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Abstract. Object detection is one of the most important topics
of computer vision since it has many applications in several fields.
Object detection models can be improved thanks to ensemble tech-
niques; however, the process of ensembling object detectors poses
several challenges. In this paper, we present an ensemble algorithm
that can be applied with any object detection model independently of
the underlying algorithm. In addition, our ensemble method has been
employed to define a test-time augmentation procedure for object de-
tection models. Our ensemble algorithm and test-time augmentation
procedure can be used to apply data and model distillation for ob-
ject detection, two semi-supervised learning techniques that reduce
the number of necessary annotated images to train a model. We have
tested our methods with several datasets and algorithms, obtaining
up to a 10% improvement from the base models. All the methods are
implemented in an open-source library.

1 INTRODUCTION

Object detection is a fundamental task in computer vision since it
is a key step in many real-world applications such as security [2],
satellite imagery [12] or healthcare [35]. Over the last few years,
a lot of progress has been made in this field thanks to the use of
deep convolutional neural networks [51], and deep detectors have
achieved impressive results in large detection datasets such as Pascal
VOC [13] and MS COCO [28]. In addition, as in many other machine
learning tasks, the accuracy and robustness of object detectors can be
greatly improved thanks to the application of ensemble methods [50];
for instance, the mmAP in the COCO dataset was improved from
50.6 to 52.5 in [33], or the mAP in the Pascal VOC dataset increased
by 3.2% in [37]. In fact, the leading methods on datasets like Pascal
VOC or MS COCO are based on the usage of ensembles [18, 20, 33].

However, the process of ensembling object detectors poses several
challenges. First of all, some ensemble approaches for object detec-
tion depend on the nature of the detection models — for example, the
procedure to ensemble models explained in [18] can only be applied
to models based on the FasterRCNN algorithm — therefore, these
methods cannot be generalised and lack the diversity provided by
the ensemble of different algorithms. Related to the previous point,
those ensemble methods require the modification of the underlying
algorithms employed to construct the models, and this might be chal-
lenging for many users. In order to deal with this problem, there are
ensemble methods that work with the output of the models [44, 48];
but, again, they are focused on concrete models, and only work if
the models are constructed using the same framework. Finally, it
does not exist an open-source library that provides general ensem-
ble methods for object detection, and this hinders their use.
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In this paper, we tackle the aforementioned challenges by design-
ing a generic method that serves to ensemble the output produced by
detection algorithms; that is, bounding boxes which indicate the po-
sition and category of the objects contained in an image. The method
can be employed with any detection model independently of its un-
derlying algorithm and the framework employed to construct it. In
particular, the contributions of this work are the following:

• We present a general method for ensembling object detectors inde-
pendently of the underlying algorithm; and, in addition, we devise
several voting strategies to carry out the ensembling process.

• As a by-product of our ensemble method, we define a test-time
augmentation procedure that can be applied to boost the accuracy
of object detection models. Moreover, we explain how to reduce
the burden of annotating images in the context of object detection
using two semi-supervised learning techniques, based on ensem-
ble methods, known as model and data distillation.

• We conduct a comprehensive study of the impact of our ensemble
method and the devised voting strategies, and show the benefits of
this method as well as the advantages of using test-time augmen-
tation and distillation methods.

• We implement our methods in the EnsembleObjectDetec-
tion library, available at https://github.com/ancasag/
ensembleObjectDetection. This open-source library can
be extended to work with any object detection model indepen-
dently of the algorithm and framework employed to construct it.

The rest of the paper is organised as follows. In the next section,
we provide the necessary background to understand the rest of the
paper. Subsequently, our approach to ensemble object detection algo-
rithms, and the extension of such an approach for test-time augmen-
tation, and data and model distillation are presented in Section 3. In
addition, and also in Section 3, we present the main highlights of the
library that implements our methods. After that, an analysis of the
impact of our methods on different datasets is provided in Section 4.
The paper ends with a section of conclusions and further work.

2 BACKGROUND

In this section, we briefly provide the necessary background and no-
tation needed to understand the rest of the paper. We start by formally
presenting the task of object detection.

2.1 Object detection

Object detection is the task of determining the position and category
of multiple objects in an image. Formally, an object detection model
can be seen as a function that given an image I returns a list of detec-
tions D = [d1, . . . , dN ] where each di is given by a triple [bi, ci, si]
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that consists of a bounding box, bi, the corresponding category, ci,
and the corresponding confidence score, si.

Currently, the most successful object detection models are based
on deep learning algorithms, and they can be split into two groups:
one-stage and two-stage detectors. The former divide the image into
regions that are passed into a convolutional neural network to obtain
the list of detections — these algorithms include techniques such as
SSD [30] or YOLO [38]. The two-stage object detectors employ re-
gion proposal methods, based on features of the image, to obtain in-
teresting regions, that are later classified to obtain the predictions —
among these algorithms, we can find the R-CNN family of object de-
tectors [39] or Feature Pyramid Network (FPN) [29]. Independently
of the underlying algorithm, the accuracy of these detection models
can be improved thanks to the application of ensemble methods.

2.2 Ensemble learning

Ensemble methods combine the predictions produced by multiple
models to obtain a final output [50]. These methods have been suc-
cessfully employed for improving accuracy in several machine learn-
ing tasks, and object detection is not an exception. We can distinguish
two kinds of ensembling techniques for object detection: those that
are based on the nature of the algorithms employed to construct the
detection models, and those that work with the output of the models.

In the case of ensemble methods based on the nature of the al-
gorithms, different strategies have been mainly applied to two-stage
detectors. Some works have been focused on ensembling features
from different sources before feeding them to the region proposal
algorithm [25, 33], others apply an ensemble in the classification
stage [17, 7], and others employ ensembles in both stages of the algo-
rithm [18, 20, 24]. In the case of ensemble methods based on the out-
put of the models, the common approach consists in using a primary
model which predictions are adjusted with a secondary model. This
procedure has been applied in [48] by combining Fast-RCNN and
Faster-RCNN models, in [37] by combining Fast-RCNN and YOLO
models, and in [44] by using RetinaNet and Mask R-CNN mod-
els. Another approach to combine the output of detection models is
the application of techniques to eliminate redundant bounding boxes
like Non-Maximum Suppression [19], Soft-NMS [4], NMW [52], fu-
sion [49] or WBF [45]. However, these techniques do not take into
account the classes of the detected objects, or the number of models
that detected a particular object; and, therefore, if they are blindly
applied, they tend to produce lots of false positives.

In our work, we propose a general method for ensembling the out-
put of detection models using different voting strategies, see Sec-
tion 3.1. The method is independent of the underlying algorithms
and frameworks, and allows us to easily combine a variety of multi-
ple detection models. In addition, our method opens the door to apply
techniques based on ensembles such as test-time augmentation.

2.3 Test-time augmentation

Data augmentation [42, 41] is a technique widely employed to train
deep learning models that consists in generating new training sam-
ples from the original training dataset by applying transformations
that do not alter the class of the data. There is a variant of data aug-
mentation for the test dataset known as test-time augmentation [43].
This technique creates random modifications of the test images, per-
forms predictions on them, and, finally, returns an ensemble of those
predictions.

Due to the cost of collecting data in the context of object detec-
tion, data augmentation strategies such as random scaling [37] or
cropping [30] are widely employed [54]. On the contrary, and due
to the lack of a general method to combine predictions of object de-
tectors, test-time augmentation has been mainly applied in the con-
text of image classification [43]. As far as we are aware, test-time
augmentation has only been applied for object detectors in [49], and
only using colour transformations. This limitation is due to the fact
that some transformations, like flips or rotations, change the posi-
tion of the objects in the image and this issue must be taken into
account when combining the predictions. The method presented in
Section 3.2 deals with this problem and allows us to apply test-time
augmentation with any object detection model.

3 METHODS
In this section, we explain our ensemble algorithm for combining the
output of object detection models. Such an algorithm can be particu-
larised with different strategies that are also explained in this section.
Moreover, we explain how our algorithm can be applied for test-time
augmentation, and data and model distillation. This section ends by
highlighting the main features of the library where we have imple-
mented our methods.

3.1 Ensemble of object detectors
We start by explaining the procedure that we have designed to com-
bine object detections obtained from several sources. The input of
our ensemble algorithm is a list LD = [D1, . . . , Dm] where each
Di, with i ∈ {1 . . .m}, is a list of detections for a given image I
as explained in Section 2.1. Usually, each Di comes from the pre-
dictions of a detection model; but, as we will see in Section 3.2, this
is not always the case. In general, each list Di is a list of detections
produced using a particular method Mi for a given image.

Given the list LD, our ensemble algorithm consists of four steps.
First of all, the list LD is flattened in a list F = [d1, . . . , dk], since
the provenance of each detection di is not relevant for the ensembling
algorithm. Subsequently, the elements di of F are grouped together
based on the overlapping of their bounding boxes and their classes.
In order to determinate the overlap of bounding boxes, the IoU met-
ric [40] is employed. Considering two bounding boxes b1 and b2, the
IoU formula for finding the overlapped region between them is given
by

IoU(b1, b2) =
area(b1 ∩ b2)

area(b1 ∪ b2)

This measure is employed to group the elements of F produc-
ing as a result a list G = [DG

1 , . . . , DG
m] where each DG

i is a list
of detections such that for all d̄(= [b̄, c̄, s̄]), d̂(= [b̂, ĉ, ŝ]) ∈ DG

i ,
IoU(b̄, b̂) > 0.5, and c̄ = ĉ. At this point, each DG

i ∈ G is fo-
cused on a particular region of the image, and the size of DG

i will
determine whether our algorithm considers whether such a region
actually contains an object. Namely, this decision can be taken using
three different voting strategies:

• Affirmative. In this strategy, all the lists DG
i are kept. This means

that whenever one of the methods that produce the initial predic-
tions says that a region contains an object, such a detection is con-
sidered as valid.

• Consensus. In this case, only the lists DG
i which length is greater

than m/2 (where m is the size of the initial list LD) are kept.



This means that the majority of the initial methods must agree to
consider that a region contains an object. The consensus strategy
is analogous to the majority voting strategy commonly applied in
ensemble methods for images classification [3].

• Unanimous. In the last strategy, only the lists DG
i which length is

equal to m are kept. This means that all the methods must agree
to consider that a region contains an object.

After applying one of the aforementioned strategies, we end up

with a list G′ ⊆ G. Since each list DG
′

k ∈ G′ might contain sev-
eral detections for the same region, the last step of our algorithm is
the application of the non-maximum suppression (NMs) algorithm to

each DG
′

k . The final result is a list D = [d1, . . . , dn] with the ensem-
ble detections. Our ensemble algorithm is summarised graphically in
Figure 1.

Figure 1. Example of the workflow of our ensemble algorithm. Three meth-
ods have been applied to detect the objects in the original image: the first
method has detected the person and the horse; the second, the person and the
dog; and, the third, the person, the dog, and an undefined region. The first step
of our ensemble method groups the overlapping regions. Subsequently, a vot-
ing strategy is applied to discard some of those groups. The final predictions
are obtained using the NMs algorithm.

From a theoretical point of view, the affirmative strategy reduces
the number of objects that are not detected (false negatives) — some
objects that are not detected with a concrete approach might be de-
tected by the others — but increases the number of incorrect detec-
tions (false positives) — this is due to the fact that the false posi-
tives obtained with each approach are accumulated. The unanimous
strategy has the opposite effect, it reduces the number of false posi-
tives but increases the number of false negatives — since all the ap-
proaches that generated the initial detections must agree to detect an
object. In general, the consensus strategy provides a better trade-off,
and, therefore, at first glance, the affirmative and unanimous strate-
gies might seem too lose and too restrictive to be useful. However,
as we will show in Section 4, they can produce better results than
the consensus approach depending on the performance of the detec-
tion models (for instance, if the detection models produce few false
positives, but lots of false negatives, the affirmative strategy might be
more useful than the other two strategies).

As we explained at the beginning of this section, the most natural
way of producing the input of our ensemble algorithm is by using the
predictions that are outputted by several object detection models. In
addition, there are other ways, for instance, combining the detections
of a model for multiple transformations of an image, this is known
as test-time augmentation.

3.2 Test-time augmentation for object detectors
Test-time augmentation (TTA) in the context of image classification
is as simple as applying multiple transformations to an image (for
example, flips, rotations, colour transformations, and so on), making
predictions for each of them using a particular model, and finally
returning the ensemble of those predictions [43]. On the contrary, in
the context of object detection, TTA is not as straightforward due
to the fact that there are some transformations, like flips or crops,
that alter the position of the objects. This explain why the works that
apply TTA for object detection only apply colour operations [49] —
since those transformations do not alter the position of the objects in
the image. This limitation of the TTA method is faced in this section
taking as basis the ensemble algorithm presented previously.

First of all, we define the notion of detection transformation.
Given an image I and a list of detections for I , D, a detection trans-
formation is an operation that returns a transformed image It and a
list of detections Dt such that the size of Dt is the same of D, and
all the objects detected by D in I are detected by Dt in It.

Example 3.1. Given an image I of size (WI , HI) where WI and
HI are respectively the width and height of I , and a list of detections
D = [d1, . . . , dn] such that for each di = [bi, ci, si] and bi is given
by (xi, yi, wi, hi) where (xi, yi) is the position of the top-left corner
of bi, and wi and hi are respectively the width and height of bi; then,
the horizontal flip detection transformation applies an horizontal flip
to the image I , and returns it together with the list Dt = [dt1, . . . , d

t
n]

where dti = [(WI − xi, yi, wi, hi), ci, si]. Another example is the
equalisation transformation that applies the histogram equalisation to
the image I and returns it together with Dt′ = D. These examples
are depicted in Figure 2.

Figure 2. Example of horizontal flip detection transformation and equalisa-
tion transformation

Now, we can define the following procedure to apply TTA for ob-
ject detection. Given an image I , an object detection model M , and
a list of image transformations T1, . . . , Tn, we proceed as follows.
First of all, we apply each image transformation Ti to I , obtaining as
a result new images I1, . . . , In. Subsequently, we detect the objects
in each Ii using the model M , and produce the lists of detections
D1, . . . , Dn. For each, (Ii, Di), we apply a detection transforma-
tion that returns a list of detections Dt

i in the correct position for the
original image I . Finally, we ensemble the predictions using the pro-
cedure presented in the previous section using one of the three voting
strategies. An example of this procedure is detailled in Figure 3.

The ensemble of models and TTA can be employed to improve the
accuracy of object detectors, see Section 4. In addition, they are the
basis of two semi-supervised learning techniques that tackle one of



Figure 3. Example of the workflow of TTA for object detectors. First, we
apply three transformations to the original image: a histogram equalisation, a
horizontal flip, and a none transformation (that does not modify the image).
Subsequently, we detect the objects in the new images, and apply the corre-
sponding detection transformation to locate the objects in the correct position
for the original image. Finally, the detections are ensembled using the con-
sensus strategy.

the main problems faced when training object detection models: the
annotation of images.

3.3 Data and model distillation
Deep learning methods are data demanding, and acquiring and an-
notating the necessary amount of images for constructing object de-
tection models is a tedious and time-consuming process that might
require specialised knowledge [23]. This has lead to the development
of semi-supervised learning techniques [53], a suite of methods that
use unlabelled data to improve the performance of models trained
with small dataset of annotated images. Self-training [53] is a par-
ticular case of semi-supervised learning where the model predictions
are employed as ground truth to train a new model. However, training
a model on its own predictions does not usually provide any benefit;
and this has lead to the development of techniques like data distilla-
tion and model distillation.

Data distillation [34] applies a trained model on manually labelled
data to multiple transformations of unlabelled data, ensembles the
multiple predictions, and, finally, retrains the model on the union of
manually and automatically labelled data. Similarly, model distilla-
tion [5] obtains multiple predictions of unlabelled data using several
models, ensembles the result, and retrains the models with the com-
bination of manually and automatically annotated data. Both tech-
niques can also be combined as shown in [21].

Even if data distillation was applied to object detection in [34],
these method have not been widely employed in the context of object
detection due to the lack of a library for ensembling predictions of
detection models. This problem is overcome thanks to the techniques
and the library developed in our work, and, as we show in Section 4,
different ensembling schemes to the one proposed in [34] might have
a better impact on the distillation methods.

3.4 Design of the library
The techniques presented throughout this section have been imple-
mented as an open-source library called EnsembleObjectDetection.
This library has been implemented in Python and relies on several
third-party libraries like Numpy [32], OpenCV [31], or CLoDSA [8]
(the last one provides the functionality to implement the image and
detection transformations of the TTA procedure).

As we have previously mentioned, the EnsembleObjectDetection
library has been designed to be applicable to models constructed

with any framework and underlying algorithm. To this aim, we have
defined an abstract class called IPredictor with a predict
method that takes as input a folder of images, and produces as a result
XML files in the Pascal VOC format containing the predictions for
each image of the input folder. Then, for each detection framework
or library that we want to include in the EnsembleObjectDetection
library, we have to provide a class that extends the IPredictor
class and implements the predict method. Using the output pro-
duced by the predict method, the user can apply ensembling and
TTA with any detection model.

Currently, the EnsembleObjectDetection library supports models
trained using the Darknet [36] and MxNet [10] frameworks, and sev-
eral Keras libraries [1, 27]. The procedure to extend the library with
models from other libraries is explained in the project webpage.

4 RESULTS
In this section, we conduct a thorough study of the ensemble methods
presented in the previous section by using three different datasets.

4.1 Pascal VOC
In the first case study, we use the Pascal VOC dataset [14], a popular
project designed to create and evaluate algorithms for image classi-
fication, object detection and segmentation. This dataset consists of
natural images containing objects of 20 categories; and, the metric
to evaluate the performance of detection models in this dataset is the
mean average precision (mAP) over each category [40].

For our experiments with the Pascal VOC dataset, we have em-
ployed 5 models pre-trained for this dataset using the MxNet li-
brary [10]; namely, a Faster R-CNN model, two YOLO models (one
using the darknet backbone and another one using the mobilenet
backbone) and two SSD models (one using the Resnet backbone and
the other using the mobilenet backbone). The performance of these
models on the Pascal VOC test set is given in the first five rows of
Table 1. As can be seen in such a table, the best model is the YOLO
model using the darknet backbone with a mAP of 69.78%. Such a
mAP can be greatly improved using model ensembling and TTA.

For model ensembling, we conduct an ablation study by consider-
ing the ensemble of the five models, the ensemble of the three models
with the best mAP (that are Faster R-CNN, YOLO with the darknet
backbone, and SSD with the Resnet backdone), and the three models
with the worst mAP (that are YOLO with the mobilenet backbone
and the two SSD models). The results for such an ablation study are
provided in the last 9 rows of Table 1. In those results, we can no-
tice that all the ensembles conducted with the affirmative strategy
obtain better results than the individual models — the best result is
obtained by ensembling the three best models (mAP of 77.50%, al-
most an 8% better than the best individual model). On the contrary,
the unanimous strategy produces worse results than the individual
models; and the consensus strategy only achieves a better mAP when
the three best models are combined. These results are due to the fact
that the individual models produce few false positives, and some ob-
jects that are detected by one of the models are missed by the others.
Therefore, the affirmative strategy helps to greatly reduce the number
of false negatives but without considerably increasing the number of
false positives; on the contrary, the unanimous strategy is too restric-
tive and increases the number of false negatives. Something similar
happens with the consensus strategy. If we focus on the results for
each particular category, we can notice an improvement of up to a
10% with respect to the results obtained by the best individual model.



Datasets mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster R-CNN 0.69 0.70 0.77 0.71 0.64 0.50 0.78 0.78 0.80 0.45 0.74 0.58 0.79 0.80 0.79 0.70 0.42 0.75 0.67 0.77 0.67
SSD mobilenet 0.62 0.59 0.70 0.61 0.51 0.33 0.68 0.71 0.78 0.43 0.57 0.61 0.69 0.79 0.71 0.61 0.36 0.59 0.60 0.77 0.67
SSD resnet 0.64 0.62 0.80 0.70 0.57 0.42 0.78 0.79 0.88 0.50 0.73 0.63 0.78 0.80 0.80 0.70 0.39 0.69 0.65 0.79 0.69
YOLO darknet 0.69 0.80 0.72 0.70 0.57 0.60 0.80 0.80 0.81 0.43 0.75 0.63 0.78 0.81 0.71 0.70 0.39 0.71 0.65 0.79 0.70
YOLO mobilenet 0.59 0.62 0.71 0.52 0.49 0.43 0.70 0.71 0.70 0.36 0.66 0.47 0.68 0.71 0.62 0.61 0.24 0.60 0.55 0.70 0.61

All affirmative 0.77 0.79 0.80 0.79 0.72 0.64 0.87 0.86 0.88 0.55 0.83 0.68 0.87 0.87 0.80 0.78 0.51 0.79 0.75 0.78 0.76
All consensus 0.68 0.71 0.72 0.71 0.60 0.44 0.79 0.80 0.80 0.45 0.76 0.63 0.80 0.81 0.71 0.70 0.39 0.71 0.65 0.78 0.62
All unanimous 0.51 0.54 0.63 0.45 0.35 0.27 0.62 0.63 0.63 0.32 0.53 0.42 0.63 0.63 0.63 0.53 0.17 0.54 0.51 0.62 0.54

Three best affirmative 0.77 0.79 0.80 0.79 0.71 0.64 0.86 0.87 0.89 0.55 0.83 0.69 0.87 0.88 0.80 0.78 0.51 0.79 0.75 0.84 0.76
Three best consensus 0.71 0.71 0.80 0.71 0.60 0.52 0.80 0.80 0.81 0.51 0.76 0.64 0.80 0.81 0.80 0.70 0.47 0.71 0.71 0.78 0.70
Three best unanimous 0.61 0.63 0.72 0.63 0.52 0.35 0.71 0.72 0.81 0.39 0.61 0.57 0.71 0.72 0.72 0.62 0.33 0.62 0.58 0.71 0.62

Three worst affirmative 0.73 0.77 0.79 0.77 0.66 0.56 0.78 0.79 0.80 0.52 0.80 0.62 0.79 0.80 0.80 0.77 0.48 0.76 0.73 0.79 0.74
Three worst consensus 0.66 0.71 0.71 0.62 0.60 0.43 0.70 0.71 0.80 0.44 0.68 0.56 0.71 0.80 0.72 0.70 0.39 0.69 0.64 0.79 0.69
Three worst unanimous 0.52 0.54 0.63 0.54 0.44 0.27 0.62 0.63 0.63 0.32 0.53 0.49 0.63 0.63 0.63 0.53 0.24 0.53 0.50 0.62 0.53

Table 1. Results for the Pascal VOC dataset applying our model ensemble algorithm. The first five rows provide the result for the base models. The next three
rows correspond with the ensemble for the base models. Rows 9 to 11 contain the results of applying the ensemble techniques to the three best base models
(SSD resnet, YOLO darknet and Faster R-CNN); and the last three rows contain the results of ensembling the worst three best models (YOLO mobilenet, SSD
mobilenet and Faster R-CNN). The best results are in bold face.

In addition, we have applied TTA to all the base models to improve
their accuracy. Namely, we have applied three kinds of data augmen-
tations: colour transformations (applying gamma and histogram nor-
malitation, and keeping the original detection), position transforma-
tions (applying a horizontal flip, a rotation of 10º, and keeping the
original prediction) and the combination of both. Moreover, for each
augmentation scheme, we have applied the three voting strategies,
see Table 2. As in the case of model ensembling, all the models are
improved (the improvement ranges from 0.08% to 5.54%) thanks to
TTA when using the affirmative strategy; but the most beneficial aug-
mentation scheme varies from model to model. For instance, the SSD
model with the resnet backbone is improved with the three augmen-
tation schemes; but, the Faster R-CNN model only improves with the
colour scheme. Regarding the other voting strategies, the unanimous
strategy always obtains worst results than the original models; and
the consensus strategy only gets better results in some cases. The ex-
planation for these results is the same provided previously for model
ensembling. It is also worth noting that adding more augmentation
techniques does not always improve the ensembling results.

No TTA Colour TTA Position TTA All
TTA Aff. Cons. Una. Aff. Cons. Una. Aff. Cons. Una.

Faster R-CNN 0.69 0.69 0.69 0.08 0.53 0.53 0.22 0.63 0.61 0.21
SSD mobilenet 0.62 0.63 0.63 0.09 0.58 0.58 0.52 0.61 0.58 0.47
SSD resnet 0.64 0.70 0.70 0.08 0.65 0.65 0.60 0.68 0.63 0.09
YOLO darknet 0.69 0.71 0.71 0.09 0.68 0.68 0.63 0.70 0.68 0.57
YOLO mobilenet 0.59 0.61 0.61 0.10 0.57 0.57 0.50 0.61 0.58 0.44

Table 2. Results for the Pascal VOC dataset applying TTA. In the first col-
umn, we provide the result for the models without applying TTA. The rest of
the table is divided into three blocks of three columns (one per each voting
strategy): the first block provides the results with colour transformations, the
second contains the results for position transformations, and, the last block
presents the results combining all the transformations. The best results are in
bold face.

As a conclusion for this study, we can say that model ensembling
is more beneficial than TTA; and, this is due to the fact that the for-
mer introduces a higher variability (thanks to the heterogeneity of
models) in the predictions than the latter.

4.2 Stomata detection

In the second example, we apply TTA and data distillation to two pro-
prietary datasets of stomata images. Stomata (singular “stoma”) are

pores on a plant leaf that allow the exchange of gases, mainly CO2

and water vapor, between the atmosphere and the plant. Stomata re-
spond to changes in the environment and regulate the photosynthesis
of plants, and thus their productivity [22, 6].

In order to analyse stomata of plant leaves, plant biologists take
microscopic images of leaves, and manually measure the stom-
ata density in those images. This is a tedious, error-prone, time-
consuming and subjective task due to the large number of stom-
ata in each image but, it can be automatised by means of detec-
tion algorithms. In particular, we have constructed a stomata detec-
tion model using the YOLO algorithm implemented in the Darknet
framework [9]. The YOLO model was trained by using 4,050 stom-
ata images, and it was evaluated on a test set of 450 images using the
F1-score and the mAP, see the first row of Table 3. As can be seen
from that table, the number of false positives (FP) is considerably
higher than the number of false negatives (FN), and this will have an
impact in the voting strategy to apply. In this section, we show how
such a model can be improved thanks to TTA.

Datasets F1-score TP FP FN mAp

Original 0.90 16600 2341 1239 0.84

Affirmative 0.88 17003 3600 836 0.80
Consensus 0.92 16509 1551 1330 0.84
Unanimous 0.80 12272 589 5567 0.61

Colour 0.93 16502 1324 1337 0.85
Flips 0.92 16480 1448 1359 0.85
Rotations 0.91 16463 1999 1376 0.82
Flips & colour 0.92 16572 1529 1267 0.84
Flips & rotations 0.92 16580 1659 1259 0.84
Rotations & colour 0.92 16556 1633 1283 0.84

Table 3. Results of our Yolo model for stomata detection. In the first row,
we provide the results for the original model. In the next three rows, we have
applied TTA with 9 transformations using the three voting strategies; and,
in the next six rows, we have applied the TTA method for different kinds of
transformations and using the consensus strategy. The best results are in bold
face.

First of all, we have applied TTA by using 9 transformations: three
colour transformations (histogram normalisation, gamma correction
and Gaussian blurring), three flips (vertical, horizontal and both) and
three rotations (90º, 180º and 270º). Moreover, we have applied the
three voting schemes — the results for these experiments are given in
rows 2 to 4 in Table 3. As can be seen in this table, the only strategy



that improves the results is the consensus approach, that improves
a 2% the F1-score. Note that each strategy has the expected effect,
the affirmative scheme increases the number of FP and decreases the
number of FN; on the contrary, the unanimous strategy has the oppo-
site effect. Then, the consensus strategy provides the best trade-off by
considerably reducing the number of FP but only slightly increasing
the number of FN.

In addition to the above results, we have also inspected the impact
of each kind of transformation for this dataset. In particular, we have
applied TTA using colour transformations, rotation transformations,
flip transformations, and their combinations — see the last 6 rows of
Table 3. In this case, we only included the consensus strategy in Ta-
ble 3 since the other strategies produced the same effect previously
explained. As can be seen from those results, the same improvement
obtained using all the transformation can be achieved by using only
some of them — this considerably reduces the tome needed to apply
TTA. In fact, we achieved better results by applying TTA using only
colour transformations. This indicates that it is necessary to study
different combinations of transformations to find the one that pro-
duces the best results; and this shows the benefits of having a library
like the one presented in this work.

Finally, we have also studied the benefits of data distillation in
the context of stomata detection. It is worth noting that each stom-
ata image contains approximately 45 stomata, and, hence, annotating
those images is a time-consuming task. Therefore, the application
of semi-supervised learning techniques, like data distillation, can re-
duce the burden of annotating those images. In our data distillation
experiments, see Table 4, we have employed a dataset of stomata
images from a different variety than the original dataset employed
for the results of Table 3. Such a dataset contains 450 annotated im-
ages for training, 150 annotated images for testing, and 1,620 un-
labelled images. Using the 450 annotated images, we constructed a
YOLO model that achieved a F1-score of 0.85 and a mAP of 0.8
when using a confidence threshold of 0.25, and a F1-score of 0.83
and a mAP of 0.79 when using a confidence threshold of 0.5. Using
such a model, we have applied data distillation using three schemes:
applying colour transformations (gamma correction, histogram, nor-
malisation and Gaussian blurring), applying flips (vertical, horizontal
and both), and combining colour and flip transformations. Moreover,
we have used the three voting schemes, see Table 4. In this case,
the best strategy consists in applying all the transformations together
with the unanimous voting scheme. This improves a 3% the F1-score
value, and an 8% the mAP. Note that using the unanimous strategy,
we can increase the threshold to consider a detection as correct since
using such a strategy the new model is trained with images where the
detections have been agreed by the predictions of the 9 transforma-
tions.

Based on the results obtained for this example, we have shown the
benefits of trying different alternatives for TTA; and, in addition, that
techniques like data distillation can produce accurate models starting
from small datasets of images.

4.3 Table detection

In the last case study, we analyse the effects of model ensembling
and model distillation for table detection — an important problem
since it is a key step to extract the semantics from tabular data [11].
To this aim, we have employed the ICDAR2013 dataset [16], and the
Word part of the TableBank dataset [26]. Both datasets have been de-
signed to test table detection algorithms; however, the ICDAR2013 is
too small to directly apply deep learning algorithms (it only contains

Confidence 0.25 Confidence 0.5
Datasets F1-score mAP F1-score mAP

Original 0.85 0.80 0.83 0.79

All Aff. 0.84 0.82 0.80 0.82
All Cons. 0.86 0.85 0.87 0.85
All Una. 0.86 0.88 0.88 0.88

Colour Aff. 0.86 0.86 0.83 0.86
Colour Cons. 0.82 0.78 0.77 0.78
Colour Una. 0.74 0.77 0.62 0.77

Flips Aff. 0.83 0.80 0.76 0.78
Flips Cons. 0.04 0.61 0 0.55
Flips Una. 0.01 0.30 0 0.30

Table 4. Results of data distillation for the stomata dataset. This table is
divided into two blocks: in the first block (columns 2 and 3), we use a con-
fidence threshold of 0.25; and, in the second block (the last two columns),
we use a confidence threshold of 0.5. In the first row of the table, we provide
the result for the original model. In the next three rows, we present the results
of applying data distillation with colour and flip transformations. In rows 5
to 7, we include the results of applying data distillation only using colour
transformations, and the last three rows present the results of applying data
distillation using flip transformations. The best results are in bold face.

238 images), and the TableBank dataset is a big enough dataset (160k
images) but it was semi-automatically annotated and contains several
incorrect annotations. Therefore, these two datasets provide the per-
fect scenario for applying model ensembling and model distillation.
In particular, we have trained different models for the ICDAR2013
dataset, and have improved them by using our ensemble algorithm,
and by applying model distillation using the TableBank dataset.

F1@0.6 F1@0.7 F1@0.8 F1@0.9 WAvgF1

Mask R-CNN 0.58 0.52 0.39 0.19 0.39
SSD 0.85 0.79 0.62 0.26 0.59
YOLO 0.83 0.8 0.69 0.33 0.63

Affirmative 0.86 0.81 0.69 0.37 0.65
Consensus 0.88 0.84 0.75 0.42 0.69
Unanimous 0.4 0.36 0.28 0.08 0.26

Mask R-CNN Aff. 0.58 0.54 0.39 0.11 0.37
Mask R-CNN Cons. 0.68 0.63 0.49 0.13 0.45
Mask R-CNN Una. 0.57 0.48 0.29 0.06 0.32

SSD Aff. 0.77 0.71 0.58 0.24 0.54
SSD Cons. 0.87 0.8 0.67 0.32 0.63
SSD Una. 0.82 0.74 0.56 0.26 0.56

YOLO Aff. 0.75 0.71 0.57 0.18 0.52
YOLO Cons. 0.88 0.8 0.67 0.32 0.63
YOLO Una. 0.77 0.69 0.52 0.16 0.50

Table 5. Results for the ICDAR2013 dataset applying model ensembling
and model distillation. The first three rows are the results for the base models.
The next three rows include the results of applying our ensemble method
with the three different voting strategies; and, the next three blocks provide
the results of applying model distillation to the three base algorithms. The
best results are in bold face.

In our experiments, we have split the ICDAR2013 dataset into a
training set of 178 images and a testing set of 60 images. Using the
training set, we have constructed three models using the YOLO algo-
rithm, implemented in Darknet, the SSD algorithm, implemented in
MxNet, and the Mask RCNN algorithm, implemented in the Keras
library [15] — note that we have employed different libraries and al-
gorithms, but our ensemble library can deal with all of them. These
three models have been evaluated (see the three first rows of Table 5)
in the testing set using the W1Avg F1-score [46], a metric that com-



putes the weighted sum of the F1-score using different IOU thresh-
olds ranging from 0.6 to 0.9 — the F1-score at 0.6 is employed to
measure the number of tables that are detected, even if the detection
bounding boxes are not perfectly adjusted; and, on the contrary, the
F1-score at 0.9 measures the tables that are detected with a bound-
ing box perfectly adjusted to them. As can be seen in Table 5, the
best model is obtained using the YOLO algorithm (WAvgF1-score
of 0.63).

The three models can be improved thanks to model ensembling,
and model distillation. First of all, we have ensembled the three mod-
els using the three voting strategies (see rows 3 to 5 of Table 5), and
we have obtained an improvement of 2% using the affirmative strat-
egy, and a 6% using the consensus approach; as we have seen pre-
viously, the unanimous approach is too restrictive and obtains worst
results.

Moreover, we have applied model distillation using the TableBank
dataset; applying the three voting strategies, and retraining the three
models, see the last 9 rows of Table 5. Using this approach we have
improved the SSD model a 4%, the Mask R-CNN model a 6%; but,
the YOLO model does not improve at all. However, if we inspect
the F1-score value at 0.6, the improvement is more evident, SSD im-
proves a 2%, Mask R-CNN a 10%, and YOLO a 5%. This is due
to the fact that the ensemble of models usually produces bounding
boxes that are not perfectly adjusted to the objects; the issue of im-
proving those adjustments remain as further work.

As a conclusion of this example, we can again notice the bene-
fits of applying our ensemble algorithm, and the improvements that
can be achieved applying model distillation when a large dataset of
images is available, even if it is not annotated.

5 CONCLUSIONS AND FURTHER WORK

In this work, we have presented an ensemble algorithm that works
with the bounding boxes produced by object detection models, and,
hence, it is independent of the underlying algorithm employed to
construct those models. Our ensemble algorithm can be particu-
larised with three voting strategies (affirmative, consensus, and unan-
imous) that have a different effect depending on the performance of
the base models. Namely, the affirmative strategy works better when
the detections of the base models are mostly correct (that is, there are
few false positives) but several objects are left undetected (that is,
there are lots of false negatives); the unanimous strategy obtains bet-
ter results in the opposite case; and, the consensus strategy provides
a better trade-off when there is not a significant difference between
false negatives and false positives in the base models.

In addition, the ensemble method presented here has been em-
ployed to define a test-time augmentation procedure for object de-
tection that improves the accuracy of object detection models. More-
over, the ensemble of models and test-time augmentation are the
basis for data and model distillation, two semi-supervised learning
techniques that can considerably reduce the number of images that
must be manually annotated to train an object detection model; but
that, up to now, have not been broadly adopted in the context of ob-
ject detection due to the lack of a clear ensemble method.

As a by-product of this work, we have developed the open-source
EnsembleObjectDetection library that implements all the methods
presented here. This library provides support for models constructed
with several algorithms and deep learning frameworks, and can be
easily extended with others. Our methods and library have been
tested with several datasets, and we have improved some models up
to a 10%.

Several tasks remain as further work. First of all, we want to test
our techniques with other datasets like COCO [28]. Moreover, we
would like to test whether techniques like Soft-NMS [4], NMW [52],
fusion [49] or WBF [45] produce better results than the NMS algo-
rithm currently employed, or, at least, more fine-grained detections.
Another interesting aspect to study is whether our ensembling proce-
dure can be employed as a defense against adversarial attacks [47].
Finally, both in test-time augmentation and data distillation, it re-
mains the question of deciding the image transformations that pro-
duce better results. Currently, this decision is taken by the users that
employ our method, but it would be interesting to study automatic
methods like the ones presented in [54].
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