ML4PG in Computer Algebra Verification*

Jénathan Heras and Ekaterina Komendantskaya

School of Computing, University of Dundee, UK
{jonathanheras,katya}@computing.dundee.ac.uk

Abstract. ML4PG is a machine-learning extension that provides statis-
tical proof hints during the process of Coq/SSReflect proof development.
In this paper, we use ML4PG to find proof patterns in the CoqEAL li-
brary — a library that was devised to verify the correctness of Computer
Algebra algorithms. In particular, we use ML4PG to help us in the for-
malisation of an efficient algorithm to compute the inverse of triangular
matrices.

Keywords: ML4PG, Interactive Theorem Proving, Coq, SSReflect, Ma-
chine Learning, Clustering, CoqEAL.

1 Introduction

There is a trend in interactive theorem provers to develop general purpose
methodologies to aid in the formalisation of a family of related proofs. How-
ever, although the application of a methodology is straightforward for its de-
velopers, it is usually difficult for an external user to decipher the key results
to import such a methodology into a new development. Therefore, tools which
can capture methods and suggest appropriate lemmas based on proof patterns
would be valuable. ML4PG [5] — a machine-learning extension to Proof General
that interactively finds proof patterns in Coq/SSReflect — can be useful in this
context.

In this paper, we use ML4PG to guide us in the formalisation of a fast algo-
rithm to compute the inverse of triangular matrices using the CoqgEAL method-
ology [4] — a method designed to verify the correctness of efficient Computer
Algebra algorithms.

Awailability. MLAPG is accessible from [5], where the reader can find related
papers, examples, the links to download ML4PG and all libraries and proofs we
mention here.

2 Combining the CoqEAL methodology with ML4PG

Most algorithms in modern Computer Algebra systems are designed to be effi-
cient, and this usually means that their verification is not an easy task. In order
to overcome this problem, a methodology based on the idea of refinements was

* The work was supported by EPSRC grant EP/J014222/1.

presented in [4], and was implemented as a new library, built on top of the SSRe-
flect libraries, called CogFEAL. The approach [4] to formalise efficient algorithms
can be split into three steps:

S1. define the algorithm relying on rich dependent types, as this will make the
proof of its correctness easier;

S2. refine this definition to an efficient algorithm described on high-level data
structures; and,

S3. implement it on data structures which are closer to machine representations.

The CoqEAL methodology is clear and the authors have shown that it can be
extrapolated to different problems. Nevertheless, this library contains approxi-
mately 400 definitions and 700 lemmas; and the search of proof strategies inside
this library is not a simple task if undertaken manually. Intelligent proof-pattern
recognition methods could help with such a task.

In order to show this, let us consider the formalisation of a fast algorithm
to compute the inverse of triangular matrices over a field with 1s in the diago-
nal using the CoqEAL methodology. SSReflect already implements the matrix
inverse relying on rich dependent types using the invmx function; then, we only
need to focus on the second and third steps of the CoqEAL methodology. We
start defining a function called fast_invmx using high-level data structures.

Algorithm 1 Let M be a square triangular matrix of size n with 1s in the
diagonal; then fast_invmx (M) is recursively defined as follows.

— Ifn =0, then fast_invmx (M) =1%M (where 1%M is the notation for the identity
matrix in SSReflect).

— Otherwise, decompose M in a matrix with four components: the top-left
element, which is 1; the top-right line vector, which is null; the bottom-left
column vector C; and the bottom-right (n — 1) x (n — 1) matrix N; that is,

1(0 . .
M = <aw) Then define fast_invmx (M) as:

fast_invmx(M) = (1 ‘ 0 >

—fast_invmx(N) *m C‘fast_invmx(N)

where *m is the notation for matrix multiplication in SSReflect.

Subsequently, we should prove the equivalence between the functions invmx
and fast_invmx — Step S2 of the CoqEAL methodology. Once this result is
proven, we can focus on the third step of the CogEAL methodology. It is worth
mentioning that neither invmx nor fast_invmx can be used to actually compute
the inverse of matrices. These functions cannot be executed since the definition of
matrices is locked in SSReflect to avoid the trigger of heavy computations during
deduction steps. Using Step S3 of the CoqEAL methodology, we can overcome
this pitfall. In our case, we implement the function cfast_invmx using lists
of lists as the low level data type for representing matrices and to finish the
formalisation we should prove the following lemma.

Lemma 1 Let M be a square triangular matrix of size n with 1s in the diagonal;
then given M as input, fast_invmx and cfast_invmx obtain the same result
but with different representations. The statement of this lemma in SSReflect is:

Lemma cfast_invmxP : forall (n : nat) (M : ’M_n),
segmx_of _mx (fast_invmx M) = cfast_invmx (seqmx_of_mx M).

where the function seqmx_of_mx transforms matrices represented as functions
to matrices represented as lists of lists.

The proof of Lemma [1] for a non-expert user of CoqEAL is not direct, and,
after applying induction on the size of the matrix, the developer can get easily
stuck when proving such a result.

Problem 1 Find a method to proceed with the inductive case of Lemma

In this context, the user can invoke ML4PG to find some common proof-
pattern in the CoqEAL library. ML4PG generated solutions is presented in Fig-
ure [11

Similarities:

Lemma cfast_invmxP : forall (m : nat) (M : 'M_m),
seqmx_of_mx CR (fast_invmx M) = This lemma is similar to the lemmas:
cfast_invmx m (seqmx_of_mx CR M). - rank_elim_seqmxE

Proof. - fast_mult_seqmxP
move => m. - det_seqmxP

elim : m = [M|m ih]. H
by rewrite seqmx1E.

-Ui**- invmx.v 46% L116 Git-master (Coq Scri-U:**- *display* All L7 (F al

Fig. 1. Suggestions for Lemma cfast_invmxP. The Proof General window has been
split into two windows positioned side by side: the left one keeps the current proof
script, and the right one shows the suggestions provided by ML4PG.

ML4PG suggests three lemmas which are the equivalent counterparts of
Lemma (1] for the algorithms computing the rank, the determinant and the fast
multiplication of matrices. Inspecting the proof of these three lemmas, the user
can find Proof Strategy [I] which is followed by those three lemmas and which
can also be applied in Lemma [I]

Proof Strategy 1 Apply the morphism lemma to change the representation
from abstract matrices to executable ones. Subsequently, apply the translation
lemmas of the operations involved in the algorithm — translation lemmas are
results which state the equivalence between the executable and the abstract
counterparts of several operations related to matrices.

It is worth remarking that the user is left with the task of finding a proof
strategy from the suggestions provided by ML4PG. In the future, we could apply

symbolic machine-learning techniques such as Rippling [I] and Theory Explo-
ration [3] to automatically conceptualise the proof strategies from the suggestions
provided by ML4PG.

3 Applying ML4PG to the CoqEAL library

In the section, we show how ML4PG discovers the lemmas which follow Proof
Strategy[I} This process can be split into 4 steps: extraction of significant features
from library-lemmas, selection of the machine-learning algorithm, configuration
of parameters, and presentation of the output.

Step 1. Feature extraction. During the proof development, ML4PG works
on the background of Proof General, and extracts (using the algorithm described
in [5]) some simple, low-level features from interactive proofs in Coq/SSReflect.
In addition, ML4PG extends Coq’s compilation procedure to extract lemma-
features from already-developed libraries.

In the example presented in the previous section, we have extracted the
features from the 18 files included in the CoqEAL library (these files involve 720
lemmas). Any number of additional Coq libraries can be be selected using the
ML4PG menu. Unlike e.g. [6], scaling is done at the feature extraction stage,
rather than on the machine-learning stage of the process.

Step 2. Clustering algorithm. On user’s request, ML4PG sends the gath-
ered statistics to a chosen machine-learning interface and triggers execution of a
clustering algorithm of the user’s choice — clustering algorithms [2] are a family
of unsupervised learning methods which divide data into n groups of similar
objects (called clusters), where the value of n is provided by the user.

We have integrated ML4PG with several clustering algorithms available in
MATLAB (K-means and Gaussian) and Weka (K-means, FarthestFirst and Ex-
pectation Maximisation). In the CoqEAL example, ML4PG uses the MATLAB
K-means algorithm to compute clusters — this is the algorithm used by default.

Step 3. Configuration of granularity. The input of the clustering algo-
rithms is a file that contains the information associated with the lemmas to be
analysed, and a natural number n, which indicates the number of clusters. The
file with the features of the library-lemmas is automatically extracted (see [5]).

To determine the value of n, ML4PG has its own algorithm that calculates
the optimal number of clusters interactively, based on the library size. As a
result, the user does not provide the value of n directly, but just decides on
granularity in the ML4PG menu. The granularity parameter ranges from 1 to 5,
where 1 stands for a low granularity (producing a few large clusters with a low
correlation among their elements) and 5 stands for a high granularity (producing
many smaller clusters with a high correlation among their elements). By default,
ML4PG works with the granularity value of 3 and this is the value presented in
the previous section.

Step 4. Presentation of the results. Clustering algorithms output con-
tains not only clusters but also a measure which indicates the proximity of the
elements of the clusters. In addition, results of one run of a clustering algorithm

may differ from another; then ML4PG runs the clustering algorithm 200 times,
obtaining the frequency of each cluster as a result. These two measures (proxim-
ity and frequencies) are used as thresholds to decide on the single “most reliable”
cluster to be shown to the user, cf. Figure

These 4 steps are the workflow followed by ML4PG to obtain clusters of
similar proofs. Let us present now the results that ML4PG will obtain if the
user varies the different parameters — these results are summarised in Table [I]

g=1 g=2 g=3 g=4 g=>5
Algorithm: (n =T72)|(n = 80)|(n = 90)|(n = 102)|(n = 120)
Gaussian 24ab.edgabedgabed] 1gabed [gebed
K-means (Matlab) 20%0ed [14abed] gabed 0 0
K-means (Weka) 60T 1@ bed] gabed 0 0
Expectation Maximisation| 5242 [45%0¢d 1 43a0.¢d 1 3ga.b.c.d 17 7ga.b.e,d
FarthestFirst 30bed|g7abedlgrabed] ggabed | ggabed

Table 1. A series of clustering experiments discovering Proof Strategy [l The
table shows the sized of clusters containing: a) Lemma cfast_invmxP, b) Lemma about
rank (rank_elim_seqgmxE), ¢) Lemma about fast multiplication (fast_mult_seqmxP),
and d) Lemma about determinant (det_seqmxP).

As can be seen in Table[T] the clusters obtained by almost all variations of the
learning algorithms and parameters include the lemmas which led us to formulate
Proof Strategy [[} However, there are some remarkable differences among the
results. First of all, the results obtained with the Expectation Maximisation and
FarthestFirst algorithms include several additional lemmas that make difficult
the discovery of a common pattern. The same happens with the other algorithms
for granularity values 1 and 2; however the clusters can be refined when increasing
the granularity value. The results are clusters of a sensible size which contain
lemmas with a high correlation; allowing us to spot Proof Strategy [I]

References

1. D. Basin, A. Bundy, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, 2005.

2. C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

3. K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive
proofs using theory exploration. In Proceedings 24th International Conference on
Automated Deduction (CADE-24), LNCS, 2013.

4. M. Dénes, A. Mortberg, and V. Siles. A Refinement Based Approach to Compu-
tational Algebra in Coq. In Proceedings 3rd Conference on Interactive Theorem
Proving (ITP’12), volume 7406 of LNCS, pages 83-98, 2012.

5. J. Heras and E. Komendantskaya. ML4PG: downloadable programs, manual, ex-
amples, 2012-2013. www.computing.dundee.ac.uk/staff/katya/ML4PG/|

6. D. Kiihlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban. MaSh: Machine Learning
for Sledgehammer. In Proceedings of ITP’18, LNCS, 2013.

www.computing.dundee.ac.uk/staff/katya/ML4PG/

	ML4PG in Computer Algebra Verification

