
Applying Generative Communication to Symbolic

Computation in Common Lisp

Jónathan Heras, Vico Pascual, and Julio Rubio
(University of La Rioja, Spain

{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es)

Abstract: In this paper, an architecture to interact with a system called Kenzo is
described. Kenzo is a Common Lisp system devoted to mathematical symbolic com-
putation, namely in the area of Algebraic Topology. The architecture presented in
this paper is an evolution of a previous proposal, where several aspects have been
improved. In particular, we have now uncoupled the different components, and imple-
mented mechanisms to reuse intermediary computations. The new technology allowing
us these improvements is based on the Linda Model (a model where processes com-
municate by means of a shared tuple space), implemented through AllegroCache (an
object oriented database for Allegro Common Lisp). The developed framework acts as
a middleware between some Kenzo clients and Kenzo itself.

Key Words: Linda Model implementation, AllegroCache, Symbolic computation sys-
tems.

Category: I.1, I.2.4

1 Introduction

Kenzo [Dousson et al. 1999] is a Common Lisp system devoted to Symbolic Com-
putation in Algebraic Topology. It was developed in 1997 under the direction of
F. Sergeraert and has been successful, in the sense that it has been capable of
computing homology groups unreachable by any other means. Having detected
accessibility and usability as two weak points in Kenzo (implying difficulties in
increasing the number of users of the system), several proposals have been stud-
ied to interoperate with Kenzo (since the original user interface is Common Lisp
itself, the search for other ways of interaction seems mandatory to extend the use
of the system). In [Heras et al. 2008] we presented a proposal to interact with
Kenzo by means of an intermediary layer which was designed to avoid some of
the drawbacks of the Kenzo system. In particular, a standard way was defined to
communicate through MathML [Ausbrooks et al. 2008], an XML standard for
mathematics, wrapping Kenzo with a small type system. This mediated access
gave us the possibility of including some intelligent processing, avoiding some
typical flawed interactions with the Kenzo system.

Even if the system reported in [Heras et al. 2008] was a great improvement
with respect to the previous Kenzo user interface, it had several drawbacks.
The first one was its message passing style, which prevented us from designing
an uncoupled access to the different components of the system. The second



Figure 1: Simplified diagram of the previous architecture.

drawback was related to the communication pattern, too. Since it was based on a
stateless protocol, intermediary computations were produced on-the-fly, and then
recalculated if needed. Considering both aspects together, we obtained a system
with severe difficulties with respect to further scalability and enhancements from
the distributed computing point of view.

These difficulties are overcome in this paper. To this aim, inspired by the work
of [Mata et al. 2007], we have implemented the well-known generative commu-
nication paradigm (and, more concretely the Linda Model [Gelenter 1985]), by
means of AllegroCache [Aasman 2005], an object-oriented database for Allegro
Common Lisp [Franz Inc.].

The organization of the paper is as follows. In [Section 2] we introduce the new
architecture. Firstly, we explain the model which inspired us and subsequently we
give an implementation of it. We finish [Section 2] by presenting an example. How
the communication among the different components of the system is carried out
is tackled in [Section 3]. In addition, some concurrency issues are also explained
in this Section. To prove the adaptation of this architecture, in [Section 4] two
kinds of clients are explained. This work finishes with Conclusions and Further
Work.

2 Architecture of the system

The architecture presented in [Heras et al. 2008] is based on the MicroKernel
pattern [Gamma et al. 1994]. The MicroKernel design consists of two layers: the
first one manages the input of requests and the output of results, and the second
one deals with the validation of requests. The internal server, a layer wrapping
Kenzo, executes the computations and returns the results to the input/output
layer. A simplified diagram of this architecture appears in [Figure 1].

As was explained in the Introduction, our previous implementation was rigid
from the point of view of the execution flow, giving an essentially sequential way
of interaction. In particular, if the system receives two requests, the second one
must wait until the first one is finished. In addition, Kenzo computations used
to be very time and space consuming (requiring, typically several days of CPU
time on powerful dedicated computing servers); therefore to store these results



in a persistent way would be useful to avoid recalculations. This possibility was
not considered in our previous proposal.

To improve these aspects our new software system has been inspired by both
the Linda Model [Gelenter 1985] and the Shared Repository architectural pattern
[Buschmann et al. 1996].

The Linda Model is based on Generative Communication, a mechanism for
asynchronous communication among processes based on a shared data structure.
The asynchronous communication is performed by means of the insertion and
extraction of data over a tuple space. Thus the shared memory contains tuples
produced by the processes. As soon as a tuple is inserted in the tuple space, it
has an independent existence.

Tuples can contain both actual and formal items. An actual item contains a
specific value, like 3 or 4.3. A formal item acts as a typed placeholder (a character
? denotes a variable which has to be treated as formal, rather than using the
value stored in the variable as actual).

In the Linda Model, the processes access the tuple space using five simple
operations:

out- Adds a tuple from the process to the tuple space.

in- Deletes a tuple from the tuple space and returns it to the process. The
process is blocked if the tuple is not available.

rd- Returns a copy of one tuple of the tuple space. The process is blocked if
the tuple is not available.

inp- A non blocking version of the operation in.

rdp- A non blocking version of the operation rd.

By means of the last four operations the tuples can be retrieved from a tuple
space. The arguments of these functions are tuple templates, possibly containing
formal items (placeholders or wildcards).

The shared repository pattern is based on a very similar idea to the Linda
Model. It adds the nuance that a component has no knowledge of both, what
components have produced the data it uses, and what components will use its
outputs.

[Figure 2] shows a feasible framework which brings together both Linda
Model and the shared repository pattern.

This kind of architecture solves the problems that the previous one presented,
stated at the beginning of this section. On the one hand, the communication is
not based on a message passing model but the modules are communicated using
the tuple space (for example while a component is computing a request, another
component can validate another request). On the other hand, the persistency



Figure 2: Feasible framework.

problem is solved because all the previous computations have been stored in the
tuple space.

2.1 An adapted implementation of the Linda Model

As can be seen in [Figure 1], three layers (Input/Output, Validation and Kenzo
layers) were developed in our previous architecture. In the new one, these layers
are uncoupled so play the role of components (modules). More specifically, the
I/O module deals with the input and output of the external requests; the Intel-
ligent System validates requests (the functionality of this module was described
in detail in [Heras et al. 2008]); and finally, the requests are computed by the
Kenzo module.

Besides, we defined an XML schema called XML-Kenzo, diagrammatically
described in [Figure 3] (XML-Kenzo provides something like a “type system”
for Kenzo), to communicate the different layers of the system. With the aim
of using it in our new architecture, our tuples rely on valid XML data for the
XML-Kenzo schema (from now on, will be called XML-Kenzo data).

The tuple space, the three modules and the XML-Kenzo data are the main
ingredients of the new architecture as is shown in [Figure 4].

In order to use the Linda Model in our framework, a running implemen-
tation of it must be available. There are different implementations for Java
[Freeman et al. 1999], C++ [Sluga 2007], and even one for Common Lisp [Brad-
ford 1996]. Instead of using any of them, we have preferred to develop a fresh
Allegro Common Lisp implementation adapted to our very concrete context.

We have developed our implementation of a tuple space to hold the following
properties: it must be shared (different modules can access it concurrently),
persistent (once a tuple is stored in the tuple space, it stays in it until a module
deletes it) and should comply with the ACID (Atomicity, Consistency, Isolation
and Durability) rules.

Two possibilities were considered when designing our Linda Model imple-
mentation. The first one consists in implementing the Linda Model from scratch,



Figure 3: Description of the XML-Kenzo Schema.

without using any kind of external tool (for instance, the tuple space could be
installed in computer memory and we could store the information as a list). This
option would be very time consuming as it must solve well known problems in
the domain of concurrent systems. Additionally, since our data are expressed
as XML data, something like XQuery or XPath [Evjen et al. 2007] should be
implemented in our case, too.

These problems oriented us towards the second possibility: using already
existing technology. Our previous remark gave us a clue where to look: XML
databases could be a good support in our case.

There are two kinds of XML databases [Chaudhri et al. 2003]: Native XML
databases and XML enabled databases. We have used an XML enabled database
because this kind of databases is built on top of relational or object oriented
databases. Each XML data is mapped to a data of relational or object oriented
database giving access to all the features and the performance found in the
corresponding database manager. These databases include two kind of processes:
from an XML data they map it to objects or tables, and from the database an
element is converted into an XML data.

When choosing a specific database, we took into account that the rest of the
framework is based on Allegro Common Lisp [Franz Inc.]. Even once Allegro was
chosen, several options were still open (among others, we thought of connecting
the relational database MySQL thanks to AllegroMySQL). Finally we decided
to use AllegroCache [Aasman 2005].



Figure 4: The architecture presented.

AllegroCache is an object oriented database of Allegro Common Lisp. One of
the main advantages of working with AllegroCache is that the data are always
stored persistently but one can work directly with objects as if they were in stan-
dard memory. Besides it supports a full transactional model with long and short
transactions, meets the classic ACID requirements for a database and maintains
referential integrity of complex data objects. Persistent classes located by Alle-
groCache are just usual CLOS classes, where the metaclass persistent-class

is declared.
In order to complete our Linda Model implementation, we still have to deal

with both the tuples and the operations to interact with the tuple space. Since
we have decided that tuples rely on XML-Kenzo data but the repository (to be
understood as a tuple space) is based on AllegroCache, it is necessary to convert
from XML to objects and viceversa. We have devised a classes system represented
in UML in [Figure 5]. A tuple is implemented as an object belonging to any of
the subclasses of the tuple class, that is, an object of type pending, valid or
finished.

Each Kenzo request is made up of both a topological space and an operation
over it, so two classes, XML_Object and operation, have been defined to model
the two components of a request. There are different kinds of operations in Kenzo
that we can group and identify by different subclasses of the operation class.
For instance, in the case of an homology operation (that has two attributes,
the name of the operation and the dimension), an operation-with-dimension

subclass has been defined. Just to give another example, the face operation has
three attributes (the name, a dimension and an index) so another class must



Figure 5: Class diagram.

Figure 6: Relations of the modules with the tuple space.

be defined. The operations are applied over a space being an instance of the
XML_Object class, whose objects are made up only of an XML-Kenzo data.

The tuple class binds these two components of a request. When an XML-
Kenzo data representing a Kenzo request arrives, our program instantiates one
of the three specialized classes of the tuple class. The object type determines
what modules of the framework can access it. The relations among the modules
and the tuple space are shown in [Figure 6].

With respect to the operations, they are implemented in a natural way from
the select, insert and delete-instance of AllegroCache. For instance, the
inp operation of the Linda Model can be programmed by combining a select

operation and a delete-instance one. Thus, we have built five methods with
the following signatures:

writetuple: tuple→ Boolean,

taketuple: tuple→ tuple,

readtuple: tuple→ tuple-persistent,

taketuplep: tuple→ tuple ∨ nil and
readtuplep: tuple→ tuple-persistent ∨ nil,

Those are, respectively, our versions for out, in, rd, inp, rdp. Let us remark that



the structure of objects must be duplicated: one standard version, and another
one persistent. This implies that the classes hierarchy in [Figure 5] is duplicated
too, with each class having a persistent couple (with the -persistent suffix
in its name). We have employed this fact in the previous specification to stress
that the readtuple and readtuplep methods are not erasing the corresponding
tuple from the database.

The different modules of the system interact with the tuple space through
those methods by means of a subscription mechanism (which will be technically
explained in [Section 3]). The interaction with the tuple space of the different
software modules is as follows. The I/O module writes pending tuples and it is
subscribed to finished tuples. The Intelligent System is subscribed to pending

tuples and writes valid tuples and finished non valid tuples. And finally, the
Kenzo module which is subscribed to valid objects, writes finished objects in
the tuple space.

And now, we present an execution scenario which is illustrated with a UML-
like sequence diagram [Figure 7]. An I/O module asks the tuple space if it has
the result of a request. In this case the result is not stored in the tuple space, so
the I/O module writes a new request in the tuple space. This request is taken
by the Intelligent System from the tuple space and this module validates it. The
Intelligent System writes a valid request in the tuple space because the tuple is
valid. Then Kenzo takes the valid request from the tuple space and computes
the result. When Kenzo finishes, the result is written in the tuple space. Finally,
the I/O module reads this result and sends it to the client. Note that there is
no direct communication among components. It is also clear that the issue of
activating software components at the right time and in the adequate order is
essential (this aspect will be treated in [Section 3]).

2.2 An example of complete computation

We have just presented a scenario; now we detail it in a particular instance: the
computation of the sixth homotopy group of the sphere of dimension 3, π6(S3).

The XML-Kenzo representation of π6(S3) is the following one:

<operation>

<homotopy>

<sphere>3</sphere>

<dim>6</dim>

</homotopy>

</operation>

The I/O Module receives the previous XML-Kenzo data. This module, which
has access the finished tuples, asks if a finished tuple with the result of the
request exists in the tuple space. To this aim a finished template object is



Figure 7: UML sequence diagram.

created from the XML-Kenzo data in order to query the tuple space as follows
(the wildcard ? allows us to define a search template on tuples):

> (readtuplep

(make-instance ’finished

:operation (make-instance ’operation-with-dimension

:operation "homotopy"

:dimension 6)

:XML_Object (make-instance ’XML_Object

:xml-object "<sphere>3</sphere>")

:correct ’? :result ’?))

NIL

In this case, NIL is returned, meaning the result is not in the database (that
calculation has not been requested and computed previously). Then the I/O
module writes a pending tuple (corresponding to the request) in the tuple space
(from now on, we will not include the attribute values of the instances if they
are not different from the previous ones):

> (writetuple

(make-instance ’pending :operation (...) :XML_Object (...)))

T

Due to the existence of a new pending tuple the Intelligent System is acti-
vated, and it asks for a pending tuple:



> (taketuplep

(make-instance ’pending :operation ’? :XML_Object ’?))

#<PENDING @ #x2143918a>

With (make-instance pending :operation ’? :XML_Object ’?), the In-
telligent System asks for a general pending tuple. The taketuplep method
deletes the element of the database and it creates a non persistent object used
by the Intelligent System to validate the request. In this case, the request is
considered sensible so the Intelligent System writes a valid tuple in the tuple
space:

> (writetuple

(make-instance ’valid :operation (...) :XML_Object (...)))

T

Kenzo is activated due to the new valid tuple. Then it asks for the new tuple:

> (taketuplep (make-instance ’valid :operation ’? :XML_Object ’?))

#<VALID @ #x214be502>

and computes the result of the request writing the result as a finished tuple:

> (writetuple

(make-instance ’finished :operation (...) :XML_Object (...)

:correct t :result "<component>12</component>"))

T

Then the I/O module is activated and asks again for the result of the request.

> (readtuplep

(make-instance ’finished :operation (...) :XML_Object (...)

:correct ’? :result ’?))

#<FINISHED-PERSISTENT oid: 5022 @ #x214cff02>

Note that the result is not deleted from the tuple space because the readtuplep
operation is used. In this way, the result can be used again, without recomputing
it.

3 Communication among modules

Up to now, how the different modules communicate has not been explained. This
is one of the most important issues, and has been tackled by means of a reactive
mechanism. This is a kind of asynchronous communication.

The message passing protocol used in the architecture presented in [Heras
et al. 2008] has been replaced with a publish-subscribe machinery. This mech-
anism is based on the existence of both subjects, which can be modified, and



(defclass subscription ()

((host :initarg :host :accessor host )

(port :initarg :port :accessor port )

(type-tuples :initarg :type :accessor type :index any))

(:metaclass persistent-class))

Figure 8: Subscription class.

observers subscribed to any possible subjects modification. When a modifica-
tion subscribed for any agent is produced, this is notified all the subscribed ones
which respond to it. This design has been implemented by means of the Observer
pattern [Gamma et al. 1994].

To store the subscriptions, the tuple space has a database associated, again
an AllegroCache database. To be notified when any events occurs in the tuple
space, each module has to insert an instance of the subscription persistent
class (defined in [Figure 8]) in the database.

An instance of the persistent class subscription has a host, a port and a
type-tuples indicating the type of tuples subscribed.

For instance, the Intelligent System is located at the host “cosmos.unirioja.es”,
in the port 8002, and it is subscribed to all the new pending tuples, so when it
starts, it must write:

(make-instance ’subscription

:host "cosmos.unirioja.es" :port 8002 :type-tuples ’pending)

To notify each one of the different subscribers, a passive socket in the port
indicated in the subscription has been created. Besides, the Allegro Common Lisp
wait-for-input-available function, that waits for the next available input
stream, in this case a socket, has been used. Then when a new tuple is written
in the tuple space, the database observer consults the database of subscriptions
and sends the subscribers of this type of tuple a notification. To be precise, it
opens an active socket for each one of them.

And now let us show an example. The definition of the Intelligent System
observer appears in [Figure 9], the wait-for-input-available function waits
for any input stream, in this case a socket, avoiding the busy-waiting problem
(see [Schneider 1997] for any one concurrency issues presented in this paper).
Note that this function acts as a semaphore, to be precise as the P operation.

When the tuple space receives a new pending instance, it notifies the Intel-
ligent System of it, being the only module subscribed to the pending instances.
The tuple space needs to know the modules subscribed to each one of the types
of tuples. To this aim it is connected to the database and reads the subscriptions



(defun observer ()

(loop

(let ((sock

(make-socket :connect :passive :local-port 8002)))

(wait-for-input-available sock)

(close sock) (validate))))

Figure 9: The Intelligent System observer.

(defun notify (type-tuple)

(open-network-database "localhost" 8010)

(let ((subscrites

(retrieve-from-index ’subscription

’type-tuple type-tuple :all t)))

(dolist (temp subscrites)

(let ((socket (make-socket :remote-host (host temp)

:remote-port (port temp))))

(close socket))))

(close-database))

Figure 10: The notify function.

of a concrete type. [Figure 10] shows the notify function code, which can be
seen as the V operation in semaphores.

Up to now, we have presented the case where in each moment there is only
one request in the system. In general, as several requests could be in the system
at the same moment, some concurrency problems could appear which must be
dealt with. One of the main keys in order to solve them is that our system is
based on the Linda Model which founds on sharing a data repository instead of
the data themselves. As our system is based on this model if a process wants
to modify a tuple, it must extract it, modify it and then insert it again in the
tuple space (remark that the extraction (inp) and the insertion (out) operations
are atomic). Therefore different processes keep independent among themselves,
avoiding the occurrence of a number of problems related to concurrency. In the
next two paragraphs we comment on two situations in which problems could
appear, but where the Linda model avoids them.

On the one hand, our system allows different modules work at the same time
keeping safety properties (because as well as the properties of the Linda Model,
each module works with a concrete type of tuples). In this way properties like
mutual exclusion or absence of deadlocks are satisfied.



On the other hand, different processes of the same module can work at the
same time. For that, every time that a module is activated a new process (in
charge of executing the instruction of the correspondent module) is built from
the main process. In order to do this, the Multiprocessing package of Allegro
Common Lisp which provides all the modules of our framework with the main
tools for working in a concurrent way (management of threads, locks, queues and
so on) has been used. Note that if two processes read (rdp) the same tuple when
they want to write their results in the tuple space two different tuples will be
created; avoiding in this way problems like race conditions.

Once the concurrency issues have been commented on, we introduce in the
following Section the distributed computing context on which the application
runs.

4 Clients of our framework

As we commented previously, increasing the usability of Kenzo is one of our
objectives. To test the quality of our proposals, two kinds of client have been
constructed. On the one hand, using the Integrated Development Environment
of Allegro Common Lisp, a GUI (Graphical User Interface) has been developed.
The GUI uses OpenMath Content Dictionaries [Buswell et al. 2004] to organize
the interaction, and the computed results can be rendered in standard displays
(with the usual mathematical notations). Details on this client can be found in
[Heras et al. 2009].

In addition, two Web Services, which connect with the framework, have been
developed. These web services allow the use of the framework only from the
XML-Kenzo data (no knowledge of Lisp or Kenzo is needed). So, a developer
can build any other application in Java, .NET and so on, knowing only the
XML-Kenzo syntax and, of course, the web services technology.

We have implemented these web services using the SOAP 1.1 API for Allegro
Common Lisp, that uses both the SAX parser and the AllegroServe modules.

The difference between both clients based on web services lies on the way
results are returned. The first web service makes a request and waits until the
result is available. On the contrary, in the second web service, the connection
is not maintained, and therefore it needs not only the request but also an e-
mail address where the result of the request will be returned. In this case, to
send mails, we have chosen to use Java joins with the JavaMail API (the Java
Mail API is a set of abstract APIs modeling a mail system and providing the
required technology). In order to do this, we need to communicate our framework
(developed in Lisp) with a Java application. There exists different solutions to
this problem: we could use the middleware CORBA [CORBA], or use the package
jLinker provided by Allegro Common Lisp. But we have used a different solution



based on one of the jLinker ideas. jLinker requires two open socket connections
between Lisp and Java, one for calls from Lisp to Java, and another one for
the other way. In our case we only need one socket for communicating Lisp
with Java, because our Lisp system does not require information from our Java
system. In Java we have a server waiting for a client socket. In the Lisp system,
the client socket must send two lines, the first one indicating the e-mail address
of the receiver and the second one will be the message, encoding the result of
the computation requested.

5 Conclusions and Further Work

In this paper we have reported on a program to interact with the Kenzo Com-
puter Algebra system. We have built it on a previous proposal presented in [Heras
et al. 2008], trying to obtain a system which can process queries concurrently
and where persistent results are available. We can conclude that both objectives
have been satisfied, thanks to an adapted implementation in Common Lisp of
the Linda Model.

But even more important than these objectives is the remark that our new
architecture will allow us in the near future, to move to a distributed computing
context. We are thinking of a federated architecture, where several rich clients
(each one with its own tuple space) communicate with a central powerful com-
puting server. The central server acts as a general repository and also provides
computing power to deal with difficult calculations. In a possible scenario a re-
quest is obtained in a rich client from an external user. The first action is to
check if this request has already been computed, locally or in the central server.
If this is not the case, the local Intelligent System should decide if the com-
putation is easy enough to be solved locally or whether it must be sent to the
central server. In any case, the result should be stored persistently, both in the
local client and in the central tuple space. Our architecture scales well to this
new context. The most difficult problem is to devise good heuristics to decide
what is the meaning of the fuzzy predicate “to be an easy computation” (for a
discussion of this topic we refer to [Heras et al. 2008]).

Another related issue could be tackled: the processing of several tasks in
a parallel way. In each request, the data are independent of the operation, so
our problem is classified inside the MIMD (Multiple Instruction, Multiple Data)
paradigm according to Flynn’s taxonomy [Flynn 1972]. Here it will be important
again to know what kind of computations are low or high consuming, to get a
good load balance. From the point of view of parallel computing, our setting can
be considered as an embarrassingly parallel problem [Foster 1995] because the
tasks can be executed more or less independently, without communication.

Putting together these two research lines (distributed and parallel comput-
ing), we hope that new challenging computations can be carried out, beyond the



possibilities showed by Kenzo, executed as a stand-alone program.

References

[Aasman 2005] Aasman J. AllegroCache: A high-performance object database for large
complex problems, In 5th International Lisp Conference, Stanford University, June
2005.

[Ausbrooks et al. 2008] Ausbrooks R. et al., Mathematical Markup Language
(MathML) Version 3.0 (second edition), 2008. http://www.w3.org/TR/2008/
WD-MathML3-20080409/.

[Bradford 1996] Bradford R., An Implementation of Telos in Common Lisp, Object
Oriented Systems, 3 (1996) 31–49.

[Buschmann et al. 1996] Buschmann F., Meunier R., Rohnert H., Sommerland P., Stal
M., Pattern-oriented software architecture. A system of patterns, Volume 1, Wiley,
1996.

[Buswell et al. 2004] Buswell S., Caprotti O., Carlisle D.P., Dewar M.C., Gaëtano M.,
Kohlhase M. OpenMath Version 2.0, 2004. http://www.openmath.org/.

[Chaudhri et al. 2003] Chaudhri A. B., Rashid A., Zicari R. XML data management:
native XML and XML-enabled database systems, Addison-Wesley, 2003.

[CORBA] Object Management Group. Common Object Request Broker Architecture
(CORBA). http://www.omg.org.

[Dousson et al. 1999] Dousson X., Sergeraert F., Siret Y., The Kenzo program, Insti-
tut Fourier, Grenoble, 1999. http://www-fourier.ujf-grenoble.fr/~sergerar/
Kenzo/.

[Evjen et al. 2007] Evjen B., Sharkey K., Thangarathinam T., Kay M., Vernet A.,
Ferguson S., Professional XML, Wiley Publishing, Inc., 2007.

[Flynn 1972] Flynn M. J., Some Computer Organizations and Their Effectiveness,
IEEE Trans. Computers C-21 (1972) 948 – 960.

[Foster 1995] Foster I. Designing and Building Parallel Programs, Addison-Wesley
(1995).

[Franz Inc.] Franz Inc. Allegro Common Lisp. http://www.franz.com/.
[Freeman et al. 1999] Freeman E., Hupfer S., Arnold K., Javaspaces. Principles, Pat-

terns, and Practice, Addison Wesley, 1999.
[Gamma et al. 1994] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994.
[Gelenter 1985] Gelernter D. Generative Communication in Linda, ACM Transactions

on Programming Languages and Systems, 7 (1985) 80–112.
[Heras et al. 2008] Heras J., Pascual V., Rubio J., Sergeraert F., Improving the usabil-

ity of Kenzo, a Common Lisp system for Algebraic Topology, Proceedings of 1st
European Lisp Symposium, University of Bourdeaux, France (2008) 155–176.

[Heras et al. 2009] Heras J., Pascual V., Rubio J., Mediated Access to Symbolic Com-
putation Systems: An OpenMath Approach., Preprint.

[Mata et al. 2007] Mata E., Alvarez P., Bañares J. A., Rubio J., Formal Modelling of a
Coordination System: from Practice to Theory and back again, ESAW2006, Lecture
Notes in Artificial Intelligence 4457 (2007) 229-244.

[Schneider 1997] Schneider F. B., On Concurrent Programming, Springer (1997).
[Sluga 2007] Sluga T. A. Modern C++ Implementation of the LINDA coordination

language, PHD Thesis, University of Hannover, 2007.

Acknowledgments

Partially supported by Universidad de La Rioja, project API08/08, and Minis-
terio de Educación y Ciencia, project MTM2006-06513.


