ACL2 verification of Simplicial Complexes
programs for the Kenzo system

Jénathan Heras and Vico Pascual

Departamento de Matematicas y Computacién, Universidad de La Rioja,
Edificio Vives, Luis de Ulloa s/n, E-26004 Logrono (La Rioja, Spain).
{jonathan.heras, vico.pascual}@unirioja.es

Abstract. Kenzo is a Computer Algebra System devoted to Algebraic
Topology, and written in Common Lisp programming language. In spite
of being easier the notion of simplicial complex than the notion of sim-
plicial set, the second one is included in Kenzo but not the first one. In
this paper, we give the programs which allow us to work with simplicial
complexes in the Kenzo system, besides a complete automated proof of
the correctness of our programs is provided. The proof is carried out
using ACL2, a system for proving properties of programs written in (a
subset of) Common Lisp.

1 Introduction

The notion of simplicial complex is the most elementary method to settle a
connection between common “general” topology and homological algebra. The
“sensible” spaces can be triangulated, at least up to homotopy, and instead of
using the notion of topological space, too “abstract”, only the spaces having the
homotopy type of a CW-complex (see [5]) are considered, and all these spaces
in turn have the homotopy type of a simplicial complex. So that a lazy algebraic
topologist can decide every space is a simplicial complex.

But many common constructions in topology are difficult to make explicit
in the framework of simplicial complexes. It soon became clear in the forties
the tricky and elegant notion of simplicial set is much better. The reference [8]
certainly remains the basic reference in this subject.

The Kenzo system [3] is a Common Lisp program, developed by F. Sergeraert
and devoted to Algebraic Topology. Kenzo works with the main mathematical
structures used in Simplicial Algebraic Topology, namely it is able to work with
simplicial sets, however the notion of simplicial complex is not included.

In addition, this system was written mainly as a research tool and has got
relevant results which have not been confirmed nor refuted by any other means.
Then, the question of Kenzo reliability (beyond testing) arose in a natural way.
Several works (see [1], [2] and [7]) have focussed on studying the correctness
of first order fragments of Kenzo with the ACL2 theorem prover [4]. The full
verification of the Kenzo system is not possible with ACL2, since the ACL2 logic
is first-order but Kenzo uses intensively higher order functional programming.

This paper is devoted to the description of new tools which integrate the
notion of simplicial complexes into the Kenzo system. Besides, a certification of
the correctness of these programs using the ACL2 theorem prover is provided.

The organization of the rest of the paper is as follows. In Section 2, we
introduce the mathematical concepts used in this paper, which are basic notions
of Algebraic Topology. In Section 3, a brief introduction to the ACL2 system is
given. A description of the main features of the new programs and an example
of their use are explained in Section 4. Section 5 is devoted to the description
of the ACL2 proof of correctness of the programs presented in Section 4. The
paper ends with a section of conclusions and further work.

2 Mathematical definitions

The following definitions about some basic notions of Algebraic Topology, can
be found, for instance, in [6].

Definition 1. A simplicial complex C' is a finite collection of finite sets of nat-
ural numbers, closed under the operation of taking subsets. The elements of the
simplicial complex are called simplices, which are strictly increasing lists. The
facets of a simplicial complex are the mazximal simplices, which determine the
simplicial complex.

Fig. 1. Butterfly Simplicial Complex

Example 1. The small simplicial complex drawn in Figure 1 is mathematically
defined as the object

(0), (1), (2),(3), (4), (5), (6),
C =14 1(0,1),(0,2),(0,3),(1,2), (1,3),(2,3), (3,4), (4,5), (4,6), (5,6),
(0,1,2),(4,5,6)

In this case, the facets of this simplicial complex are: {13,34,03,23,012,456},
where 012 is a shorthand (0,1, 2).

Definition 2. A Simplicial Set K is a union K = |J K7, where the K7 are
920

disjoints sets, together with functions:

ol ' K1— Kv' ¢>0, i=0,...,q,
N K9 — K ¢>0, i=0,...,q,

subject to the relations

oitol = iTjol if i<y
nf o=ty >
ortgl = piTol if i<y,
oIyl = identity = 9%,
A Y A

The functions O and n are respectively the face and degeneracy operators.

Definition 3. Let C' a simplicial complex. Then the simplicial set K(C) canon-
ically associated with C is defined as follows. The set K™(C) of n-simplices of
C is the set made of the simplices of cardinality n+ 1. In addition, let a simplex

{vo,...,vq} the face and degeneracy operators are defined as follows:
82‘({1}0, ey Uiyenn ,Uq}) = {Uo, ey Ui—1, V54150 - - ,Uq}
S § B S

There is here an amusing bug of terminology: the notion of simplicial set,
due to Sam Eilenberg, is more complex than the notion of simplicial. .. complex.

3 An introduction to ACL2

ACL2 [4] stands “for A Computational Logic for an Applicative Common Lisp”.
ACL2 is a programming language, a logic and a theorem prover. Thus, the system
constitutes an environment in which algorithms can be defined and executed, and
their properties can be formally specified and proved with the assistance of a
mechanical theorem prover.

As a programming language, it is an extension of an applicative subset of
Common Lisp! [10]. The logic considers every function defined in the program-
ming language as a first-order function in the mathematical sense. For that rea-
son, the programming language is restricted to the applicative subset of Common
Lisp. This means, for example, that there is no side-effects, no global variables,
no destructive updates and no higher-order programming. Even with these re-
strictions, there is a close connection between ACL2 and Common Lisp: ACL2
primitives that are also Common Lisp primitives behave exactly in the same
way, and this means that, in general, ACL2 programs can be executed in any
compliant Common Lisp.

! In this paper, we will assume familiarity with Common Lisp.

The ACL2 logic is a first-order logic, in which formulas are written in prefix
notation; they are quantifier-free and the variables in it are implicitly universally
quantified. The logic includes axioms for propositional logic (with connectives
implies, and,...), equality (equal) and those describing the behavior of a sub-
set of primitive Common Lisp functions. Rules of inference include those for
propositional logic, equality and instantiation of variables. The logic also pro-
vides a principle of proof by induction that allows to prove a conjecture splitting
it into cases and inductively assuming some instances of the conjecture that are
smaller with respect to some wellfounded measure.

An interesting feature of ACL2 is that the same language is used to define
programs and to specify properties of those programs. Every time a function is
defined with defun, in addition to define a program, it is also introduced as an
axiom in the logic (whenever it is proved to terminate for every input). Theorems
and lemmas are stated in ACL2 by the defthm command, and this command
also starts a proof attempt in the ACL2 theorem prover.

The main proof techniques used by ACL2 in a proof attempt are simplifi-
cation and induction. The theorem prover is automatic in the sense that once
defthm is invoked, the user can no longer interact with the system. However,
in a deeper sense the system is interactive: very often non-trivial proofs are not
found by the system in a first attempt and then it is needed to guide the prover
by adding lemmas, suggested by a preconceived hand proof or by inspection of
failed proofs. These lemmas are then used as rewrite rules in subsequent proof
attempts. This kind of interaction with the system is called “The Method” by
its authors.

4 New Kenzo programs

The programs we have developed (with about 150 lines) allow us on the one hand
the generation of a simplicial complex from its facets and on the other hand,
from a simplicial complex it is possible to build the simplicial set canonically
associated with it. Besides, the Kenzo program permits the computation of the
homology groups of the simplicial sets define with our program.

4.1 A description of the programs

In this subsection we explain the essential part of these programs, describing the
functions with the same format as in the Kenzo documentation [3].

The first step has been to implement the functions which generate a simplicial
complex from its facets. The description of the main function in charge of this
task is showed here:

simplicial-complex-generator ls
From a list of simplices 1s, which represents the facets of a simplicial com-
plex, generates the associated simplicial complex.

The second programs, generates from a simplicial complex a simplicial set
instance of the Kenzo system class. The description of the main functions is:

simplicial-complex-bspn simplicial-complex
Returns the smaller simplex of simplicial-complex.
simplicial-complex-basis simplicial-complex
From the simplicial complex simplicial-complex, builds a basis function for
the simplicial set canonically associated with simplicial-complex. In degree
n, the elements of the basis are the simplices of cardinality n + 1.
simplicial-complex-face
Builds the face function for simplicial complexes. Note that the face func-
tion of the simplicial set canonically associated with a simplicial complex is
independent from the simplicial complex.
ss-from-sc sitmplicial-complex
Build the simplicial set canonically associated with a simplicial complex
simplicial-complex, using the basic functions above.

To provide a better understanding of these new tools, an elementary example
of their use is showed in the next subsection.

4.2 A case study: the torus (S* x S1)

As explained in the previous section, the new programs allow us to build the
simplicial set canonically associated with a simplicial complex generated from
its facets. Thanks to the already programs of the Kenzo system the homology
groups of these spaces can be computed. In this subsection a simple example of
this computation is presented. In this case, the homology groups are well known
and can be obtained without using a computer.

With these programs it is possible to obtain the homology groups of the torus
from a triangulation of this space, namely the presented in Figure 2.

The facets of the torus are the triangles of Figure 2, then the torus simplicial
complex S! x S! is generated in Kenzo in the following way:

> (setf torus (simplicial-complex-generator
’((013) (015) (024)

(026) (036) (045)

(125) (126) (134

(146) (234) (235)

(356) (456)))) X
(013 (01) (015) (024) (02) ...)

A Kenzo display must be read as follows. The initial ‘>’ is the Lisp prompt
of this Common Lisp implementation. The user types out a Lisp statement, here
(setf torus (simplicial-complex-generator ...)) and the maltese cross M (in
fact not visible on the user screen) marks in this text the end of the Lisp state-
ment, just to help the reader: the right number of closing parentheses is reached.
The Return key then asks Lisp to evaluate the Lisp statement. Here the torus
is constructed by the function simplicial-complex-generator, taking account of
the argument ((0 1 3) (0 1 5) (0 2 4) ...), and this torus is assigned to the

Fig. 2. Torus triangulation

Lisp symbol torus for later use. Also evaluating a Lisp statement returns an
object, the result of the evaluation, in this case the Lisp object implementing
the torus.

Subsequently, the simplicial set canonically associated with the torus simpli-
cial complex can be built in Kenzo in the following way:

g e
[K1 Simplicial-Set]

> (homology torus-ss 0 3) *K
Homology in dimension O:
Component Z

Homology in dimension 1:
Component Z

Component Z

Homology in dimension 2:
Component Z

To be interpreted as stating Hy(torus) = Z, Hy (torus) = Z&Z and Ha(torus) =

5 From Kenzo programs to ACL2

As explained in Section 4, two different programs have been developed, a pro-
gram to generate simplicial complexes from their facets and another one which
builds a simplicial set from a simplicial complex. In this section the certification
of the correctness of these programs by means of the ACL2 system is explained.

5.1 simplicial-complex-generator generates simplicial complexes

The first task we have undertaken has consisted of certifying that the function in
charge of generating a simplicial complex from a list of simplices really generates
a simplicial complex.

Firstly, the functions implemented for the Kenzo system must be converted
into ACL2 functions. Fortunately, in this case the functions developed for the
Kenzo system can also be introduced in ACL2 without changes. So, to certify
that the Kenzo programs are correct, which means that from a “sensible” input
the output is a simplicial complex, two main theorems must be proved:

(defthm simplicial-complex-generator-theorem-1
(implies (list-of-simplex-p 1s)
(list-of-simplex-p (simplicial-complex-generator 1s))))

(defthm simplicial-complex-generator-theorem-2
(implies (and (simplex-p sl1)
(simplex-p s2)
(list-of-simplex-p 1s)
(member-equal sl (simplicial-complex-generator 1s))
(subset-p s2 s1))
(member-equal s2 (simplicial-complex-generator 1s))))

The description of the functions and the meaning of the theorems is showed
here:

simplex-p simplex Function

Returns t if simplex is an increasing list of naturals, otherwise nil.
list-of-simplex-p list-of-simplices Function

Returns t if list-of-simplices is a list of simplices, otherwise nil.
member-equal simplex list-of-simplices Function

Returns t if simplez is an element of list-of-simplices, otherwise nil.
subset-p simplexl simplex2 Function

Returns t if simplex! is a subset of simplex2, otherwise nil.
simplicial-complex-generator list-of-simplices Function

Generates the simplicial complex which has as facets list-of-simplices.
simplicial-complex-generator-theorem-1 Theorem

This theorem asserts that if the function simplicial-complex-generator

is applied over a list of simplices a new list of simplices is generated.
simplicial-complex-generator-theorem-2 Theorem

This theorem validates that if a simplex belongs to a simplicial complex,

then all the subsets of that simplex also belong to the simplicial complex.

We now describe how we state the main theorems about the correctness of
the function which generates a simplicial complex from its facets.

The algorithm simplicial-complex-generator can be decomposed in three
steps: firstly, the function generates recursively the simplicial complex associated
with each one of the simplices of the input list of simplices; subsequently the
program generates a list of simplices containing all the obtained simplices; finally,
the elements that are duplicated are removed from the output list of simplices.

The ACL2 proof has followed the same schema used for implementing that
function. First of all, two theorems in the same line that the two above pre-
sented, are proved to certify that the output of the function which generates a
simplicial complex from a simplex is really a simplicial complex. Subsequently,
the same results are proved for the function which gathers all the simplicial com-
plexes obtained from the recursive generation of simplicial complex from a list of
simplices. Finally, the looked for theorems are obtained removing the duplicate
elements.

In this way, we can claim that the function simplicial-complex-generator
really generates a simplicial complex from a list of simplices.

5.2 ss-from-sc builds simplicial sets

In order to finish the certification of our programs, it is necessary to provide
a proof which verifies the correctness of the function ss-from-sc. This proof
consists of verifying that taking as input a simplicial complex this functions
returns a representation of a simplicial set.

This is a tricky task, the main reason is that the output of the function
ss—-from-sc is an instance of a CLOS class where the slots of the class determine
the simplicial set, and this kind of objects can not be represented in the ACL2
system.

Instead of using this Kenzo representation for determining simplicial sets,
the following specification for a simplicial set representation is provided:

inv: nat U -> bool
face: nat nat U -> U
degeneracy: nat nat U -> U

The degeneracy operator is always defined in the same way in the Kenzo
system because it is independent from the simplicial set; however, the face and
inv (which is the invariant of the underlying set) operators are defined from the
slots of the simplicial set instance.

If these face and degeneracy operators are well-defined, which means that let
z € K7 then 9lx € K97' with ¢ > 0andi=0,...,q and nfz € K97 with ¢ > 0
and i = 0,...,q (these questions are validated by means of the inv function);
and they satisfy the commuting relations of Definition 2; then these operators
determines a simplicial set.

The methodology followed here to prove the desired result is the same that
was presented in [7]. The main idea of that methodology consists of using EAT
[9] (the predecessor of Kenzo) as the main component of the specification of
the intended properties. The EAT approach for representing the functions of
simplicial sets is clean and comprehensible due to the natural way of representing
these functions, namely the degeneracy lists are encoded as decreasing lists of
natural numbers (more details about this codification can be found in [7]). On
the contrary, the Kenzo system codifies the degeneracy lists as natural numbers,
a way of working which improves dramatically the performance of the system

but the algorithms in the Kenzo system become obscured. Thus, EAT, which is
logically simpler (i.e, easier to be verified) but less efficient than Kenzo, acts as
a mathematical model and then our Kenzo program for building simplicial sets
from simplicial groups is formally verified against it.

Due to the big jump between the EAT and the Kenzo codifications, the tech-
nique presented in [7] makes explicit an intermediary representation based on
binary lists in order to prove the equivalence between EAT and Kenzo functions
through the intermediary representation. Our proofs also use this technique;
thus, the first step of our work has consisted of verifying the following equiv-
alences module the change of representation between the different operators of
each codification:

face-eat = face-binary = face-kenzo
degeneracy-eat = degeneracy-binary = degeneracy-kenzo
inv-eat & inv-binary & inv-kenzo

Subsequently, the second question to be solved was the verification of the
simplicial set properties for the functions which codifies the face, the degeneracy
and the invariant operators; that is the well defining of the face and degeneracy

operator and the commuting relations of this operators state in Definition 2.

For instance, the third commuting relation (njq-:ll ol = 83“77;? when i < j) is

expressed with the face operators as follows:
(defthm property-3-eat
(implies (and (< i j)
(inv-eat sc q absm))
(equal (degeneracy-eat sc (1- j) (1- q)
(face-eat sc i q absm))
(face-eat sc i (1+ q)
(degeneracy-eat sc j q absm)

Finally, gathering the equivalence between the operators module the change
of representation and the properties verified with the EAT codification the looked
for properties of our Kenzo operators can be obtained. For instance, the same
property showed for the EAT representation is defined in terms of Kenzo oper-
ators as follows:

(defthm property-3-kenzo
(implies (and (< i j)
(inv-kenzo sc q absm))
(equal (degeneracy-kenzo sc (1- j) (1- q)
(face-kenzo sc i q absm))
(face-kenzo sc i (1+ q)
(degeneracy-kenzo sc j q absm)

From these theorems, we can assert that taking as input a simplicial complex
the function ss-from-sc returns a representation of a simplicial set.

6 Conclusions and Further Work

In this paper, we have presented some programs that improve the functionality of
Kenzo, generating simplicial complexes from its facets and building the simplicial
sets canonically associated with simplicial complexes. In spite of not being too
complex programs, the great advantage with respect to the Kenzo system is the
certification of the correctness of our algorithms using the ACL2 theorem prover.

As future work, two different tasks can be undertaken. On the one hand, the
development of new algorithms for the Kenzo system. On the other hand, the
verification of already implemented algorithms of Kenzo. Besides, in the same
way explained in this paper these two lines can be gathered into one to certify
new algorithms for the Kenzo system.

References

1. Andres M., Lamban L. and Rubio J., Ezecuting in Common Lisp, Proving in ACL2,
In Proceedings of Calculemus 2007, Lecture Notes in Artificial Intelligence, 4573
(2007) 1-12.

2. Andres M., Lamban L., Rubio J. and Ruiz-Reina J. L., Formalizing Simplicial
Topology in ACL2,, In Proceedings of ACL2 Workshop 2007, (2007) 34-39.

3. Dousson X., Sergeraert F., Siret Y., The Kenzo program, Institut Fourier, Grenoble,
1999. http://wuww-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.

4. Kaufmann, M., Manolios P. and Moore, J., Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Press, Boston, 2000.

5. Lundell A. T. and Weingram S., The topology of CW compleres, Van Nostrand,
1969.

6. Mac Lane S., Homology, Springer, 1994.

7. Martin-Mateos F.J., Rubio J. and Ruiz-Reina J.L., ACL2 verification of simplicial
degeneracy programs in the Kenzo system, In Proceedings of Calculemus 2009,
Lecture Notes in Computer Science, 5625 (2009) 106-121.

8. May J.P., Simplicial Objects in Algebraic Topology, Van Nostrand, 1967.

9. Rubio J., Sergeraert F., Siret Y., EAT: Symbolic Software for Effective Homology
Computation, Institut Fourier, 1997.
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/EAT-program.zip.

10. Steele G. L. Jr., Common Lisp The Language, 2nd edition, Digital Press, 1990.

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/EAT-program.zip

