A graphical user interface for the Kenzo system, a program to
compute in Algebraic Topology*

Jonathan Heras Vico Pascual Julio Rubio

Abstract

Kenzo is a symbolic computation system devoted to Algebraic Topology. It has been
developed by F. Sergeraert mainly as a research tool. The challenge is now to increase
the number of users and to improve its usability. The first task we have undertaken
is to design simply a friendly front-end, and after that we have focussed on devising a
complete framework which wraps the pure Common Lisp Kenzo system and makes the
use of Kenzo easier to different clients.

Introduction

Kenzo [5] is a Common Lisp system, devoted to Symbolic Computation in Algebraic Topol-
ogy. It was developed in 1997 under the direction of F. Sergeraert, and has been successful,
in the sense that it has been capable of computing homology groups unreachable by any
other means. Let us present a small sample of a session with the Kenzo system. The first
command constructs the sphere of dimension 4, the second one constructs the loop space
iterated two times of that sphere and the third one computes its fourth homology group.

> (sphere 4)

[K1 Simplicial-Set]

> (loop-space (sphere 4) 2)

[K18 Simplicial-Group]

> (homology (loop-space (sphere 4) 2) 4)
Component Z

-- done --

It can be seen that the original Kenzo user interface is Common Lisp itself, so the
accessibility and usability are two weak points in Kenzo (implying difficulties in increasing
the number of users of the system). With the aim of extending the use of the system, several
lines have been explored (see [1] and [4], for instance) . In this work we have focussed on
devising a graphical user interface for the system, using Common Lisp as implementation
language.

*Partially supported by Comunidad Auténoma de La Rioja, project Colabora2007/16, and Ministerio de
Educacién y Ciencia, project MTM2006-06513.



% Kenzo Interface B@‘@

File Cif Bulders Operations Complexes Computing Spaces Help
5618 object: Sphere of dimension 4
orgr: SPHERE 4
cpret [K5 Morphism (degree 0); K1 -» 3]
difr: [K2 Morphism (degres -1): K1 = K1]
grme [K1 Simplicial-Set]
Delete ] ’ Delete All
2.- Build the Loop Space iterated 2 tmes of the Smplidial-5et 1 (5G 18) Clear Histary
1.- Build the sphere of dimension 4 (35 1)
Save History

Figure 1: Screen-shot of Kenzo Interface.

1 A graphical user interface for Kenzo

As we have just commented, with the aim of increasing the number of users of Kenzo, we
have developed a graphical user interface (GUI). A user request is transmitted to Kenzo
from our GUI and when Kenzo finishes the calculation the result is returned to the GUIL.
Our GUI communicates with Kenzo itself by means of an XML format (it is well-known
that XML gives us a universal tool to transmit information along the different components
of a system). This XML format is based on XML-RPC [6].

In Figure 1, a screen-shot of our GUI is presented. The main toolbar is organized into
8 menus: File, FEdit, Builders, Operations, Complexes, Computing, Spaces and Help. The
rest of the screen is separated into three areas. On the left side, a list with the spaces
already constructed during the current session is maintained. When a space is selected (the
one denoted by SS 1 in Figure 1), a description of it is displayed in the right area. At the
bottom of the screen, one finds a history description of the current session, which can be
cleared or saved into a file.

In the current version the File menu has just three options: Ezit, Save Session and Load
Session. When saving a session, a file is produced containing an XML description of the
commands executed by the user in that session.

The constructors of spaces are collected by the menus Builders, Operations and Com-
plexes. More specifically, the menu Builders includes the main ways of constructing new
spaces from scratch in Kenzo as options: spheres, Moore spaces, Eilenberg-Mac Lane spaces,
and so on. The menu Operations refers to the ways where Kenzo allows the construction of
new simplicial spaces from other ones: loop spaces, classifying spaces, Cartesian products,
suspensions, etc. The menu Complezes is similar, but related to chain complexes instead
of simplicial objects.

The menus Computing and Spaces collect all the operations on concrete spaces (instead



of constructing spaces, as in the previous cases). In Computing we concentrate on calcula-
tions over a space. We offer to compute homology groups, to compute the same but with
explicit generators and to compute homotopy groups. In menu Spaces currently we only
offer the possibility of showing the structure of a simplicial object (this is only applicable
to effective, finite type spaces).

As well as making the use of Kenzo easier, our GUI adds some extra functionalities. With
respect to the constructors of spaces, remark that the control of their input specifications
is naturally achieved in the GUI client. The XML format used provides the GUI with
the mathematical knowledge needed for it. This is an enhancement of Kenzo, since in the
kernel system a user could apply a constructor to an object without satisfying its input
specification.

A second enhancement is related to minimizing the number of runtime errors. In order
to do this, more intricate mathematical knowledge is needed. In this sense, with respect
to the operations on concrete spaces, the items of the menus Computing and Spaces need
more expert mathematical knowledge in order to avoid raising runtime errors (for instance,
a user could ask Kenzo for a homology group which is not of finite type, producing a
runtime error). This knowledge is provided by an intermediary component which has been
introduced between Kenzo and the GUI. This component is communicated with Kenzo (via
XML-RPC) and with the GUI by means of another more abstract XML format which is an
extension of MathML [2].

Besides, the GUI provides the user with new tools (not directly available in Kenzo) by
chaining some methods. For example, in Kenzo there is no final function allowing the user
to compute homotopy groups. Instead, there is a number of complex algorithms, allowing
a user to chain them to get some homotopy groups. The menu Computing has an option
to compute homotopy groups. The intermediary component is in charge of chaining the
different algorithms present in Kenzo to reach the final objective.

2 A framework wrapping Kenzo

Gathering all the components together, we obtain a software system whose architecture
corresponds to a simplified version of a well-known architectural pattern, the Microkernel
pattern [3]. (This pattern gives a global view as a platform, in terminology of [3], which
implements a virtual machine with applications running on top of it, namely a framewortk,
in the same terminology.)

Even more, inspired by this pattern, we are trying to wrap Kenzo in a framework in
such a way that a global view of the system becomes a platform with different clients (other
GUIs, web applications, web services, ...). A high level perspective of the system as a whole
is shown in Figure 2. Kenzo itself, wrapped with an interface based on XML-RPC, is acting
as internal server. The microkernel acting as intermediary component is based on an XML
processor, allowing both a link with the standard XML-RPC, and the expert knowledge
management. The view of the external server is again based on an XML processor, with a
higher level of abstraction (since it is free of the implementation details related to Kenzo)



Framework

MicroKernel

External Server (API )

| Internal Server

XML-Kenzo

(=D = b e
X]VIL*KEHZI]J

Figure 2: Microkernel architecture of the system.

which can map expressions from and to the microkernel, and which is decorated with an
adapter (the Proxy pattern, [3], is used to implement the adapter), establishing the final
connection with the client, a Graphical User Interface in our case. In this sense, our GUI
is a client of our framework.

References

[1] Andrés M., Pascual V., Romero A., Rubio J., Remote Access to a Symbolic Com-
putation System for Algebraic Topology: A Client-Server Approach, Lecture Notes in
Computer Science 3516 (2005) 635-642.

[2] Ausbrooks R. et al., Mathematical Markup Language (MathML) Version 2.0 (second
edition), 2003. http://www.w3.org/TR/2003/REC-MathML2-20031021/.

[3] Buschmann, F., Meunier, R., Rohnert H., Sommerland P., Stal M., Pattern-oriented
software architecture. A system of patterns, Volume 1, Wiley, 1996.

[4] Coquand T., Spiwack A., Towards Constructive Homological Algebra in Type Theory,
Lecture Notes in Artificial Intelligence 4573 (2007) 40-54.

[5] Dousson X., Sergeraert F., Siret Y., The Kenzo program, Institut Fourier, Grenoble,
1999. http://www-fourier.ujf-grenoble.fr/ “sergerar /Kenzo/ .

[6] Winer D., Extensible Markup Language-Remote Procedure Call (XML-RPC).
http://www.xmlrpc.com.

Jonathan Heras, Vico Pascual, Julio Rubio

Departamento de Matematicas y Computacion, Universidad de La Rioja,
Edificio Vives, Luis de Ulloa s/n, E-26004 Logrono (La Rioja, Spain).
{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es



