changes, using an arbitrary scale

for making comparative analyses between the differ-
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ent assayed fungal strains [4,9,76]. This approach im-

plies that the results from assays are subjective, time-

consuming, and unreproducible within the same labora-

tory and also across laboratories, even when assays are

made under the same experimental conditions. There-

fore, automatic and reliable tools for the selection and

characterisation of fungal strains are needed for avoid-

ing the dependence on the experimenter’s interpreta-

tion that is commonly present when assessing fungal

capacity for dye decolorisation [57,4,62], for degrada-

tion of xenobiotics [45,42] or for reduction of Fe [51],

as well as by assays aimed at production of oxidative

lignolytic enzymes [56,25,79] and a large variety of hy-

drolytic enzymes — such as cellulases [58,36,40], xy-

lanases [77], proteases [2], chitinases [69], amylases [2,

69], and lipases [2], among other examples.

and

Up to the best of our knowledge, there is not

any method in the literature to automatically charac-

terise the dye decolorisation level of fungal strains. In

this work, we tackle this problem by analysing fungal-

strain images using computer vision techniques. In par-

ticular, the characterisation of the dye decolorisation

level of fungal-strain images can be seen as an image-

classification problem. In this kind of problem, it is im-

portant to make two important decisions: how do we

describe the images? and what machine-learning algo-

rithm is employed to construct the classification model?

To answer the first question, we analyse three differ-

ent approaches to describe the images: (1) using the

information provided by the expert biologists, (2) us-

ing traditional computer vision descriptors, and (3) us-

ing transfer learning — a successful deep learning tech-

nique. In order to answer the latter question, we per-

form a systematic statistical analysis to compare the

most widely employed classification algorithms.

The contribution of this paper is threefold. First of

all, we provide the first annotated dataset of images

to characterise dye decolorisation of fungal strains. In

addition, we perform a thorough comparison of different

methods to automatise such a task. Finally, we provide

a model to classify dye decolorisation of fungal strains

with an outstanding accuracy of 96.5%.

2 Materials and methods

2.1 Fungal strains

Strains obtained from the Michoacan University Cul-

ture Collection (Cepario Michoacano Universitario,

CMU) of several species of basidiomycetes (unpublished

data) and of Trichoderma spp. [23] were used for de-

colorisation assays. Assays of extracellular enzymatic

activity were made only in strains of Trichoderma spp.

2.2 Solid media used

Most strains were maintained in potato dextrose agar

(PDA, DifcoTM , USA), also used for production of in-

ocula. Decolorisation of phenolic substances assays were

carried out both in PDA and in malt extract agar

(MEA, DifcoTM , USA). Both media were prepared as

indicated by suppliers.

Isolates of Trichoderma spp. were cultured and

maintained in Vogel’s medium N (VMN), and inoc-

ula were generated in the same medium. VMN 50X

stock solution was prepared with: 150 g/LNa3C6H5O7·
5H2O, 250 g/L KH2PO4, 100 g/L NH4NO3, 10 g/L

MgSO4 · 7H2O, 5 g/L CaCl2 · 2H2O, 5 ml of biotin

solution (5 mg biotin in 100 mL 50% ethanol), and 5

ml of trace element solution (5 g/L citric acid·2H2O,

5 g/L ZnSO4 · H2O, 1 g/L FeCl3 · 6H2O, 0.25 g/L

CuSO4 · 5H2O, 0,072 g/L MnCl2 · 4H2O, 0.05 g/L

H3BO3, 0.05 g/L Na2MoO4 · 2H2O). For its use, the

VMN stock solution was diluted in distilled water to a

final concentration of 1X and 1.5% glucose and 15g/L

of bacteriological agar were added.

Detection of xylanases was made in xylanoly-

sis basal medium (XBM) prepared with: 1 g/L

C4H12N2O6, 1 g/L KH2PO4, 0.1 g/L yeast extract, 0.5

g/L MgSO4 · 7H2O, 0.001 g/L CaCl2 · 2H2O, 0.1 g/L

peptone, and 1.6% (w/v) bacteriological agar supple-

mented with 0.4% glucose. For detection of xylanases

4% (W/V) xylan (Sigma, USA) and 1.6% agar were

added to the XBM. Protease activity was detected in

0.4% gelatin from porcine skin (Sigma, USA) and 1.6%

agar at pH 6.

All media were sterilized by autoclaving at 120 oC

and 15 pounds/in2.

2.3 Fungal inoculum generation

All tested strains were stored in PDA at 4 oC until

used. Inocula were generated using 6 mm cylindrical

plugs removed with a cork borer from the margin of

mycelia colony in log growth phase and inoculated in

the center of a 90 mm PDA Petri dish. The dishes were

incubated in darkness at 28 oC until mid-log phase, and

then 6 mm of inoculum was taken from the margin of

the colony as described. These mycelial plugs were used

for assays.

The inocula for xylanases assays were prepared from

6 mm cylindrical plugs taken as described above from

several Trichoderma spp. isolates cultivated in XBM,
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and for protease assays, from several isolates of Tricho-

derma spp. cultivated in VMN.

2.4 Decolorisation and enzymatic assays

Decolorisation assays were carried out in 90 mm Petri

dishes with PDA or MEA in independent experiments

supplemented with the phenolic compound guaiacol

and the dyes Methyl Orange (MO), Direct Blue 71

(DB71), Acid Blue 1 (AB1), Chicago Sky Blue 6B

(CSB-6B) from the azo dye group; Carmine Indigo

(CI) from the indigoid group, Remazol Brilliant Blue-R

(RBBR) from the anthraquinone group; and the triph-

enylmethane type dye Acid Fuchsine (AF). The guaia-

col substrate was used at a final concentration of 0.01%

(w/v) [41] and the dyes at a final concentration of 250

µg/mL [50]. All chemicals were purchased from Sigma-

Aldrich (USA). The media with phenolic compounds

were inoculated at the center of the plate with a 6 mm

mycelium plug obtained as previously described and in-

cubated in darkness at 28 oC. A control plate with me-

dia, but without fungal inoculum, was incubated to con-

firm that the color change was not induced by physic-

ochemical factors during fungal growth. The decolori-

sation of phenolic dyes was determined visually by the

fading and loss of color of the media, while guaiacol

oxidation was registered as the formation of a reddish-

brown halo in the media [50,41]. All experiments were

performed in triplicate. Detection of xylanase activity

was made following the method of Pointing [56] by de-

velopment the plates by flooding them with lugol solu-

tion (I2/KI). Proteolytic activity was detected by the

method of Hankins and Anagnostakis [30], by precipi-

tation of undegraded proteins by ammonium sulfate.

2.5 Image acquisition

Color change results were documented photographically

from Petri plates in a transilluminator with white light

from an 8 W lamp. Photographs were taken with a Sony

Full HD 1080 camera with a Zeiss lens and a resolution

of 12 Megapixels, but any camera with the same or

higher resolution can be used. Photographs were taken

without flash to avoid light reflection. The Petri plates

were preferentially photographed by the bottom sur-

face, but in some cases top surface provided a better

resolution for color analysis. In this last case, the lid was

removed before capturing the image to prevent light re-

flection and easing the focusing of the surface. In any

case, it is recommendable to photograph both the top

and bottom surfaces in order to select the image that

better records color changes and colony diameter.

3 Protocol

The protocol employed in this work to construct an

image-classifier for dye decolorisation of fungal assays is

summarised in Figure 1 — such a protocol is commonly

used in the context of image classification [59]. The rest

of this section is devoted to explain each step of the

protocol.

3.1 Dataset

Following the procedure presented in the previous sec-

tion, a total of 235 images of dye decolorisation assays

were acquired. The images of the dataset were anno-

tated by the biological experts with one of the following

four labels indicating the decolorisation level: “-” (no

decolorisation), “+”, “++”, and “+++” (completely

decolorised). The initial dataset contained 123 “-” im-

ages, 47 “+” images, 27 “++” images, and 38 “+++”

images. Examples of the images of the dataset are pro-

vided in Figure 2.

The dataset of images was clearly imbalanced;

and, it is a well-known result that classification algo-

rithms might be negatively impacted by imbalanced

datasets [12,7]. To deal with this problem, we em-

ployed the synthetic minority oversampling technique

(SMOTE) [11]; a data augmentation [68] method that

not only deals with the imbalanced problem but also

improves the generalisation of the models. Namely, we

augmented the dataset by applying vertical and hor-

izontal flips to the image, and random rotations and

translations — the number of applied transformations

for each class depended on the number of initial im-

ages for that class. The final dataset consists of 1204

images: 306 “-” images, 313 “+” images, 297 “++” im-

ages, and 288 “+++” images. Augmenting the dataset

of images not only deals with the problem of imbalanced

data, but also handles the overfitting phenomenon [59].

The final dataset of images is freely available at https:

//github.com/joheras/DecolorisationImages.

3.2 Feature extraction methods

Once the dataset of images is created, the next step in

the protocol consists in determining which features will

be used to describe the images of the dataset. Differ-

ent approaches can be employed to generate the feature

vector associated with an image. In this study, we con-

sider three different alternatives.

https://github.com/joheras/DecolorisationImages
https://github.com/joheras/DecolorisationImages
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Fig. 1 Protocol employed in this work to select the best model for classifying dye decolorisation images.

Class “-” Class “-” Class “+” Class “+”

Class “++” Class “++” Class “+++” Class “+++”

Fig. 2 Examples of the dataset of images and their classes.
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3.2.1 Extracted features from experts’ knowledge

The first approach that we study to create the feature

vector associated with a dye decolorisation image tries

to capture the experts’ knowledge. The intuitive idea

behind the proposed algorithm consists in measuring

the “distance” from different regions of the image to

an image that has been completely decolorised and to

a control image that only contains the dye. Given an

image I, the control image C, and the decolorised image

D, the procedure to generate a feature vector from I is

described as follows:

1. Convert the images I, C and D to the colour space

L*a*b and rescale them to the same size. The L*a*b

colour space mimics the methodology in which hu-

mans see and interpret colour, and in this colour

space the Euclidean distance has an actual percep-

tual meaning [35].

2. Generate the images C0, C1, . . . , C100 such that Ci

is the linear blending [75] of (1−i/100)C+(i/100)D.

This process generates a decolorisation scale for

each dye ranging from no decolorisation (i = 0) to

completely decolorised (i = 100).

3. From j = 1 to 10, extract the annulus Aj of image I

with centre the centre of the image I, radius of the

inner circle w× (j − 1)/10 (where w is the width of

the image), and radius of the outer circle w× j/10.

4. For each annulus Aj , split it into 2p sectors (with

p ≥ 2) of the same size A1
j , . . . , A

2p

j .

5. For each Ak
j , with 1 ≤ j ≤ 10 and 1 ≤ k ≤ 2p,

obtain the index i (0 ≤ i ≤ 100) such that the dis-

tance d(Ak
j , Ci) is minimised. The distance d(E,F )

between two images E and F is defined as the Eu-

clidean distance between the normalised histograms

of E and F .

6. Return the indexes obtained in the previous step as

feature vector.

The above algorithm not only takes as input the im-

ages I, C and D but also the exponent of the number

of sectors p (see Step 4) and the number of bins that

are employed to generate the histograms of Step 5. In

this work, we will consider three common values for the

numbers of bins that are 4 bins per channel, 8 bins per

channel and 16 bins per channel (we will call each vari-

ant of the algorithm A444, A888, and A161616 respec-

tively); and p will take values from 2 to 6. In addition,

we will consider a variant of these algorithms where

the feature vectors are normalised, since this can have

a positive impact in some classification algorithms [44].

3.2.2 Traditional computer vision features

In the second approach to describe dye decolorisation

images, we use two traditional computer vision fea-

ture descriptors that characterise the texture of an im-

age: Haralick [31] and Histograms of local gradients

(HOG) [24].

The Haralick features are derived from the grey level

co-occurrence matrix. This matrix records how many

times two grey-level pixels adjacent to each other ap-

pear in an image. Then, based on this matrix, 13 values

are extracted from the co-occurrence matrix to quantify

the texture.

The HOG features are computed over a grid of over-

lapping rectangular blocks in the image. For each block,

its histogram describes the frequency of the occurring

gradient directions inside that block.

Both for the Haralick and the HOG features, we

consider two approaches to generate the feature vector

that describes an image. In the former, we extract ei-

ther the Haralick or the HOG features from the image,

and that is its feature vector. In the latter, we stack the

image with a control image of the dye (see Figure 3);

and, subsequently, either the Haralick or the HOG fea-

tures are computed from the stacked image, and used

as feature vector of the original image.

3.2.3 Deep learning features

Finally, the last approach that is considered in this work

to generate the feature vectors employs deep learning.

Deep Neural Networks (DNNs) [43] are the state-of-the-

art technique for image classification; but its use may

be unfeasible in many situations since they require very

large training sets (from thousands up to several million

images) [59]. To overcome this difficulty, the common

approach in the literature consists in applying transfer

learning [59]. This technique consists in partially re-

using a model trained in a source task in a new target

task [52,15,29,48].

As explained in [59], transfer learning can be used

in different ways; the approach that we follow in this

work consists in using the output of the source trained

network as “off-the-shelf” features that are employed to

train a complete new classifier for the target task [52]. In

order to apply transfer learning in our context, we con-

sider 8 publicly available trained DNNs: DenseNet [34],

GoogleNet [72], Inception v3 [73], OverFeat [65], Resnet

50 [32], VGG16 [70], VGG19 [70], and Xception v1 [13].

All these networks were initially trained for the im-

age classification task of the ImageNet ILSVRC chal-

lenge [63], a dataset of 1.2 million images which are

hand labelled with the presence/absence of 1000 cate-
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Fig. 3 Stack of an image with a control image of the dye. Top-Left. Control image. Bottom-Left. Analysed image. Right. Stack
of images.

gories. We strip the last layer of these networks, and

use the output produced by their last layers as feature

vectors — information about the networks can be found

in Table 1.

Using each one of the aforementioned networks, and

analogously to the case of the traditional features, we

consider two approaches to generate the feature vector

that describes an image. In the former, we input the

image to the network and use the output produced by

the last layer of the network as the feature vector. In

the latter, we stack the image with a control image of

the dye, then, the resulting image is inputted to the

network, and the output produced by the last layer of

the network is used as feature vector.

3.3 Classification algorithms

From the dataset of images, the feature vectors ob-

tained using one of the previously mentioned ap-

proaches are fed to a classifier that is trained with them.

The 6 classifiers that are considered in this work are

Extremely Randomised Trees (from now on ERT) [28],

KNN [21], Logistic Regression (from now on LR) [47],

Multilayer Perceptron (from now on MLP) [6], Random

Forest (from now on RF) [8], and SVM [20]. The clas-

sification models produced by each combination of de-

scriptor and classification algorithm are systematically

evaluated by means of a statistical study.

3.4 Experimental study

In order to validate the classification models obtained

with the protocol previously explained, a stratified 10-

fold cross-validation approach was employed. To eval-

uate the performance of the classifiers, we measured

their accuracy (i.e. the proportion of samples for which

the model produces the correct output), the results are

taken as the mean and standard deviation of the ac-

curacy for the 10 test sets. The hyper parameters of

each classification algorithm were chosen using a 10-

fold nested validation with each of the training sets,

and using a randomised search on the parameters dis-

tributions.

In order to determine whether the results obtained

were statistically significant, several null hypothesis

tests were performed using the methodology presented

in [27,67]. In order to choose between a parametric

or a non-parametric test to compare the models, we

check three conditions: independence, normality and

heteroscedasticity — the use of a parametric test is only

appropriate when the three conditions are satisfied [27].

The independence condition is fulfilled because we

perform different runs following a stratified 10-fold

cross-validation approach for separating the data with

a prior random reshuffling of the samples. A strati-

fied cross-validation approach splits the dataset into ten

random equal-size subsets preserving the percentage of

samples for each class. Nine of such subsets are chosen

ten times to train the model and the remaining set is

used to test them — in each iteration, one of the subsets

is chosen to be the test set. We use the Shapiro-Wilk

test [66] to check normality — with the null hypoth-

esis being that the data follow a normal distribution

— and, a Levene test [46] to check heteroscedasticity

— with the null hypothesis being that the results are

heteroscedastic.

When comparing two models, we use Student’s t-

test [27] when the parametric conditions are satisfied,

and Wilcoxon’s test [27] otherwise. In both cases, the

null hypothesis is that the two models have the same

performance.
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Network Input image size Number of layers Size of output feature vector

DenseNet 40 12 32× 32 40 12928
GoogleNet 231× 231 22 1000
Inception v3 299× 299 48 131072
OverFeat 231× 231 7 3072
Resnet 50 224× 224 50 2048
VGG16 224× 224 16 25088
VGG19 224× 224 19 25088

Xception v1 299× 299 36 204800

Table 1 Information about the networks employed in this study.

If we compare more than two models, we employ

an ANOVA test [67] when the parametric conditions

are fulfilled, and a Friedman test [67] otherwise. In

both cases, the null hypothesis is that all the models

have the same performance. Once the test for checking

whether a model is statistically better than the others

has been conducted, a post-hoc procedure is employed

to address the multiple hypothesis testing among the

different models. A Holm post-hoc procedure [33], in

the non-parametric case, or a Bonferroni-Dunn post-

hoc procedure [67], in the parametric case, has to be

used for detecting significance of the multiple compar-

isons [27,67] and the p values should be corrected and

adjusted. We perform our experimental analysis with a

level of confidence equal to 0.05.

In addition, the size effect is measured using Cohen’s

d [18] and Eta Squared [19].

3.5 Software and hardware

The code employed in this work was implemented

in Python using several libraries: OpenCV [38] (li-

brary for image processing and computer vision), the
Keras framework [14] with a Tensorflow back-end [1]

(provides the DNNs), the sklearn library [54] (li-

brary for machine learning), mahotas [17] (library for

computer vision), and STAC [61] (library for statis-

tical analysis). All the source code for this paper

is freely available at https://github.com/joheras/

ObjectClassificationByTransferLearning.

All experiments were performed under Linux OS on

a machine with CPU Intel Core i7-4790 3.60GHz, GPU

NVIDIA Quadro K1100M.

4 Results

4.1 Expert approach

As we have explained in Section 3.2.1, the algo-

rithm to extract features from experts’ knowledge is

parametrised by the exponent p of the number of sec-

tors 2p, and the number of bins. Since such a parametri-

sation produces several combinations, here we only in-

clude the results considering p with value 2 (i.e. we take

the 4 quadrants of the annulus) and considering 4, 8 and

16 bins per channel — those combinations produce the

best results. The results for the other combinations are

available at the project webpage.

The results are presented in Tables 2 and 3, and

Figure 4. From the results presented in those tables

and figure, we can notice that decreasing the number

of bins have a positive impact in all the classifiers. When

we compare the different classifiers, we obtain that the

ERT classifier produces the models with the best ac-

curacy indepentently of the number of bins that are

employed and whether normalisation is used. Besides,

and although there are not significant differences with

respect to the second best classifier (RF in all the cases

but when 4 bins are employed and the features are fur-

ther normalised, in that case the second best classifier

is KNN), the Cohen’s d size effect of the differences be-

tween the first and the second best classifiers are large

in all the cases (ranging from 0.69 to 1.70) except in

the case of A888 without normalisation wherein the size

effect is small (0.15). We can observe that all the classi-

fiers built using expert features obtain an accuracy over

50% but just a few of them get an accuracy over 90%.

Now, we compare the best models for each num-

ber of bins with and without normalisation of the fea-

ture vectors. We first consider the case where the fea-

tures are not normalised; in such a case, the models to

compare are A444-ERT, A888-ERT and A161616-ERT.

Although, there are not found significant differences

in the accuracy of the models (ANOVA F = −0.244;

p > 0.05), we obtain an eta squared = 0.75 with large

size effect. If we consider the model with the best mean

(A444-ERT), and take into account the size effect with

respect to the other two models, we obtain that in

both cases the size effect is large (0.70 and 2.52, respec-

tively). Secondly, when the feature vectors are not nor-

malised, the models to compare are A444-ERT, A888-

ERT and A161616-ERT. Again, although there are not

found significant differences in the accuracy of the mod-

els (ANOVA F = −0.234; p > 0.05), we obtain an eta

squared = 0.45 with large size effect. If we consider the

https://github.com/joheras/ObjectClassificationByTransferLearning
https://github.com/joheras/ObjectClassificationByTransferLearning
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Bins ERT KNN LR MLP RF SVM Test (Anova
or Fried-
man)

After post-hoc pro-
cedure

A161616 83.1(2.6) 62.8(3.7) 50.7(3.7) 61.4(3.1) 80.6(3.2) 69.9(3.7) 203.8∗∗∗ ERT ' RF, SVM;
ERT > KNN, MLP,
LR

A888 91.4(2.1) 77.1(5.4) 58.6(4.4) 73.6(3.7) 91.0(2.7) 83.5(4.1) 132.2∗∗∗ ERT ' RF, SVM;
ERT > KNN, MLP,
LR

A444 93.2(2.7) 83.1(3.3) 63.2(5.2) 76.2(5.7) 91.3(2.5) 86.9(3.0) 563.7∗∗∗ ERT ' RF; ERT >
SVM, KNN, MLP,
LR

Table 2 Mean (and standard deviation) for the different studied models without normalising the feature vectors. The best
result for each feature extraction method is in italics, and the best result in bold face. ∗∗∗p < 0.001; >: there are significant
differences; ': there are not significant differences.

model with the best mean (A444-ERT), and take into

account the size effect with respect to the other two

models, we obtain that in the size effects are medium-

large and large (0.60 and 2.50, respectively).

4.2 Traditional computer vision features

The results obtained for the traditional computer vision

features are presented in Tables 4 and 5, and Figure 5.

In general, the use of a control image seems to outper-

form the case when that image is not employed. At first

sight, there is not a clear feature extractor or classifier

with better accuracy than the rest. In the case of mod-

els where the control image is taken into account, the

classifiers constructed using the HOG features outper-

form those constructed using Haralick features; how-

ever, when the control image is not considered, several

classifiers constructed using Haralick features have a

better accuracy than those built using HOG features.

Moreover, the ERT classifier is the best method in three

out of the four cases; and, it is only outperformed by

SVM and LR working with HOG features and without

using a control image.

Now, we compare the best models for each tradi-

tional computer vision features with the different clas-

sifiers. We first consider the case where the features

are extracted without considering the control image. In

such a case, the models to compare are Haralick-ERT

and HOG-MLP. The Wilcoxon’s test is employed to

compare these 2 models since the normality condition

is not satisfied (W = 0.89, p = 0.032). We obtain that

the Haralick-ERT method is significantly better than

HOG-MLP (t=0.000; p=0.005) with a large size effect

(Cohen’s d = 4.83). When the features are extracted

using not only the image, but also the control image;

the models to compare are Haralick-ERT and HOG-

ERT. We obtain that the HOG-ERT method is signifi-

cantly better than Haralick-ERT (Student’s t = −2.71,

p = 0.014 with a large size effect (Cohen’s d = 1.21).

4.3 Deep learning features

The results obtained for each combination of DNN,

classifier, and approach to generate feature vectors are

included in Tables 6 and 7, and Figure 6. As it can be

seen, there is not a classifier that always produces the

best results for all the cases — this is a case of the no

free lunch theorem for machine learning [78]. Although,

the use of a control image seems to have a positive im-

pact; that is not true in all the cases (see, for instance,

OverFeat-ERT or OverFear-KNN). In addition, no net-

work is able to obtain an accuracy higher than 90%

with all the classifiers; as exception, we can cite Resnet

50 using the control image that almost reaches that

milestone. Moreover, the LR classifier seems to have a

good and stable performance independently of the net-

work, obtaining an accuracy higher than 90% with all

the networks when the control image is used. However,

we can notice that, on the contrary to the use of ex-

pert and traditional features, using deep features we

can create several models with an accuracy over 90%

(compare Figures 4, 5 and 6). Finally, some classifiers

seem to have very different behaviour depending on the

network used. For instance, the accuracy of the SVM

classifier when the image control is taken into account

ranges from 33% (using features from the VGG16 net-

work) to 96% (using the features extracted from the

Resnet 50 network).

Now, we compare the best models that can be

obtained for each DNN with the different classifiers.

We first consider the case where the features are

extracted without considering the control image; in

such a case, the models to compare are DenseNet-

ERT, GoogleNet-ERT, Inception-LR, OverFeat-SVM,

Resnet-LR, VGG16-LR, VGG19-LR, and Xception-LR.

Although, there are not found significant differences in

the accuracy between the models (ANOVA F = 0.05;

p = 0.99), a large size effect (eta squared = 0.18)

is obtained. If we consider the model with the best

mean (Resnet-LR), and take into account the size ef-
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Bins ERT KNN LR MLP RF SVM Test (Anova
or Fried-
man)

After post-hoc pro-
cedure

A161616 75.6(3.5) 61.8(2.8) 50.6(2.8) 63.3(4.2) 67.7(5.1) 65.5(4.0) 0.38 ERT ' RF, SVM,
MLP, KNN, LR

A888 81.7(5.1) 77.4(4.4) 58.1(3.9) 72.0(3.6) 77.8(5.5) 72.0(3.6) 0.48 ERT ' RF, KNN,
MLP, SVM, LR

A444 84.4(3.1) 80.1(2.5) 63.0(4.9) 76.1(3.8) 77.2(5.0) 73.9(5.2) 27.6∗∗∗ ERT ' KNN; ERT
> RF, MLP, SVM,
LR

Table 3 Mean (and standard deviation) for the different studied models normalising the feature vectors. The best result for
each feature extraction method is in italics, and the best result in bold face. ∗∗∗p < 0.001; >: there are significant differences;
': there are not significant differences.

Fig. 4 Left. Scatter plot showing the accuracy of all the combinations of expert features and classifiers. Right. Zoom of the
scatter plot on the combinations of expert features and classifiers that obtain an accuracy higher than 90%.

CV features ERT KNN LR MLP RF SVM Test (Anova
or Fried-
man)

After post-hoc pro-
cedure

Haralick 90.0(2.0) 50.4(4.6) 48.8(4.6) 40.1(5.3) 86.3(3.0) 62.8(3.5) 203.8∗∗∗ ERT ' RF; ERT
> SVM, KNN, LR,
MLP

HOG 72.5(4.1) 60.0(3.9) 73.0(4.0) 75.3(3.4) 60.5(4.9) 75.3(5.2) 34.2∗∗∗ SVM ' MLP, ERT,
LR; SVM > RF,
KNN

Table 4 Mean (and standard deviation) for the different studied models without considering the control image to generate the
feature vectors. The best result for each feature extraction method is in italics, and the best result in bold face. ∗∗∗p < 0.001;
>: there are significant differences; ': there are not significant differences.

CV features ERT KNN LR MLP RF SVM Test
(ANOVA or
Friedman)

After post-hoc pro-
cedure

Haralick 92.7(2.5) 55.6(3.7) 47.0(4.3) 33.2(0.5) 88.8(3.3) 65.2(4.4) 1648.8∗∗∗ ERT ' RF; ERT >
SVM, KNN, LR ,
MLP

HOG 95.4(1.5) 81.3(2.9) 92.2(1.7) 92.4(1.9) 92.7(1.9) 92.4
(1.4)

20.3∗∗∗ ERT > RF, MLP,
SVM, LR, KNN

Table 5 Mean (and standard deviation) for the different studied models considering the control image to generate the feature
vectors. The best result for each feature extraction method is in italics, and the best result in bold face. ∗∗∗p < 0.001; >: there
are significant differences; ': there are not significant differences.
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Fig. 5 Left. Scatter plot showing the accuracy of all the combinations of traditional features and classifiers. Right. Zoom of
the scatter plot on the combinations of traditional features and classifiers that obtain an accuracy higher than 90%.

Network ERT KNN LR MLP RF SVM Test (Anova
or Fried-
man)

After post-hoc pro-
cedure

DenseNet 91.4(1.7) 84.0(3.3) 90.1(2.5) 57.3(10.4) 87.3(2.1) 33.3(4.7) 64.42∗∗∗ ERT ' LR, RF;
ERT > MLP, SVM,
KNN

GoogleNet 92.4(2.1) 49.2(3.8) 89.4 (2.4) 85.7 (5.9) 89.4
(2.1)

60.5(4.8) 50.2∗∗∗ ERT ' LR; ERT
> RF, MLP, SVM,
KNN

Inception v3 88.6(2.8) 83.1(3.5) 92.6(1.2) 91.1(2.1) 80.0(2.7) 34.6(4.8) 68.0∗∗∗ LR'MLP, ERT; LR
>KNN, RF, SVM

OverFeat 89.5(2.5) 85.8(4.0) 91.2(2.5) 91.7(2.3) 85.8(4.0) 92.5(2.3) 22.25∗∗∗ SVM'MLP, LR,
ERT; SVM >KNN,
RF

Resnet 50 93.5(1.9) 46.4(4.9) 94.5(1.7) 93.3(2.7) 89.9(2.1) 73.1(6.1) 75.4∗∗∗ LR'ERT, MLP; LR
>RF, SVM, KNN

VGG16 89.9(2.3) 79.1(3.1) 91.7(1.8) 89.8(2.8) 82.5(2.2) 31.3(4.9) 81.7∗∗∗ LR'ERT,MLP;
LR>RF, KNN,
SVM

VGG19 90.1(2.1) 84.4(3.1) 92.7(2.3) 90.9(2.4) 78.7(4.3) 33.1(4.7) 85.8∗∗∗ LR'MLP, ERT;
LR>KNN,RF, SVM

Xception v1 90.1(2.7) 87.8(2.9) 93.5(1.6) 92.2(2.0) 82.1(3.7) 91.9(1.3) 21.7∗∗∗ LR'MLP, SVM,
ERT;LR > KNN,
RF

Table 6 Mean (and standard deviation) for the different studied models without considering the control image to generate
the feature vectors. The best result for each DNN in italics, the best result in bold face. ∗∗∗p < 0.001; >: there are significant
differences; ': there are not significant differences.

fect with the rest of the models using Cohen’s d, we

obtain a medium size effect (0.57) when compared with

Xception-LR, and a large one (ranging from 0.84 to

2.47) when compared with the rest of the models.

When the features are extracted using not only

the image, but also the control image; the mod-

els to compare are DenseNet-ERT, GoogleNet-SVM,

Inception-LR, OverFeat-SVM, Resnet-SVM, VGG16-

ERT, VGG19-LR, and Xception-LR. In this case, there

are found significant differences in the accuracy between

the models (Friedman F = 6.24; p = 1.42 × 10−5)

— Resnet-SVM ' DenseNet-ERT, GoogleNet-SVM,

Inception-LR, VGG16-ERT, VGG19-LR, Xception-LR;

Resnet-SVM > OverFeat-SVM— and a large size ef-

fect (eta squared = 0.17) is obtained. If we consider the

model with the best mean (Resnet-SVM), and take into

account the size effect with the rest of the models us-

ing Cohen’s d, we obtain a small size effect (0.14) when

compared with DenseNet-ERT, and medium-large size

effects (ranging from 0.53 to 1.58) when compared with

the rest of the models.

4.4 Comparing the best methods

Finally, we compare the best methods obtained with

each approach using the methodology presented in

Section 3.4. Namely, we compare the following meth-

ods: from the expert approach, A444-W-ERT (A444

without normalisation and using ERT) and A444-N-

ERT (A444 with normalisation and using ERT); from

the traditional computer vision approach, Haralick-W-

ERT (Haralick without control image and using ERT)

and HOG-C-ERT (HOG with control image and using
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Network ERT KNN LR MLP RF SVM Test
(ANOVA or
Friedman)

After post-hoc pro-
cedure

DenseNet 96.2(2.3) 85.5(4.3) 94.3(2.8) 62.2(18.6) 93.9(2.9) 42.5(4.6) 119.57∗∗∗ ERT ' LR, RF;
ERT > MLP, SVM,
KNN

GoogleNet 92.5(3.1) 88.6(2.5) 92.4(2.8) 92.0(3.1) 88.6(4.2) 95.4(2.2) 0.35 SVM ' ERT, LR,
MLP, KNN, RF

Inception v3 93.0(2.7) 87.6(3.1) 95.5(1.6) 94.3(2.1) 86.8(2.0) 46.4(4.8) 79.2∗∗∗ LR ' MLP, ERT;
LR > KNN, RF,
SVM

OverFeat 87.2(2.4) 82.6(4.5) 92.7(2.1) 92.2(2.6) 82.0(3.5) 93.0(2.4) 58.8∗∗∗ SVM ' LR, MLP;
SVM > ERT, KNN,
RF

Resnet 50 92.6(2.8) 90.1(3.2) 95.2(2.3) 94.7(2.3) 89.6(1.8) 96.5(1.6) -0.74 SVM ' LR, MLP,
ERT, KNN, RF

VGG16 95.0(2.0) 86.4(2.3) 94.7(1.7) 92.4(1.7) 89.2(3.5) 33.1(4.3) 78.7∗∗∗ ERT' LR, MLP;
ERT > RF, KNN,
SVM

VGG19 94.4(1.6) 84.5(2.9) 94.6(2.3) 92.4(2.7) 87.1(2.3) 33.7(4.4) 60.6∗∗∗ LR' ERT, MLP;
LR > RF, KNN,
SVM

Xception v1 93.5(2.7) 89.9(4.4) 95.2(2.3) 94.8(1.7) 86.8(3.0) 94.8(1.9) 20.3 LR ' SVM, MLP,
ERT; LR > KNN,
RF

Table 7 Mean (and standard deviation) for the different studied models considering the control image to generate the feature
vectors. The best result for each DNN in italics, the best result in bold face. ∗∗∗p < 0.001; >: there are significant differences;
': there are not significant differences.

Fig. 6 Left. Scatter plot showing the accuracy of all the combinations of deep features and classifiers. Right. Zoom of the
scatter plot on the combinations of deep features and classifiers that obtain an accuracy higher than 90%.

ERT); and, from the deep learning approach, Resnet-

W-LR (Resnet without control image and using LR)

and Resnet-C-SVM (Resnet with control image and us-

ing SVM). We repeat in Table 8 the accuracy obtained

by each of those methods, and introduce a graphical

comparison of those methods in Figure 7.

In order to compare these methods, the non-

parametric Friedman’s test is employed since the nor-

mality condition is not fulfilled (Shapiro-Wilk’s test

W = 0.924496; p = 0.001169). The Friedman’s test

performs a ranking of the models compared (see Ta-

ble 8), assuming as null hypothesis that all the models

have the same performance. We obtain significant dif-

ferences (F = 29.55; p < 3.61×10−13), with a large size

effect eta squared = 0.77.

The Holm algorithm was employed to compare the

control model (winner) with all the other models ad-

justing the p value, results are shown in Table 9. As it

can be observed in Table 9, there are four techniques

with no significant differences as we failed to reject the

null hypothesis. The size effect is also taken into ac-

count using Cohen’s d, and as it is shown in Table 9,

it is medium or large when we compare the winning

model with the rest of the models.

As it can be seen in those tables, the winner model

is Resnet-C-SVM with an extremely good accuracy of

96.5%. Although, the use of traditional computer vi-

sion features losses in both cases (with control image

and without it) with respect to the use of a DNN, the

networks trained using traditional features only obtain

a 1% less accuracy that the networks trained using deep

features; and, indeed, the use of traditional computer

vision features that use the control images outperforms

the use of DNN features that do not use the control
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Technique Accuracy Friedman’s test average ranking

Resnet-C-SVM 96.5 (1.6) 5.25
HOG-C-ERT 95.4 (1.5) 4.65
Resnet-W-LR 94.5 (1.7) 4.4
A444-W-ERT 93.2 (2.7) 3.6

Haralick-W-ERT 90.0 (2.0) 2.1
A444-N-ERT 84.4 (3.1) 1

Table 8 Best methods obtained with each approach.

Technique Z value p value adjusted p value Cohen’s d

HOG-C-ERT 0.71 0.47 0.61 0.66
Resnet-W-LR 1.01 0.30 0.61 1.11
A444-W-ERT 1.97 0.048 0.14 1.34

Haralick-W-ERT 3.76 1.6×10−4 6.66×10−4 3.48

A444-N-ERT 5.07 3.77 ×10−7 1.88×10−6 4.56

Table 9 Adjusted p-values with Holm, and Cohen’s d. Control technique: Resnet-C-SVM.

Fig. 7 Results from 10 independent runs in accuracy for the
best method in each approach.

image. Moreover, the expert method approach also ob-

tains a remarkable accuracy of 93.2% which outper-

forms traditional computer vision features when con-

trol images are not used. Finally, independently of the

approach that is employed to build the model, we can

create models which accuracy is over 90%, except in the

case of bins with normalisation.

5 Discussion and conclusions

Automated digital plate reading is increasingly adopted

as a mean to improve the quality, efficiency and repro-

ducibility withing laboratories. However, current auto-

mated digital plate reading systems and tools are de-

signed to analyse bacterial culture plates or yeasts, but

not fungal strains [60]. Moreover, the research devoted

to analyse images of fungal strains has been focused

on measuring the diameter of colored halos using semi-

automated techniques [74,55,5]. Hence, and up to the

best of our knowledge, the work presented in this paper

is the first time that the problem of automatically char-

acterising the dye decolorisation level of fungal strains

has been tackled.

Such a problem, that fits in the category of image-

classification problems, can be undertaken by employ-

ing different computer vision and machine learning

techniques. In this paper, we have conducted a thor-

ough study, using statistical methods, of different al-

ternatives that combine features extracted from the ex-

perts’ knowledge, traditional computer vision methods,

and deep learning techniques with the most common

classification algorithms.

In the literature, DNNs have shown an outstand-

ing performance in image-classification tasks by greatly

improving traditional and ad-hoc methods [59,71,16].

However, DNNs are greedy, and training them from

scratch might be challenging due to the huge amount of

data and time that they need [59]. Instead, the use of

transfer learning takes advantage of DNNs but without

the prohibitive costs associated with them, and also ob-

taining good accuracies. This result is also obtained in

this paper where the best model is based on the trans-

fer learning approach, achieving an accuracy of 96.5%.

Nevertheless, in this particular scenario, a similar accu-

racy can be obtained either using traditional features

or features coming from the experts’ knowledge.

One of the greatest benefits of DNNs is that they re-

move the need for most feature engineering, since they

are capable of extracting useful features from raw data.

However, this does not mean that feature engineering is

no longer necessary since good features can allow us to

solve problems in a better way. This can be seen in the
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results obtained in this work, the best model is achieved

when DNNs do not only work with raw data, but also

take into account some extra information: the control

image. Even more, DNNs working only with raw data

are outperformed by traditional computer vision fea-

tures combined with some feature engineering obtained

from the control image. Therefore, we can conclude that

applying blindly DNNs will probably produce good re-

sults, but these results can be improved adding some

expert knowledge to those networks.

As conclusion of this work, we have presented the

first model that automatically characterises the dye de-

colorisation level of fungal strains. Such a model has

a high accuracy and has been selected after applying

an exhaustive statistical study of different alternatives.

Hence, this model can greatly reduce the burden and

subjectivity of visually classifying the dye decolorisa-

tion level by providing a standard and reproducible

method.

The main task that remains as further work consists

in developing a tool that, using the best classification

model found in this paper, can be easily employed by

researchers to measure the dye decolorisation level of

their fungal strains. In order to facilitate its use, we are

planning to create a web application that will be freely

accessible.
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23. Cázares-Garćıa, S.V., et al.: Typing and selection of wild
strains of trichoderma spp. producers of extracellular lac-
case. Biotechnology Progress 32(3), 787–798 (2016)

24. Dalal, N., Triggs, B.: Histograms of Oriented Gradients
for Human Detection. In: Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) - Volume 1 - Volume 01,
CVPR ’05, pp. 886–893. IEEE Computer Society, San
Diego, CA, USA (2005)

http://tensorflow.org/
http://tensorflow.org/
http://arxiv.org/abs/1610.02357
https://github.com/fchollet/keras
https://github.com/fchollet/keras


14 Marina Arredondo-Santoyo et al.

25. Dhouib, A., et al.: Screening for ligninolytic enzyme pro-
duction by diverse fungi from Tunisia. World Journal of
Microbiology and Biotechnology 21(8), 1415–1423 (2005)

26. Gao, D., et al.: A critical review of the application of
white rot fungus to environmental pollution control. Crit-
ical Reviews in Biotechnology 30(1), 70–77 (2010)

27. Garcia, S., et al.: Advanced nonparametric tests for mul-
tiple comparisons in the design of experiments in com-
putational intelligence and data mining: Experimental
analysis of power. Information Sciences 180, 2044–2064
(2010)

28. Geurts, P., Ernst, D., Wehenkel, L.: Extremely random-
ized trees. Machine Learning 63(1), 3–42 (2006)

29. Ghafoorian, M., et al.: Transfer Learning for Domain
Adaptation in MRI: Application in Brain Lesion Seg-
mentation. CoRR abs/1702.07841 (2017). URL http:

//arxiv.org/abs/1702.07841
30. Hanking, L., Anagnostakis, S.L.: The use of solid media

for detection of enzyme production by fungi. Mycology
67(3), 597–607 (1975)

31. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textu-
ral features for image classification. IEEE Transactions
on Systems, Man and Cybernetics SMC-3(6), 610–621
(1973)

32. He, K., et al.: Deep Residual Learning for Image Recog-
nition. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’16), IEEE Com-
puter Society, pp. 770–778. IEEE, Las Vegas, USA (2016)

33. Holm, O.S.: A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics 6, 65–70
(1979)

34. Huang, G., Liu, Z., van der Maaten, L., Weinberger,
K.Q.: Densely connected convolutional networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’17) (2017)

35. Hunter, R.S.: Photoelectric Color-Difference Meter. Jour-
nal of the Optical Society of America 38(7), 661 (1948)

36. Hyun, M.W., et al.: Detection of cellulolytic activity in
Ophiostoma and Leptographium species by chromogenic
reaction. Mycobiology 34(2), 108–110 (2006)

37. Jayasiri, S.C., et al.: The faces of fungi database: fungal
names linked with morphology, phylogeny and human im-
pacts. Fungal Diversity 74(1), 3–18 (2015)

38. Kaehler, A., Bradski, G.: Learning OpenCV 3. O’Reilly
Media, USA (2015)

39. Kameshwar, A.K.S., Qin, W.: Qualitative and quantita-
tive methods for isolation and characterization of lignin-
modifying enzymes secreted by microorganisms. BioEn-
ergy Research 10(1), 248–266 (2017)

40. Kasana, R.C., et al.: A rapid and easy method for the de-
tection of microbial cellulases on agar plates using Gram’s
iodine. Current Microbiology 57(5), 503–507 (2008)

41. Kiiskinen, L.L., et al.: Screening for novel laccase pro-
ducing microbes. Journal of Applied Microbiology 97,
640–646 (2004)

42. Korni l lowicz-Kowalska, T., Rybczyńska, K.: Screening of
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