
Chapter 1

Preliminaries

In this chapter we introduce some preliminaries that we will use in the rest of this
memoir. The first section is devoted to the main mathematical notions employed in
this work. The Kenzo system, a successful Common Lisp program developed by Francis
Sergeraert and some coworkers devoted to perform computations in Algebraic Topology,
is presented in Section 1.2. Finally, the deduction machinery employed in this memoir,
the ACL2 system, is briefly presented in Section 1.3.

1.1 Mathematical preliminaries

Algebraic Topology is a vast and complex subject, in particular mixing Algebra and
(combinatorial) Topology. Algebraic Topology consists in trying to use as much as
possible “algebraic” methods to attack topological problems. For instance, one can
define some special groups associated with a topological space, in a way that respects
the relation of homeomorphism of spaces. This allows us to study properties about
topological spaces by means of statements about groups, which are often easier to prove.

1.1.1 Homological Algebra

The following basic definitions can be found, for instance, in [Mac63].

Definition 1.1. Let R be a ring with a unit element 1 6= 0. A left R-module M is an
additive abelian group together with a map p : R×M →M , denoted by p(r,m) ≡ rm,
such that for every r, r′ ∈ R and m,m′ ∈M

(r + r′)m = rm+ r′m

r(m+m′) = rm+ rm′

(rr′)m = r(r′m)

1m = m
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A similar definition is given for a right R-module.

For R = Z (the integer ring), a Z-module M is simply an abelian group. The map
p : Z×M →M is given by

p(n,m) =


m+

n· · · +m if n > 0
0 if n = 0

(−m)+
n· · · +(−m) if n < 0

Definition 1.2. Let R be a ring and M and N be R-modules. An R-module morphism
α : M → N is a function from M to N such that for every m,m′ ∈M and r ∈ R

α(m+m′) = α(m) + α(m′)

α(rm) = rα(m)

α(0M) = 0N

Definition 1.3. Given a ring R, a graded module M is a family of left R-modules
(Mn)n∈Z.

Definition 1.4. Given a pair of graded modules M and M ′, a graded module morphism
f of degree k between them is a family of module morphisms (fn)n∈Z such that fn :
Mn →M ′

n+k for all n ∈ Z.

Definition 1.5. Given a graded module M , a differential (dn)n∈Z is a family of module
endomorphisms of M of degree −1 such that dn−1 ◦ dn = 0 for all n ∈ Z.

From the previous definitions, the notion of chain complex can be defined. Chain
complexes are the central notion in Homological Algebra and can be seen as an algebraic
means to study properties of topological spaces in several dimensions.

Definition 1.6. A chain complex C∗ is a family of pairs (Cn, dn)n∈Z where (Cn)n∈Z is a
graded module and (dn)n∈Z is a differential of C∗.

The module Cn is called the module of n-chains. The image Bn = Im dn+1 ⊆ Cn is
the (sub)module of n-boundaries. The kernel Zn = Ker dn ⊆ Cn is the (sub)module of
n-cycles.

In many situations the ring R is the integer ring, R = Z. In this case, a chain
complex C∗ is given by a graded abelian group {Cn}n∈Z and a graded group morphism
of degree -1, {dn : Cn → Cn−1}n∈Z, satisfying dn−1 ◦ dn = 0 for all n. From now on in
this memoir, we will work with R = Z.

Let us present some examples of chain complexes.

Example 1.7. • The unit chain complex has a unique non null component, namely
a Z-module in degree 0 generated by a unique generator and dn = 0 for all n ∈ Z.
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• A chain complex to model the circle is defined as follows. This chain complex has
two non null components, namely a Z-module in degree 0 generated by a unique
generator and a Z-module in degree 1 generated by another generator; and the
differential is the null map.

• The diabolo chain complex has associated three chain groups:

– C0, the free Z-module on the set {s0, s1, s2, s3, s4, s5}.
– C1, the free Z-module on the set {s01, s02, s12, s23, s34, s35, s45}.
– C2, the free Z-module on the set {s345}.

and the differential is provided by:

– d0(si) = 0,

– d1(sij) = sj − si,
– d2(sijk) = sjk − sik + sij.

and it is extended by linearity to the combinations c =
∑m

i=1 λixi ∈ Cn.

We can construct chain complexes from other chain complexes, applying constructors
such as the direct sum or the tensor product.

Definition 1.8. Let C∗ = (Cn, dCn)n∈Z, D∗ = (Dn, dDn)n∈Z be chain complexes. The
direct sum of C∗ and D∗ is the chain complex C∗ ⊕D∗ = (Mn, dn)n∈Z such that, Mn =
(Cn, Dn) and the differential map is defined on the generators (x, y) with x ∈ Cn and
y ∈ Dn by dn((x, y)) = (dCn(x), dDn(y)) for all n ∈ Z. The notion of direct sum can be
generalized to a collection of chain complexes.

Definition 1.9. Let M be a right R-module, and N a left R-module. The tensor product
M ⊗R N is the abelian group generated by the symbols m ⊗ n for every m ∈ M and
n ∈ N , subject to the relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n
m⊗ (n+ n′) = m⊗ n+m⊗ n′

mr ⊗ n = m⊗ rn

for all r ∈ R, m,m′ ∈M , and n, n′ ∈ N .

If R = Z (the integer ring), then M and N are abelian groups and their tensor
product will be denoted simply by M ⊗N .

Definition 1.10. Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be chain complexes of
right and left Z-modules respectively. The tensor product C∗⊗D∗ is the chain complex
of Z-modules C∗ ⊗D∗ = ((C∗ ⊗D∗)n, dn)n∈Z with

(C∗ ⊗D∗)n =
⊕
p+q=n

(Cp ⊗Dq)
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where the differential map is defined on the generators x ⊗ y with x ∈ Cp and y ∈ Dq,
according to the Koszul rule for the signs, by

dn(x⊗ y) = dCp(x)⊗ y + (−1)px⊗ dDq(y)

Let us present now, one of the most important invariants used in Homological Al-
gebra. Given a chain complex C∗ = (Cn, dn)n∈Z, the identities dn−1 ◦ dn = 0 mean the
inclusion relations Bn ⊆ Zn: every boundary is a cycle (the converse in general is not
true). Thus the next definition makes sense.

Definition 1.11. Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules. For each
degree n ∈ Z, the n-homology module of C∗ is defined as the quotient module

Hn(C∗) =
Zn
Bn

It is worth noting that the homology groups of a space X are the ones of its associated
chain complex C∗(X); the way of constructing the chain complex associated with a space
X is explained, for instance, in [Mau96]. In an intuitive sense, homology groups measure
“n-dimensional holes” in topological spaces. A 0-dimensional hole is a pair of points in
different path components; and so H0 measures the number of connected components
of a space. The homology groups Hn measure higher dimensional connectedness. For
instance, the n-sphere, Sn, has exactly one n-dimensional hole and no m-dimensional
holes if m 6= n.

Moreover, it is worth noting that homology groups are an algebraic invariant,
see [Mau96]. That is to say, if two topological spaces are homeomorphic, this means
that all their homology groups coincide.

Let us finish this section with some additional definitions related to chain complexes.

Definition 1.12. A chain complex C∗ = (Cn, dn)n∈Z is acyclic if Hn(C∗) = 0 for all n,
that is to say, if Zn = Bn for every n ∈ Z.

Definition 1.13. Let C∗ = (Cn, dCn)n∈Z, D∗ = (Dn, dDn)n∈Z be chain complexes, a chain
complex morphism between them is a family of module morphisms (fn)n∈Z of degree 0
between (Cn)n∈Z and (Dn)n∈Z such that d′n ◦ fn = fn−1 ◦ dn for each n ∈ Z.

Definition 1.14. Let C∗ = (Cn, dn)n∈Z be a chain complex. A chain complex D∗ =
(Dn, d

′
n)n∈Z is a chain subcomplex of C∗ if

• Dn is a submodule of Cn, for all n ∈ Z

• d′n = dn |D∗

The condition d′n = dn |D∗ means that the boundary operator of the chain subcomplex
is just the differential operator of the larger chain complex restricted to its domain. We
denote D∗ ⊂ C∗ if D∗ is a chain subcomplex of C∗.
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Definition 1.15. A short exact sequence is a sequence of modules:

0← C ′′
j←− C

i←− C ′ ← 0

which is exact, that is, the map i is injective, the map j is surjective and Im i = Ker j.

From now on in this memoir, we will work with non-negative chain complexes, that
is to say, {Cn}n∈Z such that Cn = 0 if n < 0. A non-negative chain complex C∗ will be
denoted by C∗ = {Cn}n∈N. Moreover, the chain complexes we work with are supposed
to be free.

Definition 1.16. A chain complex C∗ = (Cn, dn)n∈N of Z-modules is said to be free if
Cn is a free Z-module (a Z-module which admits a basis) for each n ∈ N.

1.1.2 Simplicial Topology

1.1.2.1 Simplicial Sets

Simplicial sets were first introduced by Eilenberg and Zilber [EZ50], who called them
semi-simplicial complexes. They can be used to express some topological properties
of spaces by means of combinatorial notions. A good reference for the definitions and
results of this section is [May67].

Definition 1.17. A simplicial set K, is a union K =
⋃
q≥0

Kq, where the Kq are disjoints

sets, together with functions:

∂qi : Kq → Kq−1, q > 0, i = 0, . . . , q,
ηqi : Kq → Kq+1, q ≥ 0, i = 0, . . . , q,

subject to the relations:

(1) ∂q−1i ∂qj = ∂q−1j−1∂
q
i if i < j,

(2) ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j,

(3) ∂q+1
i ηqj = ηq−1j−1∂

q
i if i < j,

(4) ∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i ,

(5) ∂q+1
i ηqj = ηq−1j ∂qi−1 if i > j + 1.

The ∂qi and ηqi are called face and degeneracy operators respectively.

The elements of Kq are called q-simplexes. A simplex x is called degenerate if x = ηiy
for some simplex y and some degeneracy operator ηi; otherwise x is called non degenerate.
An example of simplicial sets, that can be useful to clarify some notions, is the standard
simplicial set of dimension m, ∆[m].



10 Chapter 1 Preliminaries
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1

Figure 1.1: non degenerate simplexes of the standard simplicial set ∆[3]

Definition 1.18. For m ≥ 0, the standard simplicial set of dimension m, ∆[m], is a
simplicial set built as follows. An n-simplex of ∆[m] is any (n+ 1)-tuple (a0, . . . , an) of
integers such that 0 ≤ a0 ≤ · · · ≤ an ≤ m, and the face and degeneracy operators are
defined as

∂i(a0, . . . , an) = (a0, . . . , ai−1, ai+1, . . . , an)

ηi(a0, . . . , an) = (a0, . . . , ai−1, ai, ai, ai+1 . . . , an)

In Definition 1.18 the super-indexes in the degeneracy and face maps have been
skipped, since they can be inferred from the context. It is a usual practice and will be
freely used in the sequel, both for degeneracy and for face maps.

Example 1.19. Figure 1.19 shows the non degenerate simplexes of the standard sim-
plicial set ∆[3]:

• 0-simplexes (vertices): (0), (1), (2), (3);

• non degenerate 1-simplexes (edges): (0 1), (0 2), (0 3), (1 2), (1 3), (2 3);

• non degenerate 2-simplexes (triangles): (0 1 2), (0 1 3), (0 2 3), (1 2 3); and

• non degenerate 3-simplex (filled tetrahedra): (0 1 2 3).

It is worth noting that there is not any non degenerate n-simplex with n > 3.

Once we have presented the non degenerate simplexes, let us introduce the behavior
of the face and degeneracy maps. For instance, if we apply the face and degeneracy
maps over the 2-simplex (0 1 2) (for the rest of simplexes is analogous) we will obtain:

∂i((0 1 2)) =


(1 2) if i = 0
(0 2) if i = 1
(0 1) if i = 2

ηi((0 1 2)) =


(0 0 1 2) if i = 0
(0 1 1 2) if i = 1
(0 1 2 2) if i = 2
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Let us note that the face operator applied over the 2-simplex (0 1 2) produces sim-
plexes with geometrical meaning (that are the three edges of the simplex (0 1 2)). On
the contrary, the simplexes obtained from applying the degeneracy operator do not have
any geometrical meaning.

In the rest of the memoir a non degenerate simplex will be called geometric simplex,
to stress that only these simplexes really have a geometrical meaning; the degenerate
simplexes can be understood as formal artifacts introduced for technical (combinatorial)
reasons. This becomes clear in the following discussion.

The next essential result, which follows from the commuting properties of degeneracy
maps in the definition of simplicial sets provides a way to represent any simplex of a
simplicial set in a unique manner.

Proposition 1.20. Let K be a simplicial set. Any n-simplex x ∈ Kn can be expressed
in a unique way as a (possibly) iterated degeneracy of a non degenerate simplex y in the
following way:

x = ηjk . . . ηj1y

with y ∈ Kr, k = n− r ≥ 0, and 0 ≤ j1 < · · · < jk < n.

This proposition allows us to encode all the elements (simplexes) of any simplicial
set in a generic way, by means of a structure called abstract simplex. More concretely, an
abstract simplex is a pair (dgop gmsm) consisting of a sequence of degeneracy maps dgop
(which will be called a degeneracy operator) and a geometric simplex gmsm. The indexes
in a degeneracy operator dgop must be in strictly decreasing order. For instance, if σ
is a non degenerate simplex, and σ′ is the degenerate simplex η1η2σ, the corresponding
abstract simplexes are respectively (∅ σ) and (η3η1 σ), as η1η2 = η3η1, due to equality
(2) in Definition 1.17.

In a similar way that we defined chain subcomplex we can define the notion of
simplicial subcomplex.

Definition 1.21. Let K = (Kn, ∂i, ηi)n∈Z be a simplicial set. L = (Ln)n∈Z is a simplicial
subcomplex of K if

• Ln ⊂ Kn for all n ∈ Z

• (Ln, ∂i, ηi)n∈Z is a simplicial set

Let us show now, other important examples of simplicial sets that are (simplicial)
models of well-known topological spaces.

Definition 1.22. For m ≥ 1, the sphere of dimension m, Sm, is a simplicial set built as
follows. There are just two geometric simplexes: a 0-simplex, let us denote it by ?, and
an m-simplex, let us denote it by sm. The faces of sm are the degeneracies of ?; that is
to say ∂i(sm) = ηm−1ηm−2 . . . η0? for all 0 ≤ i ≤ m.
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Definition 1.23. Let m1, . . . ,mn natural numbers such that mi ≥ 1 for all 1 ≤ i ≤ n,
the wedge of spheres of dimensions m1, . . . ,mn, Sm1 ∨ . . .∨Smn , is a simplicial set built
as follows. It has the following geometric simplexes: in dimension 0 a 0-simplex, let us
denote it by ?, and in dimension p as many simplexes as the number of mj, 1 ≤ i ≤ n,
such that mj = p. The faces of every p-simplex are the degeneracies of ?; that is to say,
let x a p-simplex, then ∂i(x) = ηp−1ηp−2 . . . η0? for all 0 ≤ i ≤ p.

Definition 1.24. For n > 0 and p > 1, the Moore space of dimensions p, n, M(Z/pZ, n),
is a simplicial set built as follows. There are just three geometric simplexes: a 0-simplex,
let us denote it by ?, an n-simplex, let us denote it by Mn, and an n+ 1-simplex, let us
denote it by Mn′. The faces of Mn are the degeneracies of ?; moreover, p of the faces
of Mn′ are identified with Mn and the rest are the degeneracies of ?.

Definition 1.25. The real projective plane, P∞R, is a simplicial set built as follows.
In dimension n, this simplicial set has only one geometric simplex, namely the integer
n. The faces of this non degenerate simplex n are given by the following formulas:
∂0n = ∂nn = n− 1 and for i 6= 0 and i 6= n, ∂in = ηi−1(n− 2).

The real projective plane n-dimensional, P nR, is a simplicial set analogous to the
model of P∞R but without simplexes in dimensions m ≥ n.

We can also construct simplicial models of truncated real projective planes. Let
n > 1, P∞R/P n−1R is a simplicial set analogous to the model of P∞R but without
simplexes in dimensions 1 ≤ m < n. The faces of the n-simplex n are the degeneracies
of the 0-simplex 0.

Let n > 1 and l ≥ n, P lR/P n−1R is a simplicial set analogous to the model of P lR
but without simplexes in dimensions 1 ≤ m < n.

The four above definitions are related to simplicial models of initial topological spaces.
Moreover, we also have models for topological constructors that are applied to some
spaces to obtain new ones.

Definition 1.26. Given two simplicial sets K and L, the Cartesian product K ×L is a
simplicial set with n-simplexes:

(K × L)n = Kn × Ln

and for all (x, y) ∈ Kn × Ln the face and degeneracy operators are defined as follows:

∂i(x, y) = (∂ix, ∂iy) for 0 ≤ i ≤ n

ηi(x, y) = (ηix, ηiy) for 0 ≤ i ≤ n

Let K be a simplicial set and ? ∈ K0 a chosen 0-simplex (called the base point). We
will also denote by ? the degenerate simplices ηn−1 . . . η0? ∈ Kn for every n.

Definition 1.27. A simplicial set K is said to be reduced (or 0-reduced) if K has only
one 0-simplex. Given m ≥ 1, K is m-reduced if there is an n-simplex per each n ≤ m.
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Definition 1.28. Given a reduced simplicial set X, the suspension S(X) is a simplicial
set with a unique 0-simplex and whose n-simplexes are the (n − 1)-simplexes of X for
n ≥ 1. We define inductively Sn(X) = S(Sn−1(X)) for all n ≥ 1, S0(X) = X.

If we impose some condition on the sets of simplicial sets we will obtain new kinds
of simplicial objects.

Definition 1.29. An (abelian) simplicial group G is a simplicial set where each Gn is
an (abelian) group and the face and degeneracy operators are group morphisms.

Examples of (abelian) simplicial groups are provided as follows.

Definition 1.30. Given a reduced simplicial set X, the loop space simplicial version of
X, G(X), is a simplicial group defined as follows: Gn(X) is the free group generated by
Xn+1 with the relations {η0x;x ∈ Xn}. If en is the identity element of Gn(X), we have
the canonical application τ : Xn+1 → Gn(X) defined by:

τ(y) =

{
en if exists x ∈ Xn such that y = η0x,
y otherwise.

If ∂, η are the face and degeneracy operators of X, we define the face and degeneracy
operators, denoted by ∂, η, over the generators of Gn(X) as follows:

∂0τ(x) = [τ(∂0x)]−1τ(∂1x)

∂iτ(x) = τ(∂i+1x) if i > 0

ηiτ(x) = τ(ηi+1x) if i ≥ 0

In the sequel, we will denote G(X) as Ω(X). We define inductively Ωn(X) =
Ω(Ωn−1(X)) for all n ≥ 1, Ω0(X) = X.

An important example of abelian simplicial groups is the model for an Eilenberg
MacLane space.

Definition 1.31. Let π be an abelian group. The abelian simplicial group K = K(π, 0)
is given by Kn = π for all n ≥ 0, and with face and degeneracy operators ∂i : Kn = π →
Kn−1 = π and ηi : Kn = π → Kn+1 = π, 0 ≤ i ≤ n, equal to the identity map of the
group π. This abelian simplicial group is the Eilenberg MacLane space of type (π, 0).

In order to construct the spaces K(π, n)’s several methods can be used, although the
results are necessarily isomorphic [May67]. The space K(π, n) can be built recursively
by means of the classifying space constructor.

Definition 1.32. Let G be an abelian simplicial group. The classifying space of G,
written B(G), is the abelian simplicial group built as follows. The n-simplexes of B(G)
are the elements of the Cartesian product:

B(G)n = Gn−1 ×Gn−2 × · · · ×G0.
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In this way B(G)0 is the group which has only one element that we denote by [ ]. For
n ≥ 1, an element of B(G)n has the form [gn−1, . . . , g0] with gi ∈ Gi. The face and
degeneracy operators are given by

η0[ ] = [e0]

∂i[g0] = [ ], i = 0, 1

∂0[gn−1, . . . , g0] = [gn−2, . . . , g0]

∂i[gn−1, . . . , g0] = [∂i−1gn−1, . . . , ∂1gn−i+1, ∂0gn−i + gn−i−1, gn−i−2, . . . , g0], 0 < i ≤ n

η0[gn−1, . . . , g0] = [en, gn−1, . . . , g0]

ηi[gn−1, . . . , g0] = [ηi−1gn−1, . . . , η0gn−i, en−i, gn−i−1, . . . , g0], 0 < i ≤ n

where en denotes the null element of the abelian group Gn.

We define inductively Bn(G) = B(Bn−1(G)) for all n ≥ 1, B0(G) = G.

Theorem 1.33. [May67] Let π be an abelian group and K(π, 0) as explained before.
Then Bn(K) is a K(π, n).

1.1.2.2 Link between Homological Algebra and Simplicial Topology

Up to now, we have given a brief introduction to Simplicial Topology and Homological
Algebra; let us present now the link between these two subjects that will allow us to
compute the homology groups of simplicial sets.

Definition 1.34. Let K be a simplicial set, we define the chain complex associated
with K, C∗(K) = (Cn(K), dn)n∈N, in the following way:

• Cn(K) = Z[Kn] is the free Z-module generated by Kn. Therefore an n-chain
c ∈ Cn(K) is a combination c =

∑m
i=1 λixi with λi ∈ Z and xi ∈ Kn for 1 ≤ i ≤ m;

• the differential map dn : Cn(K)→ Cn−1(K) is given by

dn(x) =
n∑
i=0

(−1)i∂i(x) for x ∈ Kn

and it is extended by linearity to the combinations c =
∑m

i=1 λixi ∈ Cn(K).

The following statement is an immediate consequence of the previous definition.

Proposition 1.35. Let X, Y simplicial sets, where X is a simplicial subcomplex of Y ,
then C∗(X) is a chain subcomplex of C∗(Y ).

From the link between simplicial sets and chain complexes we can define the homology
groups of a simplicial set as follows.
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Definition 1.36. Given a simplicial set K, the n-homology group of K, Hn(K), is the
n-homology group of the chain complex C∗(K):

Hn(K) = Hn(C∗(K))

To sum up, when we want to study properties of a topological space which admits
a triangulation, we can proceed as follows. We can associate a simplicial model K with
a topological space X which admits a triangulation. Subsequently, the chain complex
C∗(K) associated with K can be constructed. Afterwards, properties of this chain
complex are computed; for instance, homology groups. Eventually, we can interpret the
properties of the chain complex as properties of the topological space X.

1.1.3 Effective Homology

As we have seen, a central problem in our context consists of computing homology
groups of topological spaces. By definition, the homology group of a space X is the
one of its associated chain complex C∗(X). If C∗(X) can be described as a graded
free abelian group with finitely many generators at each degree; then, computing each
homology group can be translated to a problem of diagonalizing certain integer matrices
(see [Veb31]). So, we can assert that homology groups are computable in this finite type
case.

However, things are more interesting when a space X is not of finite type (in the
previously invoked sense) but it is known that its homology groups are of finite type.
Then, it is natural to study if these homology groups are computable. The effective
homology method, introduced in [RS02] and [RS06], provides a framework where this
computability question can be handled.

In this subsection, we present some definitions and fundamental results about the
effective homology method. More details can be found in [RS02] and [RS06].

In the context of effective homology, we can distinguish two different kinds of objects:
effective and locally effective chain complexes.

Definition 1.37. An effective chain complex is a free chain complex of Z-modules
C∗ = (Cn, dn)n∈N where each group Cn is finitely generated and:

• an algorithm returns a (distinguished) Z-basis in each degree n, and

• an algorithm provides the differential maps dn.

If a chain complex C∗ = (Cn, dn)n∈N is effective, the differential maps dn : Cn → Cn−1
can be expressed as finite integer matrices, and then it is possible to know everything
about C∗: we can compute the subgroups Ker dn and Im dn+1, we can determine whether
an n-chain c ∈ Cn is a cycle or a boundary, and in the last case, we can obtain z ∈ Cn+1

such that c = dn+1(z). In particular an elementary algorithm computes its homology
groups using, for example, the Smith Normal Form technique (for details, see [Veb31]).
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Definition 1.38. A locally effective chain complex is a free chain complex of Z-modules
C∗ = (Cn, dn)n∈N where each group Cn consists of an infinite number of generators.

In this case, no global information is available. For example, it is not possible in
general to compute the subgroups Ker dn and Im dn+1, which can have infinite nature.
However, “local” information can be obtained: we can compute, for instance, the bound-
ary of a given element.

In general, we can talk of locally effective objects when only “local” computations
are possible. For instance, we can consider a locally effective simplicial set; the set of
n-simplexes is not finite, but we can compute the faces of any specific n-simplex.

The effective homology technique consists in combining locally effective objects with
effective chain complexes. In this way, we will be able to compute homology groups of
locally effective objects.

The following notion is one of the fundamental notions in the effective homology
method, since it will allow us to obtain homology groups of locally effective chain com-
plexes in some situations.

Definition 1.39. A reduction ρ (also called contraction) between two chain complexes
C∗ and D∗, denoted in this memoir by ρ : C∗⇒⇒D∗, is a triple ρ = (f, g, h)

C∗

h
�� f

++ D∗
g

kk

where f and g are chain complex morphisms, h is a graded group morphism of degree +1,
and the following relations are satisfied:

1) f ◦ g = IdD∗ ;

2) dC ◦ h+ h ◦ dC = IdC∗ −g ◦ f ;

3) f ◦ h = 0; h ◦ g = 0; h ◦ h = 0.

The importance of reductions lies in the following fact. Let C∗⇒⇒D∗ be a reduction,
then C∗ is the direct sum of D∗ and an acyclic chain complex; therefore the graded
homology groups H∗(C∗) and H∗(D∗) are canonically isomorphic.

Very frequently, the small chain complex D∗ is effective; so, we can compute its
homology groups by means of elementary operations with integer matrices. On the other
hand, in many situations the big chain complex C∗ is locally effective and therefore its
homology groups cannot directly be determined. However, if we know a reduction from
C∗ over D∗ and D∗ is effective, then we are able to compute the homology groups of C∗
by means of those of D∗.

Given a chain complex C∗, a trivial reduction ρ = (f, g, h) : C∗⇒⇒C∗ can be con-
structed, where f and g are the identity map and h = 0.
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As we see in the next proposition, the composition of two reductions can be easily
constructed.

Proposition 1.40. Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : D∗⇒⇒E∗ be two
reductions. Another reduction ρ′′ = (f ′′, g′′, h′′) : C∗⇒⇒E∗ is defined by:

f ′′ = f ′ ◦ f
g′′ = g ◦ g′

h′′ = h+ g ◦ h′ ◦ f

Another important notion that provides a connection between locally effective ho-
mology chain complexes and effective chain complexes is the notion of equivalence.

Definition 1.41. A strong chain equivalence (from now on, equivalence) ε between two
chain complexes C∗ and D∗, denoted by ε : C∗⇐⇐⇒⇒D∗, is a triple (B∗, ρ1, ρ2) where B∗
is a chain complex, and ρ1 and ρ2 are reductions from B∗ over C∗ and D∗ respectively:

B∗
ρ1

u}u}
ρ2

!) !)
C∗ D∗

Very frequently, D∗ is effective; so, we can compute its homology groups by means
of elementary operations with integer matrices. On the other hand, in many situations
both C∗ and B∗ are locally effective and therefore their homology groups cannot directly
be determined. However, if we know a reduction from B∗ over C∗, a reduction from B∗
over D∗, and D∗ is effective, then we are able to compute the homology groups of C∗ by
means of those of D∗.

Once we have introduced the notion of equivalence, it is possible to give the definition
of object with effective homology, which is the fundamental idea of the effective homology
technique. These objects will allow us to compute homology groups of locally effective
objects by means of effective chain complexes.

Definition 1.42. An object with effective homology X is a quadruple (X,C∗(X), HC∗, ε)
where:

• X is a locally effective object;

• C∗(X) is a (locally effective) chain complex associated with X, that allows us to
study the homological nature of X;

• HC∗ is an effective chain complex;

• ε is an equivalence ε : C∗(X)⇐⇐⇒⇒HC∗.
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Then, the graded homology groups H∗(X) and H∗(HC∗) are canonically isomorphic,
then we are able to compute the homology groups of X by means of those of HC∗.

The main problem now is the following one: given a chain complex C∗ = (Cn, dn)n∈N,
is it possible to determine its effective homology? We must distinguish three cases:

• First of all, if a chain complex C∗ is by chance effective, then we can choose the
trivial effective homology: ε is the equivalence C∗⇐⇐C∗⇒⇒C∗, where the two
components ρ1 and ρ2 are both the trivial reduction on C∗.

• In some cases, some theoretical results are available providing an equivalence be-
tween some chain complex C∗ and an effective chain complex. Typically, the
Eilenberg MacLane space K(Z, 1) has the homotopy type of the circle S1 and a
reduction C∗(K(Z, 1))⇒⇒C∗(S

1) can be built.

• The most important case: let X1, . . . , Xn be objects with effective homology and
Φ a constructor that produces a new space X = Φ(X1, . . . , Xn) (for example, the
Cartesian product of two simplicial sets, the classifying space of a simplicial group,
etc). In natural “reasonable” situations, there exists an effective homology ver-
sion of Φ that allows us to deduce a version with effective homology of X, the
result of the construction, from versions with effective homology of the arguments
X1, . . . , Xn. For instance, given two simplicial sets K and L with effective homol-
ogy, then the Cartesian product K × L is an object with effective homology too;
this is obtained by means of the Eilenberg-Zilber Theorem, see [RS06].

Two of the most basic (in the sense of fundamental) results in the effective homology
method are the two perturbation lemmas. The main idea of both lemmas is that given
a reduction, if we perturb one of the chain complexes then it is possible to perturb the
other one so that we obtain a new reduction between the perturbed chain complexes.
The first theorem (the Easy Perturbation Lemma) is very easy, but it can be useful. The
Basic Perturbation Lemma is not trivial at all. It was discovered by Shih Weishu [Shi62],
although the abstract modern form was given by Ronnie Brown [Bro67].

Definition 1.43. Let C∗ = (Cn, dn)n∈N be a chain complex. A perturbation δ of the
differential d is a collection of group morphisms δ = {δn : Cn → Cn−1}n∈N such that the
sum d+ δ is also a differential, that is to say, (d+ δ) ◦ (d+ δ) = 0.

The perturbation δ produces a new chain complex C ′∗ = (Cn, dn + δn)n∈N; it is the
perturbed chain complex.

Theorem 1.44 (Easy Perturbation Lemma, EPL). Let C∗ = (Cn, dCn)n∈N and D∗ =
(Dn, dDn)n∈N be two chain complexes, ρ = (f, g, h) : C∗⇒⇒D∗ a reduction, and δD a
perturbation of dD. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be constructed
where:

1) C ′∗ is the chain complex obtained from C∗ by replacing the old differential dC by
the perturbed differential (dC + g ◦ δD ◦ f);
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2) the new chain complex D′∗ is obtained from the chain complex D∗ only by replacing
the old differential dD by (dD + δD);

3) f ′ = f ;

4) g′ = g;

5) h′ = h.

The perturbation δD of the small chain complex D∗ is naturally transferred (using
the reduction ρ) to the big chain complex C∗, obtaining in this way a new reduction ρ′

(which in fact has the same components as ρ) between the perturbed chain complexes.
On the other hand, if we consider a perturbation dC of the top chain complex C∗, in
general it is not possible to perturb the small chain complex D∗ so that there exists a
reduction between the perturbed chain complexes. As we will see, we need an additional
hypothesis.

Theorem 1.45 (Basic Perturbation Lemma, BPL). [Bro67] Let us consider a reduction
ρ = (f, g, h) : C∗⇒⇒D∗ between two chain complexes C∗ = (Cn, dCn)n∈N and D∗ =
(Dn, dDn)n∈N, and δC a perturbation of dC . Furthermore, the composite function h ◦ δC
is assumed locally nilpotent, in other words, given x ∈ C∗ there exists m ∈ N such that
(h ◦ δC)m(x) = 0. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be constructed
where:

1) C ′∗ is the chain complex obtained from the chain complex C∗ by replacing the old
differential dC by (dC + δC);

2) the new chain complex D′∗ is obtained from D∗ by replacing the old differential dD
by (dD + δD), with δD = f ◦ δC ◦ φ ◦ g = f ◦ ψ ◦ δC ◦ g;

3) f ′ = f ◦ ψ = f ◦ (IdC∗ −δC ◦ φ ◦ h);

4) g′ = φ ◦ g;

5) h′ = φ ◦ h = h ◦ ψ;

with the operators φ and ψ defined by

φ =
∞∑
i=0

(−1)i(h ◦ δC)i

ψ =
∞∑
i=0

(−1)i(δC ◦ h)i = IdC∗ −δC ◦ φ ◦ h,

the convergence of these series being ensured by the locally nilpotency of the composi-
tions h ◦ δC and δC ◦ h.

It is worth noting that the effective homology method is not only a theoretical method
but it has also been implemented in a software system called Kenzo [DRSS98]. In this
system, the BPL is a central result and has been intensively used.
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1.2 The Kenzo system

Kenzo is a 16000 lines program written in Common Lisp [Gra96], devoted to Symbolic
Computation in Algebraic Topology. It was developed by Francis Sergeraert and some
co-workers, and is www-available (see [DRSS98] for documentation and details). It works
with the main mathematical structures used in Simplicial Algebraic Topology, [HW67],
(chain complexes, differential graded algebras, simplicial sets, morphisms between these
objects, reductions and so on) and has obtained some results (for example, homology
groups of iterated loop spaces of a loop space modified by a cell attachment, see [Ser92])
which have not been confirmed nor refuted by any other means.

The fundamental idea of the Kenzo system is the notion of object with effective
homology combined with functional programming . By using functional programming,
some techniques in Algebraic Topology are encoded in the form of algorithms. Moreover,
the possibility to implement in a computer some infinitely generated objects and do
computations with them is obtained thanks to the effective homology theory.

In addition, not only known algorithms were implemented but also new methods
were developed to transform the main “tools” of Algebraic Topology, mainly the spectral
sequences, not at all algorithmic in the traditional organization, into actual computing
methods.

The computation process in the Kenzo system requires a great amount of algebraic
structures and equivalences to be built, and thus a lot of resources.

This section is devoted to present some important features of Kenzo that will be
relevant onward.

1.2.1 Kenzo mathematical structures

The data structures of the Kenzo system are organized in two layers. As algebraically
modeled in [LPR03, DLR07], the first layer is composed of algebraic data structures
(chain complexes, simplicial sets, and so on) and the second one of standard data struc-
tures (lists, trees, and so on) which are representing elements of data from the first
layer.

Here we give an overview of how mathematical structures (the first layer) are repre-
sented in the Kenzo system, using object oriented (CLOS ) and functional programming
features simultaneously.

Most often, an object of some type in mathematics is a structure with several com-
ponents, frequently of functional nature. Let us consider the case of a user who wants
to handle groups; this simple particular case is sufficient to understand how CLOS gives
the right tools to process mathematical structures.

We can define a GRP class whose instances correspond to concrete groups as follows.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (DEFCLASS GRP ()
((elements :type list :initarg :elements :reader elements)
(mult :type function :initarg :mult :reader mult1)
(inv :type function :initarg :inv :reader inv1)
(nullel :type function :initarg :nullel :reader nullel)
(cmpr :type function :initarg :cmpr :reader cmpr1))) z

#<STANDARD-CLASS GRP>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this organization, a group is made of five slots which represent a list of the elements
of the group (elements), the product of two elements of the group (mult), the inverse
of an element of the group (inv), the identity element of the group (nullel) and a
comparison test (cmpr) between the elements of the group. It is worth noting that mult,
inv, nullel and cmpr slots are functional slots.

The most important difference between the mathematical definition and its imple-
mentation is that no axiomatic information appears at all. Kenzo, being a system for
computing, does not need any information about the properties of the operations, only
their behavior is relevant. As a consequence of this, abelian groups can be implemented
in Common Lisp similarly to groups, even when their mathematical definitions differ.

Let us construct now the group Z/2Z; that is to say, the cyclic group of dimension
2. In our context we define the comparison, the product and the inverse functions with
the help of the mod function, a predefined Lisp function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (MAKE-INSTANCE ’GRP
:elements ’(0 1)
:mult #’(lambda (g1 g2) (mod (+ g1 g2) 2))
:inv #’(lambda (g) (mod (- 2 g) 2))
:nullel #’(lambda () 0)
:cmpr #’(lambda (g1 g2) (= 0 (mod (- g1 g2) 2)))) z

#<GROUP @ #x26f4bc12>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way, we can define mathematical structures in Common Lisp using object
oriented (CLOS ) and functional programming features. We urge the interested reader to
consult [Ser01] where a detailed explanation about how to define mathematical structures
in Common Lisp is explained.

The previously explained organization is moved to the Kenzo context in order to
define the main mathematical structures used in Simplicial Algebraic Topology, [HW67].
Figure 1.2 shows the Kenzo class diagram where each class corresponds to the respective
mathematical structure.

The lefthand part of the class diagram is made of the main mathematical categories
that are used in combinatorial Algebraic Topology. As we said previously, a chain
complex is a graded differential module; an algebra is a chain complex with a compatible
multiplicative structure, the same for a coalgebra but with comultiplicative structure. If
a multiplicative and a comultiplicative structures are added and if they are compatible
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kenzo-object

chain-complex

coalgebra algebra

simplicial-set hopf-algebra

kan

simplicial-group

ab-simplicial-group

reduction

equivalence

morphism

simplicial-mrph

Figure 1.2: Kenzo class diagram

with each other in a natural sense, the it is a Hopf algebra, and so on. The righthand
part of the class diagram is made of the operations over the mathematical structures
of the lefthand. It is worth noting that all the mathematical structures in the Kenzo
system are graded structures.

The following class definition corresponds to the simplest algebraic structure imple-
mented in Kenzo, the chain complexes:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS CHAIN-COMPLEX ()
((cmpr :type cmprf :initarg :cmpr :reader cmpr1)
(basis :type basis :initarg :basis :reader basis1)
;; BaSe GeNerator
(bsgn :type gnrt :initarg :bsgn :reader bsgn)
;; DiFFeRential
(dffr :type morphism :initarg :dffr :reader dffr1)
;; GRound MoDule
(grmd :type chain-complex :initarg :grmd :reader grmd)
;; EFfective HoMology
(efhm :type homotopy-equivalence :initarg :efhm :reader efhm)
;; IDentification NuMber
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
;; ORiGiN
(orgn :type list :initarg :orgn :reader orgn)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The relevant slots are cmpr, a function coding the equality between the generators
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of the chain complex; basis, the function defining the basis of each group of n-chains,
or the keyword :locally-effective if the chain complex is not effective; dffr, the
differential morphism, which is an instance of the class MORPHISM; efhm, which stores
information about the effective homology of the chain complex; and orgn, is used to
keep record of information about the object.

The class CHAIN-COMPLEX is extended by inheritance with new slots, obtaining more
elaborate structures. For instance, extending it with an aprd (algebra product) slot, we
obtain the ALGEBRA class. Multiple inheritance is also available; for example, the class
SIMPLICIAL-GROUP is obtained by inheritance from the classes KAN and HOPF-ALGEBRA.

It is worth emphasizing here that simplicial sets have also been implemented as a
subclass of CHAIN-COMPLEX. To be precise, the class SIMPLICIAL-SET inherits from the
class COALGEBRA, which is a direct subclass of CHAIN-COMPLEX, with a slot cprd (the
coproduct). The class SIMPLICIAL-SET has then one slot of its own: face, a Lisp
function computing any face of a simplex of the simplicial set. The basis is in this
case (when working with effective objects) the list of non degenerate simplexes, and the
differential map of the associated chain complex is given by the alternate sum of the
faces, where the degenerate simplices are canceled.

1.2.2 Kenzo way of working

In Kenzo there is a one higher-level objective: compute groups of topological spaces. This
main objective can be broken in two actions: (1) computing groups, and (2) constructing
spaces. Note that the second task is necessary to carry out the first one.

When a user has decided to construct a space in Kenzo, he should decide which type
he wants to build: a simplicial set, a simplicial group and so on; namely, an object of
one of the types of the lefthand part of the class diagram of Figure 1.2. Therefore, the
user has to construct an instance of one of those classes.

As this task can be quite difficult for a non expert user; Kenzo provides useful
functions to create interesting objects of regular usage, which belong to four types:
chain complexes, simplicial sets, simplicial groups and abelian simplicial groups.

These functions can be split in two different groups: (1) functions to construct ini-
tial spaces and, (2) functions to construct spaces from other ones applying topological
constructors.

The following elements, gathered by the types of the constructed object, represent
the main spaces that can be constructed in Kenzo from scratch (that is to say, which
belong to the first group):

• Chain Complexes:

– Unit chain complex : the zcc function, with no arguments, constructs the unit
chain complex, see Example 1.7.
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– Circle: the circle function, with no arguments, constructs the circle chain
complex, see Example 1.7.

• Simplicial Sets:

– Standard simplicial set : the delta function, with a natural number n as
argument, constructs ∆[n], see Definition 1.18.

– Sphere: the sphere function, with a natural number n as argument, constructs
Sn, see Definition 1.22.

– Sphere Wedge: the sphere-wedge function, with a sequence of natural num-
bers n1, . . . , nk as arguments, constructs Sn1 ∨ . . . ∨ Snk, see Definition 1.23.

– Moore space: the moore function, with two natural number n, p as arguments,
constructs M(Z/nZ, p), see Definition 1.24.

– Projective space: the r-proj-space function has two optional arguments k
and l. If neither k and l are provided, then the function constructs P∞R. If
k is provided but l is not, then the function constructs P∞R/P k−1R. If both
k and l are provided, then the function constructs P lR/P k−1R. In the latter
case, if k = 1, then the function constructs P lR; see Definition 1.25.

– Finite simplicial set : the build-finite-ss function, with a list of simplexes
as argument, constructs a simplicial set, see [DRSS98].

• Abelian Simplicial Group:

– Eilenberg MacLane space type (Z, n): the k-z function, with a natural number
n as argument, constructs K(Z, n), see Definition 1.31.

– Eilenberg MacLane space type (Z/2Z, n): the k-z2 function, with a natural
number n as argument, constructs K(Z/2Z, n), see Definition 1.31.

On the contrary, the following elements, gathered by types, represent the main spaces
that can be constructed in Kenzo from other spaces applying topological constructors
(that is to say, which belong to the second group):

• Chain Complexes:

– Tensor Product : the tnsr-prdc function, with two chain complexes C∗, D∗
as arguments, constructs the tensor product C∗ ⊗D∗, see Definition 1.10.

• Simplicial Sets:

– Cartesian product : the crts-prdc function, with two simplicial sets K, L as
arguments, constructs the Cartesian product K × L, see Definition 1.26.

– Suspension: the suspension function, with a simplicial set X and a natural
number n as arguments, constructs the suspension Sn(X), see Definition 1.28.
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• Simplicial Group:

– Loop space: the loop-space function, with a simplicial set X and a natural
number n as arguments, constructs the loop space Ωn(X), see Definition 1.30.

– Classifying space: the classifying function, with a simplicial group X, con-
structs the classifying space B(X), see Definition 1.32.

Eventually, once we have constructed some spaces in our Kenzo session, the Kenzo
user can perform computations. Namely, the homology function with a chain complex X
(or an instance of one of its subclasses: simplicial set, simplicial group and so on) and a
natural number n as arguments computes Hn(X).

To sum up, the usual way of working with the Kenzo system is as follows. As a first
step, the user constructs some initial spaces by means of some built-in Kenzo functions
(as spheres, Moore spaces, Eilenberg MacLane spaces and so on); then, in a second step,
he constructs new spaces by applying topological constructions (as Cartesian products,
loop spaces, and so on); as a third, and final, step, the user asks Kenzo for computing
the homology groups of the spaces.

1.2.3 Kenzo in action

Let us show a didactic example to illustrate the interaction with the Kenzo program. The
homology group H5(Ω

3(M(Z/2Z, 4))) is “in principle” reachable thanks to old methods,
see [CM95], but experience shows even the most skilful topologist meet some difficulties
to determine it, see [RS02]. With the Kenzo program, you construct the Moore space
M(Z/2Z, 4) in the following way:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf m4 (moore 2 4)) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Kenzo display must be read as follows. The initial > is the Lisp prompt
of this Common Lisp implementation. The user types out a Lisp statement, here
(setf m4 (moore 2 4)) and the maltese cross z (in fact not visible on the user screen)
marks in this text the end of the Lisp statement, just to help the reader: the right num-
ber of closing parentheses is reached. The Return key then asks Lisp to evaluate the
Lisp statement. Here the Moore space M(Z/2Z, 4) is constructed by the Kenzo function
moore, taking into account of the arguments 2 and 4, and this Moore space is assigned
to the Lisp symbol m4 for later use. Also evaluating a Lisp statement returns an object,
the result of the evaluation, in this case the Lisp object implementing the Moore space,
displayed as [K1 Simplicial-Set], that is, the Kenzo object #1, a Simplicial-Set. The
internal structure of this object, made of a rich set of data, in particular many functional
components, is not displayed. The identification number printed by Kenzo allows the
user to recover the whole object by means of a function called simply k (for instance, the
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evaluation of (k 1) returns the Moore space M(Z/2Z, 4), in our running example). In
addition, another function (called orgn and which is one of the slots of the Chain-Complex

class) allows the user to obtain the origin of the object (i.e. from which function and
with which arguments has been produced), and thus the printed information is enough
to get a complete control of the different objects built with Kenzo.

It is then possible to construct the third loop space of the Moore space,
Ω3(M(Z/2Z, 4)), as a simplicial group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf o3m4 (loop-space m4 3)) z
[K30 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The combinatorial version of the loop space is highly infinite: it is a combinatorial
version of the space of continuos maps S3 → M(Z/2Z, 4), but functionally codes as a
small set of functions in a Simplicial-Group object.

Eventually, the user can compute the fifth homology group of this space.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology o3m4 5) z
Homology in dimension 5:
Component Z/Z2
Component Z/Z2
Component Z/Z2
Component Z/Z2
Component Z/Z2
---done---
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To be interpreted as stating H5(Ω
3(M(Z/2Z, 4))) = Z5

2. In this way, Kenzo computes
the homology groups of complicated spaces. This is due to the Kenzo implementation
of the effective homology method which is explained in the following subsection.

1.2.4 Effective Homology in Kenzo

As we have previously said, the central idea of the Kenzo system is the notion of ob-
ject with effective homology. In this subsection, we are going to show how this notion
explained in Subsection 1.1.3 is used in Kenzo.

As we stated in Subsection 1.1.3, the main problem is the following one: given an
object, determine its effective homology version. Three cases have been distinguished.

First of all, let an object X if the chain complex C∗(X) is by chance ef-
fective, then we can choose the trivial effective homology: ε is the equivalence
C∗(X)⇐⇐C∗(X)⇒⇒C∗(X), where the both reductions are the trivial reduction on C∗.
This situation happens, for instance, in the case of the sphere S3.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s3 (sphere 3)) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can ask for the effective homology of S3 as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (efhm s3) z
[K9 Homotopy-Equivalence K1 <= K1 => K1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An homotopy equivalence is automatically constructed by Kenzo where both re-
ductions are the trivial reduction on C∗(S

3) (let us note that the K1 object not only
represents the simplicial set S3 but also the chain complex C∗(S

3) due to the heritage
relationship between simplicial sets and chain complexes). In this case, the effective
homology technique does not provide any additional tool to the computation of the ho-
mology groups of S3. On the contrary, we will see the power of this technique when the
initial space X is locally effective.

The second feasible situation happened when given a locally effective object X some
theoretical result was available providing an equivalence between the chain complex
C∗(X) and an effective chain complex.

According to Subsubsection 1.1.2.1, the “minimal” simplicial model of the Eilenberg
MacLane space K(Z, 1) is defined by K(Z, 1)n = Zn; an infinite number of simplexes
is required in every dimension n ≥ 1; that is to say, we have a locally effective object.
This does not prevent such an object from being installed and handled by Kenzo.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf kz1 (k-z 1)) z
[K1 Abelian-Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The k-z Kenzo function construct the standard Eilenberg MacLane space. In ordi-
nary mathematical notation (as seen in Subsubsection 1.1.2.1), a 3-simplex of kz1 could
be for example [3, 5,−5], denoted by (3 5 − 5) in Kenzo. The faces of this simplex can
be determined as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (dotimes (i 4) (print (face kz1 i 3 ’(3 5 -5)))) z
<AbSm - (5 -5)>
<AbSm - (8 -5)>
<AbSm 1 (3)>
<AbSm - (3 5)>
nil
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The faces are computed as explained in Subsubsection 1.1.2.1. Then, local compu-
tations are possible, so, the object kz1 is locally effective. But no global information
is available. For example, if we try to obtain the list on non degenerate simplexes in
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dimension 3, we obtain an error.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (basis kz1 3) z
Error: The object [K1 Abelian-Simplicial-Group] is locally-effective
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This basis in fact is Z3, an infinite set whose element list cannot be explicitly store nor
displayed. So, the homology groups of kz1 cannot be elementarily computed. However,
K(Z, 1) has the homotopy type of the circle S1 and the Kenzo program knows this fact.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (efhm kz1) z
[K22 Homotopy-Equivalence K1 <= K1 => K16]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A reduction K1 = K(Z, 1)⇒⇒ K16 is constructed by Kenzo. What is K16?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (orgn (k 16)) z
(circle)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K16 is the expected object, the circle S1 which is an effective chain complex; so we
can compute its homology groups by means of tradicional methods. Therefore, we can
compute the homology groups of the space K(Z, 1) by means of the effective homology
method.

Eventually, the last situation happened when given X1, . . . , Xn objects with effective
homology and Φ a constructor that produced a new space X = Φ(X1, . . . , Xn), we
wanted to compute the effective homology version of X. Let us present an example.

The Cartesian product of two locally effective simplicial sets produces another locally
effective simplicial set.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf kz1xkz1 (crts-prdc kz1 kz1)) z
[K6 Simplicial-Set]
> (basis kz1xkz1 3) z
Error: The object [K6 Simplicial-Set] is locally-effective
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So, the homology groups of kz1xkz1 cannot be elementarily computed. However,
Kenzo is able to construct an equivalence between this object and an effective chain
complex.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (efhm kz1xkz1) z
[K54 Homotopy-Equivalence K6 <= K44 => K34]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An equivalence K6 = K(Z, 1) × K(Z, 1)⇐⇐ K44 ⇒⇒ K34 is constructed by Kenzo.
What is K34?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (orgn (k 44)) z
(TNSR-PRDC (circle) (circle))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The object K44 is the tensor product of two circles S1⊗S1 (the reduction is obtained
from the Eilenberg-Zilber Theorem, see [RS06]), an effective chain complex; so we can
compute its homology groups by means of tradicional methods. Therefore, we can
compute the homology groups of the space K(Z, 1)×K(Z, 1) by means of the effective
homology method.

It is worth noting that a Kenzo user does not need to explicitly construct the equiva-
lence to compute the homology groups of a locally effective object. This task is automat-
ically performed by the Kenzo system which constructs the necessary objects without
any additional help.

For instance, let us consider a fresh Kenzo session where we have constructed the
space Ω3(M(Z/2Z, 4)), the example of the previous subsection:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf m4 (moore 2 4)) z
[K30 Simplicial-Group]
> (setf o3m4 (loop-space m4 3)) z
[K30 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At this moment, we can check the number of objects constructed in Kenzo (this
information is stored in a global variable called *idnm-counter*).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> *idnm-counter* z
41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, after computing the third homology, we ask again the number of ob-
jects constructed in Kenzo and we obtain the following result.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology o3m4 3) z
Homology in dimension 3 :
Component Z/4Z
Component Z/2Z
> *idnm-counter* z
404
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This means that Kenzo has constructed 363 intermediary objects in order to compute
the homology groups of Ω3(M(Z/2Z, 4)); namely, in order to construct an equivalence
between the locally effective object Ω3(M(Z/2Z, 4)) and an effective chain complex.
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1.2.5 Memoization in Kenzo

The Kenzo program is certainly a functional system. It is frequent that several thousands
of functions are present in memory, each one being dynamically defined from other ones,
which in turn are defined from other ones, and so on. In this quite original situation, the
same calculations are frequently asked again. To avoid repeating these calculations, it
is better to store the results and to systematically examine for each calculation whether
the result is already available (memoization strategy).

As a consequence, the state of a space evolves after it has been used in a computation
(of a homology group, for instance). Thus, the time needed to compute, let us say, a
homology group, depends on the concrete state of the space involved in the calculation (in
the more explicit case, to re-calculate the homology group of a space could be negligible
in time, even if in the first occasion this was very time consuming).

Let us shown an example, of the Kenzo memoization. We want to compute the fifth
homology group of the space Ω3(S4×S4) and see how much time this computation takes
(using the time function); therefore, we proceed as usual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s4 (sphere 4)) z
[K1 Simplicial-Set]
> (setf s4xs4 (crts-prdc s4 s4)) z
[K6 Simplicial-Set]
> (setf o3s4xs4 (loop-space s4xs4 3)) z
[K35 Simplicial-Group]
> (time (homology o3s4xs4 5)) z
;; some lines skipped
; real time 1,139,750 msec (00:18:59.750)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first time that we compute H5(Ω
3(S4 × S4)), Kenzo takes almost 20 minutes to

obtain the result. However, if we ask again for the same computation:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (time (homology o3s4xs4 5)) z
;; some lines skipped
; real time 262,484 msec (00:04:22.484)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in this case Kenzo only needs 4 minutes. It is worth noting that Kenzo does not store the
final result (that is to say, the group H5(Ω

3(S4 × S4))) but intermediary computations
related to the differential of the generators of the space. Then, when a Kenzo user asks
a computation previously computed, Kenzo does not simply look up and returned it,
but it uses some previously stored computations to calculate the result faster.

Moreover, it is very important not to have several copies of the same function; oth-
erwise it is impossible for one copy to guess some calculation has already been done by
another copy. This is a very important question in Kenzo, so that the following idea has
been used. Each Kenzo object has a rigorous definition, stored as a list in the orgn slot of



1.2 The Kenzo system 31

the object (orgn stands for origin of the object). This is the main reason of the top class
kenzo-object: making this process easier. The actual definition of the kenzo-object

class is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS KENZO-OBJECT ()
((idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
(orgn :type list :initarg :orgn :reader orgn))) z

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, when any kenzo-object is to be considered, its definition is constructed
and the program firstly looks in *k-list* (a list which stores the already constructed
kenzo-object instances) whether some object corresponding to this definition already
exists; if yes, no kenzo-object is constructed, the already existing one is simply returned.
Look at this small example where we construct the second loop space of S3, then the
first loop space, and then again the second loop space. In fact the initial construction
of the second loop space required the first loop space, and examining the identification
number K?? of these objects shows that when the first loop space is later asked for,
Kenzo is able to return the already existing one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s3 (sphere 3)) z
[K372 Simplicial-Set]
> (setf o2s3 (loop-space s3 2)) z
[K380 Simplicial-Group]
> (setf os3 (loop-space s3 1)) z
[K374 Simplicial-Group]
> (setf o2s3-2 (loop-space s3 2)) z
[K380 Simplicial-Group]
> (eq o2s3 o2s3-2) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The last statement shows the symbols o2s3 and o2s3-2 points to the same machine
address. In this way we are sure any kenzo-object has no duplicate, so that the memory
process for the values of numerous functions cannot miss an already computed result.

1.2.6 Reduction degree

Working with Kenzo, a constructor for the space X has associated a number g(X) ∈ Z.
When, we apply an operation O over the space X, a set of rules are used to compute
g(O(X)). We will call reduction degree of X to this number, g(X), which is attach to
our concrete representation of the spaces. This number is a lower bound of the simply
connectedness degree; that is to say, the homotopy groups of the space X are null at least
from 1 to g(X). We list as follows the set of rules for the initial spaces and topological
operators which are going to be employed in this memoir.

Tensor product (X ⊗ Y ): g(X ⊗ Y ) = min{g(X), g(Y )}.
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Suspension (Sn(X)): g(Sn(X)) =

{
g(X) + n if g(X) ≥ 0
g(X) if g(X) < 0

Sphere (Sn): g(Sn) = n− 1.

Moore space (M(Z/pZ, n)): g(M(Z/pZ, n)) = n− 1.

Standard simplicial set (∆n): g(∆n) = 0.

Sphere wedge (Sn1 ∨ Sn2 ∨ . . . ∨ Snk):

g(Sn1 ∨ Sn2 ∨ . . . ∨ Snk) = min{g(Sn1), g(Sn2), . . . , g(Snk)}.

Projective space (P∞R) : g(P∞R) = 0.

Projective space (P∞R/P nR) : g(P∞R/P nR) = n− 1.

Projective space (P lR) : g(P lR) = 0.

Projective space (P lR/P nR) : g(P lR/P nR) = n− 1.

K(Z, n) : g(K(Z, n)) = n− 1.

K(Z/2Z, n) : g(K(Z/2Z, n)) = n− 1.

Loop space (Ωn(X)): g(Ωn(X)) = g(X)− n.

Cartesian product (X × Y ): g(X × Y ) = min{g(X), g(Y )}.

Classifying space (Bn(X)): g(Bn(X)) =

{
g(X) + n if g(X) ≥ 0
g(X) if g(X) < 0

The reduction degree of a space X provides us information about the capabilities
of the Kenzo system to obtain the homology groups of X. When g(X) < 0, a Kenzo
attempt to compute the homology groups of X will raise in an error; otherwise the Kenzo
system can compute the homology groups of X.

For instance, the reduction degree of Ω2S2 is −1; then, let us show what happens if
we try to compute the third homology group of this space.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s2 (sphere 2)) z
[K1 Simplicial-Set]
> (setf o2s2 (loop-space s2 2)) z
[K18 Simplicial-Group]
> (homology o2s2 3) z
Error: ‘NIL’ is not of the expected type ‘NUMBER’
[condition type: TYPE-ERROR]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As we can see an error is produced; then, the Kenzo system cannot compute the
homology groups for Ω2(S2).
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1.2.7 Homotopy groups in Kenzo

Up to now, we have been working with one of the most important algebraic invariants
in Algebraic Topology: homology groups. We can wonder what happens with the other
main algebraic invariant: homotopy groups.

The n-homotopy group of a topological space X with a base point x0 is defined as
the set of homotopy classes of continuous maps f : Sn → X that map a chosen base
point a ∈ Sn to the base point x0 ∈ X. A more detailed description and results about
homotopy groups can be found in [Hat02, May67].

Homotopy groups were defined by Hurewicz in [Hur35] and [Hur36] as a generaliza-
tion of the fundamental group [Poi95]. It is worth noting that except in special cases,
homotopy groups are hard to be computed. For instance, whereas the homology groups
of spheres are easily computed, computing their homotopy groups remains as a difficult
subject, see [Tod62, Mah67, Rav86].

For the general case, Edgar Brown published in [Bro57] a theoretical algorithm for the
computation of homotopy groups of simply connected spaces such that their homology
groups are of finite type. However Brown himself explained that his “algorithm” has
not practical use.

An interesting algorithm based on the effective homology theory was developed by
P. Real, see [Rea94]. In that paper, an algorithm that computes the homotopy groups
of a 1-reduced simplicial set was explained. Here, we just state the algorithm.

Algorithm 1.46 ([Rea94]).
Input: a 1-reduced simplicial set with effective homology X and a natural number n
such that n ≥ 1.
Output: the n-th homotopy group of the underlying simplicial set X.

This algorithm is based on the Whitehead tower process [Hat02], a method which
allows one to reach any homotopy group of a 1-reduced simplicial set.

It is worth noting that Kenzo, in spite of not providing a function called homotopy, like
in the case of homology groups, implements all the necessary tools to use the algorithm
presented in [Rea94]. A detailed explanation about how to use this method in Kenzo was
explained in Chapter 21 of the Kenzo documentation [DRSS98]. However, it is worth
noting that in the current Kenzo version, homotopy groups of a 1-reduced simplicial
set X can only be computed, if the first non null homology group of X is Z or Z/2Z;
this is due to the fact that the algorithm presented in [Rea94] needs the calculation
of homology groups of Eilenberg-MacLane spaces K(G, n), and in the original Kenzo
distribution only the homology of spaces K(Z, n) and K(Z/2Z, n) are built-in.
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1.3 ACL2

The ACL2 Theorem Prover has been used to verify the correctness of some Kenzo pro-
grams, results which will be presented in this memoir (see Chapters 5 and 6). This section
is devoted to provide a brief description of ACL2. In spite of being a glimpse introduction
to this system, this description provides enough information to read the sections dedi-
cated to ACL2 topics. A complete description of ACL2 can be found in [KMM00b, KM].

In addition, an interesting ACL2 feature, that will be really important in our devel-
opments, is described in this section, too. Some other necessary concepts about ACL2
will be introduced later on for a better understanding of this memoir.

1.3.1 Basics on ACL2

Information in this section has been mainly extracted from [KMM00b].

ACL2 stands for A Computational Logic for Applicative Common Lisp. ACL2 is a
programming language, a logic and a theorem prover. Thus, the system constitutes an
environment in which algorithms can be defined and executed, and their properties can
be formally specified and proved with the assistance of a mechanical theorem prover.

The first version of ACL2 was developed by B. Boyer and J S. Moore in 1989, using
the functional and efficient programming language Common Lisp. ACL2 is the successor
to the Nqthm [BM97] (or Boyer-Moore) logic and proof system and its Pc-Nqthm inter-
active enhancement. ACL2 was born as response to the problems Nqthm users faced in
applying that system to large-scale proof projects. Namely, the main drawback of the
Nqthm appears when the logic specification were used not only for reasoning about the
modeling system but also for executing. The main difference between ACL2 and Nqthm
lies in the chance of executing the models of the ACL2 logic in Common Lisp.

ACL2 and Nqthm have already shown their effectiveness for implementing (non-
trivial) large proofs in mathematics. One of these examples can be found in [Kau00],
where the Fundamental Theorem of Calculus is formalized; another development can be
found in [BM84], where a mechanical proof of the unsolvability of the halting problem
is implemented; other examples of theorems certified with ACL2 and Nqthm are: the
Gauss’s Law of Quadratic Reciprocity [Rus92], the Church-Rosser theorem for lambda
calculus [Sha88], the Gödel’s incompleteness theorem [Sha94], and so on.

Besides, ACL2 has been used for a variety of important formal methods projects
of industrial and commercial interest, including (for example) the verification of the
RTL code which implements elementary floating point operations of the AMD Athlon
processor [Rus98] and ROM microcode programs of CAP digital signal processor of
Motorola [BKM96].

More references about these and other developments related to ACL2 and Nqthm
are www-available in [KM, BM97].
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After this brief historical introduction, let us devote some lines to explain the pro-
gramming language, the logic and the theorem prover of ACL2.

As a programming language, ACL2 is an extension of an applicative subset of Com-
mon Lisp. The logic considers every function defined in the programming language as
a first-order function in the mathematical sense. For that reason, the programming
language is restricted to the applicative subset of Common Lisp. This means, for ex-
ample, that there is no side-effects, no global variables, no destructive updates and all
the functions must be total and terminate. Even with these restrictions, there is a close
connection between ACL2 and Common Lisp: ACL2 primitives that are also Common
Lisp primitives behave exactly in the same way, and this means that, in general, ACL2
programs can be executed in any compliant Common Lisp.

The ACL2 logic is a first-order logic, in which formulas are written in prefix nota-
tion; they are quantifier free and the variables in it are implicitly universally quantified.
The logic includes axioms for propositional logic (with connectives implies, and, . . .),
equality (equal) and those describing the behavior of a subset of primitive Common
Lisp functions. Rules of inference include those for propositional logic, equality and
instantiation of variables. The logic also provides a principle of proof by induction that
allows the user to prove a conjecture splitting it into cases and inductively assuming
some instances of the conjecture that are smaller with respect to some well founded
measure.

An interesting feature of ACL2 is that the same language is used to define programs
and to specify properties of those programs. Every time a function is defined with defun,
in addition to define a program, it is also introduced as an axiom in the logic (whenever
it is proved to terminate for every input). Theorems and lemmas are stated in ACL2
by the defthm command, and this command also starts a proof attempt in the ACL2
theorem prover. In the ACL2 jargon a file containing definitions and statements that
have been certified as admissible by the system is called a book.

The main proof techniques used by ACL2 in a proof attempt are simplification and
induction. The theorem prover is automatic in the sense that once defthm is invoked, the
user can no longer interact with the system. However, in a deeper sense the system is
interactive: very often non-trivial proofs are not found by the system in a first attempt
and then it is needed to guide the prover by adding lemmas, suggested by a preconceived
hand proof or by inspection of failed proofs. These lemmas are then used as rewrite rules
in subsequent proof attempts. This kind of interaction with the system is called “The
Method” by ACL2 authors.

In the following subsection, an introduction to an interesting ACL2 feature, that will
be critical in our developments, is presented.
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1.3.2 ACL2 encapsulates

In this subsection, an introduction to the ACL2 encapsulates is given. Encapsulates are
a powerful tool which allow the structural development of theories. The encapsulation
facility is much more general than sketched here, see [KMM00b, KMM00a, BGKM91,
KM01a]. They will be used, in this memoir, in Section 4.3 and onward.

The encapsulate principle allows the introduction of function symbols in ACL2, with-
out a completely specification of them, but just assuming some properties which partially
define them. To be admissible and to preserve the consistency, there must exists func-
tions (called “local witness”) verifying the properties assumed as axioms. Once this
is proved, the local witness definitions can be neglected, and the function symbols in-
troduced with the encapsulate principle are partially specified by means of the assumed
properties. Then, we can assume a property described by the formula F for the functions
f1, . . ., fn if:

• f1, . . ., fn are new function symbols.

• There exist admissible definitions of n functions whose names are f1, . . ., fn such
that the formula F can be proved for that functions.

If the encapsulate is admissible, the function symbols f1, . . ., fn are added to the
ACL2 language and the formula F is added as axiom to the logic. It is worth noting that
the local witness are only used to ensure the admissibility of the encapsulate, since the
axioms associated with their definitions are not kept. Events introduced by means of
an encapsulate preserve the consistency of the ACL2 logic, see [KM01b] for a rigorous
proof of this fact.

In order to clarify this ACL2 mechanism an example will be presented. Let us
suppose that we want to assume the existence of a binary function which is associative
and commutative. The ACL2 command in charge of this task is the following one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; the signatures
(((op * *) => *))

; the witnesses
(local (defun op (a b) (+ a b)))

; the axioms
(defthm op-associative
(equal (op (op x y) z) (op x (op y z))))

(defthm op-commutative
(equal (op x y) (op y x))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first expression is a list with the arity description of the functions which are
introduced with the encapsulate principle (called signature). In this case, we indicate
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that op is a function with two arguments which returns a unique value. The local
witnesses are defined using defun, but they are declared as local by means of local.
The properties assumed over the encapsulate functions are stated by means of defthm.
The encapsulate can contain definitions and properties declared as local; however, once
the admissibility of the encapsulate has been proved, just the non local definitions and
properties are added to the ACL2 logic.

The functions defined by means of an encapsulate cannot be executed, since its partial
specification can be not enough to deduce the value for every input. However, there
exists a great advantage from the verification point of view; due to the fact that we are
formalizing and verifying a generic result which can be instantiated for concrete cases
later on. This issue will be presented in Subsection 6.1.1.





Chapter 2

A framework for computations in
Algebraic Topology

Traditionally, Symbolic Computation systems, and Kenzo is no exception, have been
oriented to research. This implies in particular, that development efforts in the area of
Computer Algebra systems have been focussed on aspects such as the improvement of
the efficiency or the extension of the applications scope. On the contrary, aspects such
as the interaction with other systems or the development of friendly user interfaces are
pushed into the background (it is worth noting that most of Computer Algebra systems
use a command line as user interface). Things are a bit different in the case of widely
spread commercial systems such as Mathematica or Maple, where some attention is also
payed to connectivity issues or to special purpose user interfaces. But even in these
cases the central focus is on the results of the calculations and not on the interaction
with other kind of (software or human) agents.

The situation is, in any sense, similar in the area of interoperability among Sym-
bolic Computation systems (including here both Computer Algebra systems and Proof
Assistants tools). In this case, the emphasis has been put in the universality of the
middleware (see, for instance, [CH97]). Even if important advances have been achieved,
severe problems have appeared, too, such as difficulties in reusing previous proposals
and the final obstacle of the speculative existence of a definitive mathematical interlin-
gua. The irruption of XML technologies (and, in our context, of MathML [A+08] and
OpenMath [Con04]) has allowed standard knowledge management, but they are located
at the infrastructure level, depending always on higher-level abstraction devices to put
together different systems. Interestingly enough, the initiative SAGE [Ste] producing an
integrated environment seems to have no use for XML standards, intercommunication
being supported by ad-hoc SAGE mechanisms.

To sum up, in the symbolic computation area, we are always looking for more pow-
erful systems (with more computation capacities or with more general expressiveness).
However, it is the case that our systems became so powerful, that we can lose some
interesting kinds of users or interactions. This situation was encountered in the design

39
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and development of TutorMates [GL+09]. TutorMates is aimed at linking an educa-
tional front-end (based on Java) with the Maxima system [Sch09] (a Common Lisp
Computer Algebra system specialized in symbolic operations but that also offers numer-
ical capabilities such as arbitrary-precision arithmetic). The purpose of TutorMates was
educational, so it was clear that many outputs given by Maxima were unsuitable for
final users (students, and teachers, at high school level) depending on the degree and
the topic learned in each TutorMates session. To give just an example, an imaginary
solution to a quadratic equation has meaning only in certain courses. In this way, a
mediated access to Maxima was designed. The central concept is an intermediary layer
that communicates, by means of an extension of MathML, the front-end and Maxima.
This approach is now transferred to the field of Symbolic Computation in Algebraic
Topology, where the Kenzo system provides a complete set of calculation tools, which
can be considered difficult to use by a non-Common Lisp trained user (typically, an
Algebraic Topology student, teacher or researcher).

The most elaborated approach to increase the usability and accessibility of Kenzo
was reported in [APRR05]. There, a remote access to Kenzo was devised, using
CORBA [Gro] technology. An XML extension of MathML played a role there too,
but just to give genericity to the connection (avoiding the definition in the CORBA
Interface Description Language [Gro] of a different specification for each Kenzo class
and datatype). There was no intention of taking profit from the semantics possibilities
of MathML. Being useful, this approach ended in a prototype, and its enhancement and
maintenance were difficult, due both to the low level characteristics of CORBA and to
the pretentious aspiration of providing full access to Kenzo functionalities. We could
classify the work of [APRR05] in the same line as [CH97] or the initiative [IAM], where
the emphasis is put into powerful and generic access to symbolic computation engines.

Now, we have undertaken the task of devising a framework, from now on called
Kenzo framework, which provides a mediated access to the Kenzo system, constraining
the Kenzo functionality, but providing guidance to the user in his navigation on the
system. The rest of this chapter is organized as follows. A brief overview of the archi-
tecture of the Kenzo framework is presented in Section 2.1. On the contrary, Section 2.2
is devoted to provide a detailed description of each one of the Kenzo framework compo-
nents. Finally, the Kenzo framework execution flow is presented by means of an example
in Section 2.3. Two ongoing works devoted to increase the computation capabilities of
the Kenzo framework by means of ideas about remote and distributed computations are
presented respectively in Section 2.4 and 2.5.

2.1 Framework architecture

When starting the project of developing a framework for Kenzo, several requirements
were stated. Some of them were simply natural specifications, others were of a more
problematic nature. Those issues are presented here as challenges to be fulfilled. These
challenges largely determined the design decisions presented in this section. The most
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important challenges we faced were:

1. Functionality. The system should provide access to the Kenzo capabilities for
constructing topological spaces and computing (homology and homotopy) groups.

2. Extensibility of Kenzo. The system design should be capable of evolving at the
same time as the Kenzo system.

3. Integration with other systems. In spite of having Kenzo as main computation
kernel, the system should be designed in such a way that it could support different
connections to other symbolic manipulation systems (GAP [GAP] in computa-
tional algebra, for instance, or ACL2 [KM] from the theorem proving side).

4. Interaction with different clients. The system should be designed in such a way
that it could support several ways of interaction (graphical user interfaces, web
services, web applications, Computer Algebra systems, and so on).

5. Efficiency. The framework should be roughly equivalent to Kenzo in time and
space efficiency.

6. Error handling. Our framework should forbid the user some manipulations raising
errors, from both structural and semantical points of view.

7. Representation of mathematical knowledge. The representation of the data of our
framework should be independent of the modules of the framework, that can be
programmed in different programming languages.

8. Communication of the mathematical knowledge. The encoded data should be easily
transferable both between the different modules of the framework and also outside
the framework.

Let us observe that, as it is usual in system design, some decisions aimed to fulfill
a concrete requirement could compromise other ones. The most important trade-off in
our previous list is between requirements 2, 3, 4 (these three requirements are three
different extensibility nuances) and 5. A layered architecture with complex mediators
could produce poorer performance. A careless treatment of intermediary documents
and files could also imply a great memory waste. The error handling (item 6) is closely
related to the functionality included in the system (item 1), since the pure Kenzo system
allows some instructions that are not desirable from the point of view of error managing
(since they produce runtime errors), then, the system should avoid this kind of situations.
Besides, error handling (item 6) could be in a conflict with efficiency, too, because dealing
with semantical information at the external layers of an architecture can slow down the
system as a whole. In addition, it would be very useful if the chosen encoding for the
data, related to requirements 7 and 8, was able to include some knowledge in order to
help the management of error handling. We have tried to deal with all these constraints
while respecting the requirements guided by already proved methodologies and patterns.
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Figure 2.1: Architecture of the Kenzo framework based on the Microkernel pattern

The previous discussion led us to choose the Microkernel architectural pattern [B+96,
B+07] to organize the system and XML to encode the mathematical and systemic knowl-
edge.

The Microkernel pattern gives a global view as a platform, in terminology of [B+96],
which implements a virtual machine with applications running on top of it, namely a
framework (in the same terminology). The Microkernel architectural pattern applies
to software systems that must be able to adapt to changing systems requirements. It
separates a minimal functional core from extended functionality and customer-specific
parts. This pattern defines five kinds of participating components : internal servers,
external servers, adapters, clients and the microkernel.

The microkernel is the main component and includes functionality that enables other
components running in separate processes to communicate with each other. It is also in
charge of maintaining system-wide resources such as files or processes. Core functionality
that cannot be implemented within the microkernel is separated in internal servers. An
external server is a component that uses the microkernel for implementing its own view
of the underlying application domain. The external server receives requests from client
applications using the communication facilities provided by the adapter.

A high level perspective of the architecture of our system, based on this pattern, as
a whole is shown in Figure 2.1.

Let us present a brief overview of the framework components, a more detailed de-
scription of each one of them will be provided in Section 2.2.

First of all, let us give some flavor about the concept of mediated access in our
framework. It is worth noting that the mediated access is not provided just by one of
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the framework components but by the whole system.

In our framework the mediated access is the knowledge which guides a user to interact
correctly with the system avoiding errors, that was one of the challenges of our system.
There are different kinds of knowledge included in our framework, and they categorize
the errors managed in our system as follows:

• Related to the construction of spaces:

– mathematical restrictions:

∗ type restrictions : a space constructor can only be applied over objects
of a concrete type (and, of course, all its subtypes); for instance, the
“classifying space” constructor can only be applied over a space which is
a simplicial group; and,

∗ restrictions of the arguments of space constructors:

· independent argument restrictions : the value of an argument of the
constructor must satisfy some properties which are independent from
the rest of the arguments of the space constructor; for instance, the
“Moore” constructor takes p and n as arguments to construct the
moore space M(Z/pZ, n), both p and n are restricted to be natural
numbers and p must be higher than 1; those are examples of inde-
pendent argument restrictions;

· functional dependent restrictions : the value of an argument of the
space constructor depends on the value of another one; for instance,
in the “Moore” constructor the value of n must be higher or equal
than 2p− 4; that is a functional dependent restriction.

– Kenzo implementation argument restrictions : some constrains are imposed by
the Kenzo implementation of spaces; for instance, the “Sphere” constructor
takes as argument a natural number that Kenzo constraints to be lower than
15.

• Related to the computation of (homology and homotopy) groups:

– restriction of the computation dimension: in the case of computing Hn(X)
the value of n must be higher or equal than 0; and in the case of computing
πn(X) the value of n must be higher or equal than 1; and,

– reduction degree restrictions : the notion of reduction degree was explained
in Subsection 1.2.6. In the case of computing Hn(X) the reduction degree of
X must be higher or equal than 0; and in the case of computing πn(X) the
reduction degree of X must be higher or equal than 1.

All this knowledge is spread throughout the Kenzo framework in its components.
These components are going to be briefly explained in the following paragraphs.
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As we have said previously, XML is the chosen technology to encode the data of our
framework since it perfectly fulfills requirements 7 and 8, and also let us encode some
mathematical knowledge that will be useful to manage error handling. In particular,
we have defined an XML language called XML-Kenzo. This language is used for data
interchange among the different components of the framework.

The XML-Kenzo specification is employed to represent some of the knowledge in-
cluded in the framework, namely the knowledge which allows us to manage the following
restrictions:

1. type restrictions,

2. independent argument restrictions of the space constructors,

3. implementation restrictions of the space constructors arguments, and

4. restriction of the dimension in computations.

On the contrary, the rest of constraints (functional dependent restrictions of the
arguments of the constructors and reduction degree restrictions) cannot be represented
in XML-Kenzo; so, they have been included in a different way in the framework.

Let us present now the rest of the system components.

Kenzo itself, wrapped with an interface based on XML-Kenzo, is acting as internal
server and is used as the core to perform computations in our framework. It is worth
noting that the functionality available from the internal server is a subset of the Kenzo
one. Namely, the functionality that allows us to construct spaces of regular usage and
to perform computations of groups is accessible through the Internal Server.

Due to the Microkernel pattern organization new computations and deduction en-
gines can be incorporated as internal servers; solving the third requirement, the integra-
tion with other systems.

The main component of this architecture, the microkernel, is responsible for man-
aging all system resources, maintains information about resources and allows access to
them in a coordinated and systematic way. The microkernel acting as intermediary layer
is based on an XML-Kenzo processor, allowing both a link with Kenzo and including the
management of constraints not handled in the XML-Kenzo specification. The function-
ality exposed by the microkernel is related to the Kenzo way of working, providing, on
the one hand, the way of constructing spaces (construction modules) and, on the other
hand, the functionality to perform computations (computation modules). Besides, the
fifth requirement (efficiency) has been solved at this level by programming a memoiza-
tion strategy, a technique also used in Kenzo, see Subsection 1.2.5. This has required
to include an improvement of our own in the Microkernel pattern: an internal memory
used to the optimization tasks. As a result, the waiting time is to a great extent simi-
lar to that of the original Kenzo system. Moreover, as we have already said, the sixth
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requirement (error handling) is partially fulfilled at the microkernel level. To be more
concrete, the modules of the microkernel are in charge of validating the restrictions that
were not included in the XML-Kenzo specification; that is to say, functional dependent
restrictions of the arguments of the constructors and reduction degree restrictions. In
addition, processing modules provide several enhancements to the Kenzo system. The
functionality of the processing modules is not exposed by the microkernel but it is used
by both construction and computation modules.

The external server exports the functionality of the microkernel, that is, the mech-
anisms to construct spaces and to compute groups. Moreover, the external server is in
charge of validating the knowledge included in the XML-Kenzo specification. Namely,
the external server is in charge of checking: type restrictions, independent argument
restrictions of the space constructors, implementation restrictions of the space construc-
tors, and restriction of the dimension in computations. Therefore, requests arriving
to the microkernel always satisfy these restrictions; that is to say, they satisfied the
XML-Kenzo specification, this kind of requests are called valid XML-Kenzo requests.

Finally, the adapter exposes the functionality provided by the external server to
clients. However, due to the fact that XML-Kenzo is ad-hoc for our framework is not
sensible to use this language to communicate with the outside. In order to grapple with
this problem, the OpenMath XML standard [Con04] has been employed. Then, the
adapter converts the interface provided by the external server, based on XML-Kenzo,
into a more suitable interface, based on OpenMath, which can be used by different
clients (for instance, Graphical User Interfaces, web applications or web services) without
knowing the internal representation of the data of our framework, then, the fourth aspect
requested to our framework, the interaction with different clients, is achieved. Besides,
as OpenMath is also an XML language, requirements 7 and 8 are also satisfied at this
level. The process to convert from/to OpenMath requests to/from XML-Kenzo requests
is tackled by a program included in the adapter called Phrasebook [Con04].

The communication between the different components of the system is based on a
message style model, that is, the modules of the framework are communicated in a direct
and synchronous way.

The main complaint to this framework could be the restriction of the full capabilities
of the Kenzo system, since just the main Kenzo functionality is included, however the
interaction with it is easier and enriched.

2.2 Framework components

This section is devoted to present a detailed description of each one of the Kenzo frame-
work components.
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Figure 2.2: Main elements of XML-Kenzo

2.2.1 XML-Kenzo

One of the most important decisions in the development of our framework was the
language employed to represent the mathematical data inside the framework. The rep-
resentation language should be independent of the implementation language used, and
the represented data must be easily interchangeable among the different components
of the framework, both current components and future extensions. These requirements
oriented us towards our solution: using XML technology [B+08]. Once we chose XML
to represent data inside our framework, we should decide whether we extended a math-
ematical XML language, MathML or OpenMath, or if we defined a fresh one. MathML
provides several facilities to represent data in the web but is not suitable to represent
content, see [KSN10] for a survey about this question. OpenMath is very useful in the
communication with the outside of the framework, but, we have to extend it with the
problems associated to this task, since OpenMath is a general purpose standard which
cannot be fully adapted to our needs. So, we opted for defining from scratch an XML
language adapted to our needs. The new XML language was called XML-Kenzo.

It is worth noting that the XML-Kenzo language is employed inside the framework;
on the contrary, to communicate the framework with the outside we use OpenMath since
it is more suitable for that task.

The specification of XML-Kenzo is based both on Kenzo and on mathematical con-
ventions and is provided by means of an XML schema definition (XSD), see [E+07]. The
formal specification of XML-Kenzo defines the structure of the objects indicating their
restrictions and providing valid combinations.

There are two types, groups in terminology of XML schema definitions, of elements
in the XML-Kenzo specification based on the usual interaction between a client and a
software system. To be more concrete, the interaction between a client and a software
system consists of the user sending requests to the system and the system returning
results to the client. Therefore, we have defined two types: requests and results, see
Figure 2.2.

Let us focus first on the requests XML-Kenzo group. As we explained in Sub-
section 1.2.2, Kenzo includes functions with two different aims: construct spaces and
perform computations. This situation is reflected in the specification of XML-Kenzo,
where two elements belong to the requests group. Namely, the elements: operation to
represent the computation functions and constructor to represent the different spaces
that can be built, see Figure 2.3.

Now, let us focus on the constructor element. When a user has decided to con-
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Figure 2.3: Requests XML-Kenzo group

Figure 2.4: Types of spaces in XML-Kenzo

struct a space in Kenzo, he should decide which type he wants to build: a simplicial
set, a simplicial group and so on (see all the possible types in Subsection 1.2.1). As
was explained in Section 1.2.2, the Kenzo system provides useful functions to create
interesting objects of regular usage, which can belong to four types: chain complexes,
simplicial sets, simplicial groups and abelian simplicial groups. All these functions of
regular usage are represented in our XML-Kenzo specification and have a unique XML-
Kenzo representation. So, four types are defined in the XML-Kenzo specification: CC

(Chain Complex), SS (Simplicial Set), SG (Simplicial Group) and ASG (Abelian Simpli-
cial Group). Then the child of the constructor element must be an element of one of
these types, see Figure 2.4. The following elements, gathered by types, represent the
spaces that can be constructed in our framework (the complete list of spaces that can
be constructed and their type can be seen in Figure 2.5):

• The SS type contains the elements that represent most of the constructors of
Kenzo. Some of them construct spaces from scratch such as sphere, moore-space,
build-finite-ss, and so on. Others construct spaces from other ones; for instance,
crts-prdc which represents the Cartesian product.

• The SG type contains the elements whose arguments are simplicial groups; that is
to say, both loop spaces, loop-space, and classifying spaces, classifying-space.

• ASG contains the elements to construct Eilenberg MacLane spaces of type K(Z, n),
k-z, and K(Z/2Z, n), k-z2.

• The CC type contains elements that correspond with the constructors defined at the
algebraic level but not at the simplicial one. The element chain-complex constructs
a simple chain complex such as the unit chain complex or the circle. The rest of
the elements of this type construct spaces from other ones, for instance tnsr-prdc

which represents the tensor product.

As we said previously, XML-Kenzo can be used to represent knowledge and restric-
tions about its elements. We commented in Section 2.1 that there are three kinds of
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Figure 2.5: Constructor groups in XML-Kenzo

restrictions related to the construction of spaces that are dealt with in the XML-Kenzo
specification; namely, type restrictions, independent argument restrictions of the space
constructors and implementation restrictions of the space constructors. Let us present
how we handle these restrictions in the specification of the XML-Kenzo language.

Let us focus first on type restrictions. These constraints are applied over the con-
structors of spaces from other ones. As we explained in Subsection 1.2.1, Kenzo is, in its
pure mode, an untyped system (or rather, a dynamically typed system), inheriting its
power and its weakness from Common Lisp. Thus, for instance, in Kenzo a user could
apply a constructor to an object without satisfying its input specification. For instance,
the method constructing the classifying space of a simplicial group could be called with
an argument which is a simplicial set without a group structure over it. Then, at run-
time, Common Lisp would raise an error informing the user of this restriction. This is
shown in the following fragment of a Kenzo session.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s4 (sphere 4)) z
[K1 Simplicial-Set]
> (classifying-space s4) z
Error: No methods applicable for generic function #<STANDARD-GENERIC-FUNCTION
CLASSIFYING-SPACE> with args ([K1 Simplicial-Set]) of classes (SIMPLICIAL-SET)
[condition type: PROGRAM-ERROR]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the first command, we construct the sphere of dimension 4, a simplicial set.
Thus, when in the second command we try to construct the classifying space of a sim-
plicial set, the Common Lisp Object System (CLOS ) raises an error.

This kind of error is controlled in our framework thanks to the XML-Kenzo spec-
ification, since the inputs for the operations between spaces can be only selected
among the spaces with suitable characteristics (Figure 2.6 shows the specification of
the classifying-space element in XML-Kenzo, this element only allows as child an ele-
ment either from the SG or the ASG group). This enriches Kenzo with a small (semantical)
type system.
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Figure 2.6: Classifying specification in XML-Kenzo

Figure 2.7: Loop space specification in XML-Kenzo

It is worth noting that the inheritance relations between Kenzo types, see Sec-
tion 1.2.1, cannot be directly specified using an XML schema, so, we tackle this situation
in the following way. If we have the types A and B, represented in the XML schema
as the groups A and B respectively, where B inherits from A and a function f that can
be applied over the objects of the type A, and of course also over the objects of type
B, then the element of the XML schema that represents the function f has as child an
element that belongs either to the A or the B group, and this must be included in the
schema in an explicit way. For instance, the loop-space Kenzo function is applied over
a simplicial set, but, as can be seen in Figure 1.2 of Subsection 1.2.1, simplicial groups
and abelian simplicial groups are subtypes of simplicial sets, so the loop-space element
of XML-Kenzo has as child an element belonging either to the SS, the SG or the ASG

group. Moreover, it also has a child that represents the dimension of the loop space, as
can be seen in Figure 2.7.

Both second and third kinds of restrictions, that are, independent argument restric-
tions of the space constructors and implementation restrictions of the space constructors,
are also coped with in the XML-Kenzo specification. These restrictions are always ap-
plied over objects constructed from scratch, such as spheres, Moore spaces, Eilenberg
MacLane spaces and so on. The restrictions over the arguments of those functions are
translated into the restrictions over the elements encoding them. For instance, spheres
only have sense if their dimension is a natural number (an independent argument re-
striction). In addition, the function that constructs a sphere in Kenzo has as argument a
natural number n, such that 0 < n < 15; this restriction is included in the XML-Kenzo
specification of the sphere element as is shown in Figure 2.8. This kind of restrictions
can be included in the specification of the XML-Kenzo language without any special
hindrance.

On the contrary, functional dependent restrictions of the arguments cannot be im-
posed in the XML-Kenzo specification, since restrictions about the value of an element
depending on the value of other elements cannot be defined in XML schemas.

Once we have presented the way of encoding Kenzo constructors in XML-Kenzo, we
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Figure 2.8: Sphere specification in XML-Kenzo

Figure 2.9: Operation element in XML-Kenzo

can construct different XML-Kenzo objects such as the space Ω3(S4) which is represented
as the following XML-Kenzo object:

<constructor>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
</constructor>

It is worth noting that the type of the elements (requests in the case of the
constructor element, SG in the case of the loop-space element and SS in the case of
the sphere element) is not included in the XML-Kenzo object since it is implicit to the
element (an element defined in an XML schema only belongs to one type). From now
on, we will call construction requests to the XML-Kenzo objects whose root element is
constructor.

Let us focus now on the other element of the requests group: operation. The
operation element represents requests which ask to the system the computation of ho-
mology and homotopy groups. The operation element has as child one element of the
computing group, see Figure 2.9. The computation of homology and homotopy groups
is represented by means of the elements homology and homotopy respectively. Both ele-
ments belong to the computing group, see Figure 2.10. The structure of both homology

and homotopy elements is the same, they have two children, the first one is a space of
one of the groups CC, SS, SG or ASG; and the second one is an element called dim.

As we commented in Section 2.1, we can handle one of the restrictions related to
computations, that is the restriction of the dimension in homology and homotopy com-
putations. This is translated in the XML-Kenzo specification into a constraint of the
value of the dim element of both homology and homotopy elements. Nevertheless, the
other restriction related to computations (the reduction degree restriction of the space)
cannot be managed at this level since its value must be computed from the description
of the space.
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Figure 2.10: Computing group of XML-Kenzo

Figure 2.11: Elements of XML-Kenzo results group

Once we have presented the way of encoding Kenzo operations in XML-Kenzo, we
can construct different XML-Kenzo objects such as the operation H5(Ω

3(S4)) which is
represented by the following XML-Kenzo object

<operation>
<homology>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
<dim>5</dim>

</homology>
</operation>

From now on, we will call computation requests to the XML-Kenzo objects whose root
element is operation. We will call valid XML-Kenzo requests to the XML-Kenzo ob-
jects of requests type which satisfy the XML-Kenzo specification. This finishes the
description of the elements of the requests XML-Kenzo group.

Let us present now the results XML-Kenzo group. We have defined four elements
belonging to this group: id, warning, result and HES-result, see Figure 2.11.

In our framework, objects have associated a unique identification number. To com-
municate this identification among the modules of the framework we use the id element
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whose value is a natural number (the unique identification number).

<id> 1 </id>

The warning element is used to represent errors returned by the framework and its
value is a string with the correspondent error in natural language.

<warning> The dimension of the sphere must be a natural number </warning>

The result element is used to return the result of a computation by means of an
undefined number of components whose value is a natural number.

<result>
<component> 2 </component>
<component> 3 </component>

</result>

If the above result element is returned, that means that the result is Z/2Z⊕Z/3Z.

Finally, HES-result provides a result, by means of an undefined number of compo-
nents whose value is a natural number, and an explanation of the reasoning followed to
obtain the result, by means of a string.

<HES-result>
<component>0</component>
<explanation>

The space was a contractible space since it was the cartesian product of
two contractible spaces. The homotopy groups of a contractible space are
always null. Then, the homotopy group of the space in dimension 3 is null.

</explanation>
</HES-result>

To sum up, the XML-Kenzo schema specifies two kind of objects: requests and
results. There are two kinds of requests: to construct spaces and to compute groups.
Moreover, most of the restrictions of the functions devoted to construct spaces and
compute groups are imposed in XML-Kenzo, in this way some knowledge is provided
with the XML-Kenzo specification.

As we will see throughout the next subsections, XML-Kenzo played a key role in the
development of the rest of the framework components.

The complete specification of the XML-Kenzo language can be seen in [Her11].
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Figure 2.12: Internal Server

2.2.2 Internal Server

The internal server is a Common Lisp component that provides access to the Kenzo
functionality through an XML-Kenzo interface. This module is split in three parts (see
Figure 2.12): the full Kenzo system, an XML-Kenzo wrapper for Kenzo, that is a bunch
of Common Lisp files that defines a Kenzo interface based on XML-Kenzo, and also
the transformation from XML-Kenzo objects to their Kenzo encoding and viceversa;
and last but not least, an interface which offers a service to use Kenzo through the
XML-Kenzo wrapper.

We have talked at length about Kenzo, see Section 1.2; so let us focus on both
the interface and the XML-Kenzo wrapper. The interface provides a service called
xml-kenzo-to-kenzo which allows one to access to the functionality exported by the
XML-Kenzo wrapper. The XML-Kenzo wrapper provides access to a subset of the
Kenzo functionality, namely the functionality specified in the XML-Kenzo language by
means of the elements of the requests group. Hence, from this interface we can construct
the topological spaces of regular usage in Kenzo (such as spheres, Moore spaces, loop
spaces and so on), and compute homology and homotopy groups.

The workflow when the xml-kenzo-to-kenzo service is invoked is as follows. If the
request is a construction request, the internal server transforms the XML-Kenzo request
into a Kenzo instruction by means of a function called xml-kenzo-to-kenzo. Afterwards,
the Kenzo instruction is executed in the Kenzo kernel, and then as a result a Kenzo
object is obtained. The result returned by the internal server is the unique identifier of
the Kenzo object, the value of the slot idnm of a Kenzo instance (see Section 1.2.1). This
identification number is returned by means of an id XML-Kenzo object. For instance,
if the internal server receives the request:

<constructor>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
</constructor>
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the instruction (loop-space (sphere 4) 3) is executed in the Kenzo kernel. As a result
an object of the Simplicial Group class is constructed, and the identifier of that object
is returned, in a fresh Kenzo session the result will be:

<id>30</id>

In the case of computation requests, the internal server transforms the XML-Kenzo
request into a Kenzo instruction by means of the xml-kenzo-to-kenzo function. After-
wards, the Kenzo instruction is executed in the Kenzo kernel, and as a result a group
is obtained. The result returned by the internal server is the group codified in a result

XML-Kenzo object. For instance, if the internal server receives the request:

<operation>
<homology>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
<dim>5</dim>

</homology>
</constructor>

the instruction (homology (loop-space (sphere 4) 3) 5) is executed in the Kenzo ker-
nel. As a result, the group Z/2Z is obtained and returned by the internal server using
an XML-Kenzo results object whose root is result.

<result>
<component>2</component>

</result>

The answer returned by the internal server is always an identifier, in the case of a
construction request, or a group, in the case of a computation request. What we want to
highlight is that errors never happen since all the dangerous situations are stopped in a
more external level of the framework (some of them were dealt with in the specification
of XML-Kenzo, others will be handled in the microkernel), as we will see in the following
subsections, and therefore, the requests received by the internal server are always safe.

The main disadvantage of the internal server with respect to Kenzo is the restriction
of the full capabilities of the Kenzo kernel. Let us note that the restriction is only re-
lated to the construction of spaces where, as we explained in Subsection 2.2.1, only the
spaces that can be constructed using the Kenzo ad-hoc functions are available; on the
contrary, the Kenzo capability to perform computations remains untouched. Neverthe-
less, thanks to the combination of the internal server and XML-Kenzo the interaction
between the modules of the framework, that can be programmed in a language different
from Common Lisp, and Kenzo is easier since the communication is performed by means
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of XML-Kenzo objects and the internal server is in charge of converting them from/to
Kenzo instructions.

2.2.3 Microkernel

The microkernel is the main component of the framework, it is devoted to the man-
agement of resources and includes some of the knowledge of the framework (the rest of
knowledge was provided by the XML-Kenzo specification). The microkernel is split in
four constituents (see Figure 2.1): the construction modules, the computation modules,
the processing modules and the internal memory. The interaction with the microkernel
is provided by means of an interface based on XML-Kenzo. This interface only gives
access to the functionality of the construction and computation modules.

2.2.3.1 Internal Memory

The first component of the microkernel that we are going to describe is the internal
memory. The internal memory is a Common Lisp module which stores both the con-
structed spaces and the computed results. That is to say, the internal memory stores
the state of the microkernel.

The storage of constructed spaces and computed results avoids unnecessary commu-
nications between the microkernel and the internal server. Therefore, the efficiency of the
framework is improved. In this component, for both constructed spaces and computed
results, a memoization strategy has been implemented.

Let us focus first on the spaces constructed in the microkernel.

At this moment, the Kenzo framework just interacts with an internal server that is
the Kenzo system. However, in the future we want to include different internal servers.
This means that objects of very different nature (such as spaces or groups) are going to
coexist in the Kenzo framework and, in particular, in the microkernel.

Taking this question into account, we decided to design a class hierarchy with a main
class; and specialize this class with different subclasses for the objects coming from the
different internal servers.

Therefore, we have defined the main class of microkernel objects, MK-OBJECT, whose
definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-OBJECT ()
;; IDentification NuMber
(idnm :type fixnum :initform (incf *number-of-objects*) :reader idnm)
;; ORiGiN
(orgn :type string :initarg :orgn :reader orgn)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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This class has two slots (which are common for all the microkernel objects):

• idnm, an integer being the object identifier for this system. This is generated by
the microkernel in a sequential way, each time a new object is created.

• orgn, a string containing the XML-Kenzo object that is the origin of the space.
This comment is unique and is important, because when a module constructs
a new mk-object instance, it uses the XML-Kenzo string to search in a specific
list, *object-list*, if the object has not been already built. So, one avoids the
duplication of instances of the same object.

The *object-list* list stores the state of the microkernel related to the constructed
objects.

As we have said, we are going to have different specializations of the MK-OBJECT class,
but at this moment we just have one devoted to represent Kenzo spaces in the microker-
nel. Namely, we have defined a subclass of the MK-OBJECT class, the class MK-SPACE-KENZO,
whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-KENZO (MK-OBJECT)
(;; REduction DEgree
(rede :type fixnum :initarg :rede :reader rede)
;; Kenzo IDentification NuMber
(kidnm :type fixnum :initarg :kidnm :reader idnm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has two additional slots to the ones of the MK-OBJECT class:

• rede, an integer giving the reduction degree, see Subsection 1.2.6, of the space.

• kidnm, an integer being the object identifier inside the Kenzo system.

Both idnm and kidnm can be used to identify the space, however as we have seen
in Subsection 1.2.4, the number of objects in Kenzo grows incredibly fast when Kenzo
performs computations. Then, we have decided to use a fresh identifier for the objects
constructed in the microkernel hiding the intermediary objects built in Kenzo. Then,
the value of the slot kidnm identifies the space in the Kenzo component of the internal
server, and the value of the slot idnm identifies the space in the microkernel.

To sum up, Kenzo spaces are represented in the microkernel as instances of the
MK-SPACE-KENZO class. In addition, as objects of the microkernel they are stored in the
*object-list* list.

Let us explain now the memoization strategy implemented in the internal memory to
handle computed results. As we have seen in Subsection 1.2.5, computing some groups in
Kenzo can require a substantial amount of time. Kenzo is the kernel of our framework, so
this situation also happens in our framework. Therefore, it seems desirable to store the
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computations of groups somewhere once they have been computed, in order to avoid the
re-computation in Kenzo. The microkernel stores the groups associated with a concrete
space in the internal memory when a computation is executed for the first time, and if
this computation is executed again later, the group is simply looked up and returned,
without further execution.

This means that the behavior of the functions which compute the groups depends
on whether the asked group for an space has been already computed. Otherwise, the
group must be stored after it has been calculated. These two extra tasks are done by
two pair of functions that are implemented in the computation modules, namely the
testers and the setters. The testers take as arguments the identifier of the object, that is
stored in the idnm slot of the mk-space-kenzo instance, and the dimension n of the group
and return the result or nil according to whether the n-th homology (or homotopy)
group of the space whose identifier is idnm had already been stored. The setters take
as arguments the identifier idnm of the object, the dimension n, and the result result

of computing the n-th homology (or homotopy) group of the object idnm and put the
result into the internal memory, where the result can directly look it up. The main
procedures, implemented in the computing modules, are called the getters, and from the
preceding discussion it is seen that there must really be at least two methods for the
getters. One method is used when the tester returns nil; it is the method which first
does the real computation by means of the Kenzo functions and then executes the setter
with the computed value. A second method is used when the tester does not return nil;
it simply returns the stored value.

Up to now, we have explained the implemented strategy but not the way of storing
the results. This is an important issue for efficiency reasons and has been tackled by
means of efficient data structures, namely hash tables and arrays.

To store computed results, we use two hash tables, one for the computations related
to homology groups and another one for the computations of homotopy groups. The
identification number of each object, slot idnm of the mk-object class, acts as key into
the hash tables. The value associated to each key is an array where the n-th homology
(or homotopy) group of the object associated with the identification number is stored
in the position n.

Then, if we try to compute several times the fifth homology group of the space
Ω3(S4×S4), we can see the profit of using the memoization technique in the microkernel.
In the first computation, the microkernel takes almost 22 minutes, but in a further trial
the result is returned in just a second since it has been stored in the internal memory.

It is worth noting that the values stored in the hash tables are not kept from one
session to another. The reader can wonder the reason to not reuse computations from a
previous session storing the results in a persistent way. At least two different approaches
can be considered to manage results from other sessions.

• We could keep on using our hash tables to store results, the main improvement
would consist of saving the results stored in the hash tables at the end of the session
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and loading the stored results at the beginning of each session. Advantage: we
use hash tables that are efficient data structures. Disadvantage: when the number
of results increase, the time to load all the results in memory and the amount of
memory used increase, too.

• We could use a database to store in a persistent way the results instead of keeping
the results in hash tables. Advantage: efficient persistence storage of results.
Disadvantage: since we are working with XML data, our database should be an
XML database, and this kind of databases are usually big and the search of results
in these databases is less efficient than the search in hash tables.

Thus, additional research is needed to achieve an efficient storage of results to be
reused in different sessions. Therefore, at this moment we use the approach previously
presented without saving results from one session to another.

Thanks to this memoization strategy implemented in the internal memory the frame-
work efficiency increases.

The state of the microkernel is obtained gathering both the *object-list* list of
constructed spaces and the two hash tables of computed results.

2.2.3.2 Processing Modules

The processing modules are three Common Lisp modules that are in charge of providing
some enhancements to the construction of spaces and the computation of groups. The
functionality of these modules is not available outside the microkernel but it is used by
both construction and computation modules.

2.2.3.2.1 Reduction degree module The reduction degree module is in charge of
managing the reduction degree of spaces, see Subsection 1.2.6. Kenzo allows the user to
construct spaces whose reduction degree is lower than 0 (as the loop space iterated three
times of the sphere of dimension 2). In these spaces some operations (for instance, the
computation of the set of faces of a simplex) can be achieved without any problems. On
the contrary, theoretical results ensure that the homology groups are not of finite type,
and then they cannot be computed. In pure Kenzo, the user could ask for a homology
group of such space, catching a runtime error, as is shown in the following fragment of
a Kenzo session:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf o2s2 (loop-space (sphere 2) 3)) z
[K18 Simplicial-Group]
> (homology o2s2 1) z
Error: ‘NIL’ is not of the expected type ‘NUMBER’
[condition type: TYPE-ERROR]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The reduction degree module is used to avoid this kind of errors in our framework.
To this aim, the reduction degree module is implemented as a small expert system,
computing, in a symbolic way (that is to say, working with the XML-Kenzo description
of the spaces, and not with the spaces themselves), the reduction degree of the space.
The set of rules that allows the reduction degree module to obtain the reduction degree
of a space was given in Subsection 1.2.6, and the computational price of using this
small rule-based system is negligible with respect to ordinary computations in Algebraic
Topology.

As we have seen in Subsubsection 2.2.3.1, the reduction degree of a space will be
assigned to the rede slot of the mk-space-kenzo instance in the construction of the
object.

The relevance of the reduction degree, and hence of this module, is due to the com-
putation modules, since when a computation is demanded, the system monitors if the
reduction degree of the space allows the computation of the homology or homotopy
group, or whether a warning must be returned as answer. In this way, the dangerous
requests related to the reduction degree are always stopped at the microkernel and never
arrive to the internal server, avoiding operations which would raise errors.

2.2.3.2.2 Homotopy algorithm module The homotopy algorithm module (from
now on, HAM) is in charge of chaining methods in order to compute some homotopy
groups. In pure Kenzo, there is no final function allowing the user to compute homotopy
groups. Instead, there is a number of complex algorithms, allowing a user to chain them
to get some homotopy groups. The HAM is in charge of chaining the different algorithms
presented in Kenzo to reach the final objective.

Moreover, Kenzo, in its current version, has limited capabilities to compute homo-
topy groups (depending on the homology of Eilenberg MacLane spaces that are only
partially implemented in Kenzo), so the chaining of algorithms cannot be universal.
Thus the homotopy algorithm module processes the call for a homotopy group, making
some requests to the Kenzo kernel (computing some intermediary homology groups, for
instance) before deciding if the computation is possible or not.

Let us present the procedure implemented in HAM. The underlying mathematics of
the algorithm were explained in a detailed way in [Rea94].

Algorithm 2.1.
.

1. Find the lower dimension 0 < r ≤ n, such that the r-th homology group of X is
not null.

(a) If r does not exist (i.e., Hq(X) = 0 for all 0 < q ≤ n), πn(X) is null (applying
the Hurewicz theorem, see [Whi78]).
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(b) If r = n, πn(X) = πr(X) = Hr(X) (applying the Hurewicz theorem,
see [Whi78]).

(c) If r < n,

i. If the r-th homology group is Z or Z/2Z go to step 2.

ii. Otherwise, return a warning XML-Kenzo object informing that the ho-
motopy group is not computable in the current version.

2. Compute the r-th fundamental cohomology class of X, hr = [χr] ∈ Hr(X, πr),
where πr = πr(X) = Hr(X).

3. Build the fibration over X canonically associated to the above cohomology class:

K(πr, r − 1)
↓

T ≡ X ′ ≡ X(r+1) = X ×τχr K(πr, r − 1)
↓
X

4. Get the total space T = X(r+1) associated to the above twisting operator.

(a) If r + 1 = n, πn(X) = Hn(T ).

(b) If n > r + 1 and Hr+1(T ) = Z or Hr+1(T ) = Z/2Z, increase one unit the
value of r and go to step 2 but using the space T instead of X.

This is the algorithm implemented in HAM.

2.2.3.2.3 Homotopy expert system As we explained in the previous paragraph,
the HAM is able to compute some homotopy groups of some spaces by means of the
algorithm presented in [Rea94]. Nevertheless, there are several homotopy groups that
are not reachable by the Kenzo framework using the HAM (the implementation of the
algorithm is limited to the spaces which first non null homology group is Z or Z/2Z). To
overcome this gap, we undertook the task of developing a homotopy expert system (from
now on, HES) from the extensive literature about this topic; taking profit of theoretical
knowledge contained in theorems. The knowledge (that is, the theorems about homotopy
groups) can be found in different books, for instance, [CM95, Mau96, Hat02].

The HES is a rule-based system [GR05]. Rule-based systems do not represent knowl-
edge in a declarative and static way (as a bunch of things that are true), but they repre-
sent knowledge in terms of a bunch of rules that tell what you can conclude in different
situations. Rule-based systems have been employed in a wide variety of contexts, such
as the discovery of molecular structures [LBFL80], the identification of bacterias which
cause severe infections [BS84] or to configure computer systems [McD82].

The structure of a rule-based expert system, see [GDR05], consists of, and the HES
is no exception, the following components (see Figure 2.13):
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Explanation
facility

Knowledge
acquisition

Inference
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Knowledge
base (rules)

Working
memory (facts)

Figure 2.13: Structure of a rule-based expert system

• the Working memory (the facts), representing what we know at any time about
the problem we are working at,

• the Knowledge base (the rules), containing the domain specific problem-solving
knowledge,

• the Inference engine, a general program that activates the knowledge in the knowl-
edge base. This program depending on the facts applies different rules to obtain a
conclusion.

• a Knowledge acquisition module, allowing one to acquire and edit the knowledge
base,

• an Explanation facility module, allowing the user to understand how the expert
system obtains the results.

Let us present each component for the particular case of the HES.

The working memory represents what we know at any time about the problem we
are working at by means of facts. There exist two kinds of facts in the HES: static and
dynamic.

Static facts are properties associated with the spaces. These properties are known at
the moment of the construction of the object. Some examples of this kind of facts are:

Fact 1.
∀n ∈ N : ∆n is a contractible space.

Fact 2. If X = A×B where A and B are contractible spaces, then,

X is a contractible space.

Fact 3.

∀n ∈ N and G group : K(G, n) is an Eilenberg MacLane space of type (G, n)

Fact 4. If X = B(Y ) where Y is an Eilenberg MacLane space of type (G, n), then,

X is an Eilenberg MacLane space of type (G, n+ 1)
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At this moment, the static facts determine the spaces that are contractible spaces,
spheres, Eilenberg MacLane spaces and Loop spaces of spheres. The way of implementing
this issue in the microkernel is by means of four subclasses of the mk-space-kenzo class,
presented in Subsubsection 2.2.3.1; this class hierarchy will be used to determine which
rules can be applied.

To store spaces which represent spheres, we use a new subclass called
MK-SPACE-SPHERE, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-SPHERE (MK-SPACE-KENZO)
(;; DIMension
(dim :type fixnum :initarg :dim :reader dim))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this class has an additional slot, to the ones of the MK-SPACE-KENZO, called dim, which
represents the dimension of the sphere.

To store contractible spaces, we use a new subclass called MK-SPACE-CONTRACTIBLE,
whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-CONTRACTIBLE (MK-SPACE-KENZO) ())
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this class does not have any additional slot to the ones of the MK-SPACE-KENZO class.

To store spaces which represents Eilenberg MacLane spaces, we use a new subclass
called MK-SPACE-K-G, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-K-G (MK-SPACE-KENZO)
(;; ITERation
(iter :type fixnum :initarg :iter :reader iter))
(;; GROUP
(group :type fixnum :initarg :group :reader group))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this class has two additional slots to the ones of MK-SPACE-KENZO: (1) iter, which rep-
resents the number of iterations of the Eilenberg MacLane space, and (2) group, which
represents the group of the Eilenberg MacLane space.

To store spaces which represent loop spaces of spheres, we use a new subclass called
MK-SPACE-LS-SPHERE, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-LS-SPHERE (MK-SPACE-KENZO)
(;; ITERation
(iter :type fixnum :initarg :iter :reader iter))
(;; DIMension Sphere
(dims :type fixnum :initarg :dims :reader dims))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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this class has two additional slots to the ones of MK-SPACE-KENZO: (1) iter, which repre-
sents the number of iterations of the Loop space, and (2) dims, which represents the di-
mension of the sphere. When, the Loop Space module constructs a MK-SPACE-LS-SPHERE

instance the value of the iter slot is the number of iterations of the Loop Space and the
value of dims is the value of the dim slot of the MK-SPACE-SPHERE object component of
the Loop Space.

In the future, if we include new static facts which determine other types of spaces,
we only need to define a new subclass of the mk-space-kenzo class for that concrete kind
of spaces.

As we have said, the static facts are properties that are known at the moment of
the construction of the objects. On the contrary, dynamic facts are properties that are
obtained from computations. For instance:

Fact 5.

For n = 4 : πn(S3) has been computed previously and its value is Z/2Z.

Fact 6.
For 0 ≤ n < 4 : Hn(S4) is null.

The storage of dynamic facts was already explained in this memoir, namely in Sub-
subsection 2.2.3.1 where we talked at length about the storage of results in the internal
memory of the microkernel. Then, when a new result is obtained, it is automatically
saved in the internal memory to avoid re-computations. The HES has access to this
internal memory, and therefore to dynamic facts.

Let us present now, the knowledge base of our HES. The rules in the HES represent
possible results to take when specified conditions hold on items of the working memory.
They are sometimes called condition-action rules, since they are IF-THEN rules.

The current knowledge base consists of 23 rules (the complete list can be seen
in [Her11]) which are related to contractible spaces, spheres, Eilenberg MacLane spaces
and Loop spaces of spheres. Let us present here some of them:

Rule 1.
IF X is a contractible space
AND n ≥ 1
THEN πn(X) = 0

Rule 2.
IF X is an Eilenberg MacLane space of type (G, n)
AND n = r
THEN πn(X) = G

Rule 3.
IF X is the sphere S2

AND πn(S3) has been computed previously
THEN πn(X) = πn(S3)
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Both Rules 1 and 2 are applied over static facts; however, the application of Rule 3
involves a dynamic fact, namely the knowledge of a previously computed homotopy
group. Therefore, some rules can only be applied when some computations have been
previously performed.

These rules are used by the inference engine of the HES which uses the forward
chaining method for reasoning [GR05]. This method starts with the available data and
uses inference rules to extract more data until a goal is reached. Let us consider an
example. We want, for instance, to compute π3(∆

4 × ∆5). Then the inference engine
proceeds as follows:

1 ∆4 is a contractible space, Fact 1
2 ∆5 is a contractible space, Fact 1
3 ∆4 ×∆5 is a contractible space, Fact 2 (1,2)
4 3 = n ≥ 1
∴ π3(∆

4 ×∆5) = 0 Rule 1 (3,4)

In the case of having conflicts between some rules, the method which has been used
to solve this problem consists of using the rule with highest priority based on our math-
ematical knowledge. The priority is established by placing the rules in an appropriate
order in the knowledge base. This strategy works properly for small expert systems,
see [BS84], as our HES. This conflict resolution strategy has worked in our system; how-
ever, we are aware of the necessity of a more sophisticated strategy to deal with the
conflicts in the HES when the number of rules increases.

The inference engine has been implemented by means of a very powerful tool of
Common Lisp: the combination of generic functions and methods [Gra96]. When the
class system and the functional organization of Common Lisp are considered, the notions
of generic functions and methods are normally used. A generic function is a functional
object whose behavior will depend on the class of its arguments; a generic function is
defined by a defgeneric statement. The code for a generic function corresponding to
a particular class of its arguments is a method object; each method is defined by a
defmethod statement. We have a generic function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC homotopy-HES (object n))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which has assigned concrete methods for the different spaces with special characteristics.
Namely, we have four methods for the generic homotopy function, one for each one of the
subclasses of the mk-space-kenzo class, extending their functionality:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((contractible mk-space-contractible) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((sphere mk-space-sphere) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((k-g mk-space-k-g) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((ls-s mk-space-ls-sphere) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each one of these methods uses the concrete rules of the HES for each one of the
spaces with special characteristics to obtain their homotopy groups. As we have said
previously, other subclasses can be defined in the future to represent other kinds of
spaces; then, if we add rules for that kinds of spaces, we only need to define new methods
(one per each new kind of space) to manage the computation of homotopy groups for
them.

The body of those methods is a conditional statement using the Common Lisp cond

instruction. Each one of the cond options represents a rule of the HES. For instance, the
code of the method related to the mk-space-k-g objects is as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defmethod homotopy ((k-g mk-space-k-g) n)
(cond ((equal (iter k-g) n)

(explanation-facility-module k-g n
(format nil "<component>~A</component>" (group k-g))))

((not (equal (iter k-g) n))
(explanation-facility-module k-g n "<component>0</component>"))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each one of the clauses of the conditional statement represents one rule of the HES.
Then, if we want to add new rules to the knowledge base, we only need to include
more clauses at the end of the conditional statement. This is the knowledge acquisition
mechanism of our HES. We are aware of the necessity of including a different knowledge
acquisition mechanism in order to provide a way of adding new rules at runtime and
without modifying the source code. But, at this moment, this elementary organization
has been shown sufficient.

Last but not least, we have an explanation facility module that is a mechanism to
explain the reasoning which the expert system has followed in order to get a conclusion.
This mechanism is provided to the user and is implemented as a generic function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC explanation-facility-module (space n result))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This generic function takes as argument an object X, a natural number n, and the
value of the πn(X) group. For each one of the subclasses of the mk-space-kenzo class
we have a concrete method which is able to explain the followed reasoning by the HES
to obtain the result. With that information, the explanation-facility-module function
generates a HES-result XML-Kenzo object which is the returned result by the HES.
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Gathering the functionality of the HES and the HAM, our framework is able to com-
pute some homotopy groups. In addition, we can also combine the HES and the HAM
to obtain other homotopy groups as we are going to show in the following paragraph.

2.2.3.2.4 Integration of the HES and the HAM It is worth noting that if we
disable whether the HES or the HAM in the microkernel, our framework can keep on
computing homotopy groups with the other one. Then, they can be considered as
independent modules. However, if we enable both modules, the HAM and the HES
cooperate to compute homotopy groups of spaces.

On the one hand, the HAM is used as a last appeal tool in the HES. That is to
say, if none of the rules of the HES can be applied to obtain a homotopy group, the
HES invokes the homotopy algorithm module to check if it is able to obtain some result
applying the algorithm.

On the other hand, the homotopy algorithm module is used to obtain some results
that are used as dynamic facts of the objects. For instance, if we want to compute
πi(S

3) for i = 4, 5, 6 the HES does not have any rules which can help. Then, the HES
invokes the HAM to perform the computations and stores the results in the internal
memory of the microkernel. Subsequently, if we want to compute πi(S

2) for i = 4, 5, 6,
the HES can use Rule 3 and the previously computed homotopy groups of the sphere
S3 to obtain the homotopy groups of the sphere S2; in this way the HES and the HAM
interact. Of course, the microkernel could have also used the HAM to compute πi(S

2)
for i = 4, 5, 6; but the option of using the HES system is better because of the complexity
of the algorithm implemented in HAM.

2.2.3.3 Construction Modules

Construction modules provide the functionality to construct topological spaces in the
microkernel. In particular, they implement the procedures to construct the spaces asso-
ciated with the elements that are children of the constructor element of the XML-Kenzo
specification. Moreover, they are in charge of checking the Kenzo restrictions that were
not included in the XML-Kenzo specification for the constructors of spaces. That is to
say, the functional dependent restrictions over the arguments.

It is worth noting that there are two kinds of functional dependent restrictions over
the arguments. On the one hand, if there are at least two arguments and the value of
one of them depends on the value of another one, then, we have a functional dependent
restriction (for instance, in the “Moore” constructor the value of its argument n must be
higher or equal than two times plus four its argument p). On the other hand, if there is
just one argument, but with the singularity of being compound, and the value of one of
the elements of this compound argument depends on the value of another one, then, we
also have a functional dependent restriction (for instance, in the “finite-ss” constructor
the value of its argument is a list of elements which must determine a simplicial set;
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Figure 2.14: Construction modules

then, this compound argument is restricted to the values of its components). Both
kinds of functional dependent restrictions are dealt with in the microkernel, namely in
the construction modules.

Following the XML-Kenzo specification of the constructor element, we have or-
ganized construction modules in four blocks, one block per each type of constructor
specified in XML-Kenzo (CC, SS, SG and ASG). Besides, each one of these blocks has a
module for each one of the elements of the respective type of constructor, see Figure 2.14.
All these modules are implemented in Common Lisp.

When the microkernel receives a construction request the functionality of the module
associated with the child of the constructor element is invoked. For instance, if the
microkernel receives the request:

<constructor>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
</constructor>

the functionality of the Loop Space module is invoked.

When a construction module is invoked three situations are feasible: (1) a new space
is created in the microkernel, (2) the object was previously built and is simply returned
or (3) a warning is produced.

The procedure to construct the spaces in the construction modules is very similar in
all of them.

1. Check the functional dependent restrictions (this step depends on each particular
constructor):
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(a) If the object does not fulfill the restrictions a warning XML-Kenzo object is
returned.

(b) Otherwise, go to step 2.

2. Search in the *object-list* list if the object was built previously:

(a) If the object was built previously, its identification number, in an id XML-
Kenzo object, is returned.

(b) Otherwise, go to step 3.

3. Construct an instance of the mk-space-kenzo class where:

• the value of the rede slot is computed by the reduction degree module; see
paragraph 2.2.3.2.1,

• idnm is automatically generated,

• kidnm is the value obtained from requesting the internal server the construc-
tion of the space, and

• the XML-Kenzo object received (from the external server) as input is assigned
to orgn.

4. Push the object in the *object-list* list of already created spaces.

5. Return the idnm of the object in an id XML-Kenzo object.

The above procedure is followed by most of the construction modules of the micro-
kernel. However some of them do not construct instances of the mk-space-kenzo class
but of some of its subclasses (see Paragraph 2.2.3.2.3) in order to use the additional in-
formation provided by the subclasses in the computation of homotopy groups (see Para-
graph 2.2.3.2.3). However, the values of the slots which come from the mk-space-kenzo

class of those instances are the same explained in the above procedure. To be more
concrete, these construction modules are Sphere, Delta, K-Z, K-Z-2, Cartesian Product,
Suspension, Classifying Space and Loop Space. The procedure implemented in these
modules is different since they are the modules which can produce contractible spaces,
spheres, Eilenberg MacLane spaces and loop spaces of spheres; that is to say, the spaces
whose homotopy groups can be handled in the HES.

The Sphere module constructs instances of the MK-SPACE-SPHERE subclass, where the
value of the dim slot is the dimension of the sphere (this dimension is obtained from the
XML-Kenzo object).

The Delta module constructs instances of the MK-SPACE-CONTRACTIBLE subclass.

Both K-Z and K-Z2 modules construct instances of the MK-SPACE-K-G subclass where
the value of the iter slot is the number of iterations of the Eilenberg MacLane space
(this number is obtained from the XML-Kenzo object) and the value of the group slot
is 1 if is K-Z the working module and 2 if is K-Z2.
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The Cartesian Product module constructs a MK-SPACE-CONTRACTIBLE instance if both
components of the cartesian product are MK-SPACE-CONTRACTIBLE objects; otherwise, it
constructs a MK-SPACE-KENZO instance with the general procedure.

The Suspension module constructs a MK-SPACE-SPHERE instance when the component
of the suspension is a sphere, Sn, the value of the dim slot of the MK-SPACE-SPHERE

instance constructed by the Suspension module is 1 plus n; otherwise, the Suspension

module constructs a MK-SPACE-KENZO instance with the general procedure.

The Classifying Space module constructs a MK-SPACE-K-G instance when the com-
ponent of the Classifying Space is an Eilenberg MacLane space K(G, n), the value of the
iter slot of the MK-SPACE-K-G object constructed by the Classifying Space module is 1
plus n and the value of the group slot is the representation of G (1 in the case of K(Z, n)
and 2 in the case of K(Z/2Z, n)); otherwise, if the component of the Classifying space
is not an Eilenberg MacLane space, then the Classifying Space module constructs a
MK-SPACE-KENZO instance with the general procedure.

Finally, the Loop Space module constructs a MK-SPACE-K-G instance when the com-
ponent of the Loop Space is an Eilenberg MacLane space, K(G, n), the value of the
iter slot of the MK-SPACE-K-G object constructed by the Loop Space module is n mi-
nus the number of iterations of the loop space and the value of the group slot in the
MK-SPACE-K-G object constructed by the Loop Space module is is the representation of
G. When the component of the Loop Space is a sphere Sn, the Loop Space module con-
structs a MK-SPACE-LS-SPHERE instance, where the value of the iter slot is the number
of iterations of the Loop Space and the value of dims is n. Otherwise, the Loop Space

module constructs a MK-SPACE-KENZO instance with the general procedure.

2.2.3.4 Computation Modules

Computation modules provide the functionality to perform computations through the
microkernel. As we have seen in the XML-Kenzo specification, the operation element
only has a child, either the homology or the homotopy element. Hence, the system only
allows the computation of homology and homotopy groups. This situation is reflected
in the computation modules, two Common Lisp modules that compute homology and
homotopy groups respectively.

2.2.3.4.1 Homology module The homology module implements a procedure in
Common Lisp that allows us to compute homology groups through the microkernel.
The procedure not only calls the homology function of the Kenzo system but also wraps
it to enhance the computation of homology groups in the framework, avoiding compu-
tations that would raise errors and optimizing them.

When the microkernel receives a computation request where the child of the
operation element is homology the homology module is invoked. For instance, the re-
quest
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<operation>
<homology>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
<dim>5</dim>

<homology>
</operation>

activates the homology module. The procedure implemented in the homology module
is as follows:

1. Extract the space whose homology wants to be computed.

2. Search in the *object-list* list if the space was built previously:

• If the space was built previously, go to step 3.

• Otherwise, the correspondent construction module builds the space and stores
it in the *object-list* list.

– If the construction module returns a warning then return the warning as
result in a warning XML-Kenzo object.

– Otherwise, go to step 4.

3. Search in the internal memory if the computation was performed previously; see
Subsubsection 2.2.3.1.

• If the computation was stored then the result by means of a result XML-
Kenzo object is returned.

• Otherwise, go to step 4.

4. Monitor the value of the reduction degree of the space, that is stored in the rede

slot.

• If the reduction degree is higher or equal than 0, go to step 5.

• Otherwise, inform with a warning XML-Kenzo object that the system cannot
compute the homology group since the reduction degree of the space is lower
than 0.

5. Ask to the internal server the homology group of the space.

6. Store the result obtained from the internal server in the internal memory; see
Subsubsection 2.2.3.1.

7. Return the result by means of a result XML-Kenzo object.
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The result returned by the homology module when receives the above request is

<result>
<component>3</component>
<component>2</component>
<component>1</component>

</result>

that must be read as Z/3Z⊕ Z/2Z⊕ Z that is the fifth homology group of Ω3S4.

2.2.3.4.2 Homotopy module The homotopy module implements a procedure in
Common Lisp that allows us to compute some homotopy groups through the microkernel
in two different ways depending on the space. The homotopy module uses the HES (see
Paragraph 2.2.3.2.3) if we want to compute homotopy groups of spheres, contractible
spaces, Eilenberg MacLane spaces or loop spaces of spheres; otherwise, the homotopy
module uses the HAM (see Paragraph 2.2.3.2.2).

When the microkernel receives a computation request where the child of the
operation element is homotopy the homotopy module is invoked. For instance, the
request

<operation>
<homotopy>
<sphere>3</sphere>
<dim>6</dim>

</homotopy>
</operation>

activates the homotopy module. The procedure implemented in the homotopy module
is as follows.

1. Extract the space whose homotopy wants to be computed.

2. Search in the *object-list* list if the space was built previously.

• If the object was built previously, go to step 3.

• Otherwise, the correspondent construction module builds the space and stores
it in the *object-list* list.

– If the construction module returns a warning then the warning is returned
as result in a warning XML-Kenzo object.

– Otherwise, go to step 4.

3. Search in the internal memory if the computation was performed previously, see
Subsubsection 2.2.3.1.
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• If the computation was stored then the result using a result XML-Kenzo
object is returned.

• Otherwise, go to step 4.

4. Monitor the value of the reduction degree of the space.

• If the reduction degree is higher or equal than 1, go to step 5.

• Otherwise, inform with a warning XML-Kenzo object that the system cannot
compute the homotopy group since the reduction degree of the space is lower
than 1.

5. If the space whose homotopy wants to be computed is an instance of the classes:
mk-space-sphere, mk-space-contractible, mk-space-k-g or mk-space-ls-sphere:

• Invoke the HES; see Paragraph 2.2.3.2.3.

• Otherwise, invoke the HAM; see Paragraph 2.2.3.2.2

6. Store the obtained result in the internal memory; see Subsubsection 2.2.3.1.

7. Return the result using a result XML-Kenzo object if the result was obtained by
the HAM or a HES-result XML-Kenzo object if the result was obtained by the
HES.

The result returned by the homotopy module when receives the above request is

<result>
<component>12</component>

</result>

that must be read as Z/12Z that is the sixth homotopy group of S3.

It is worth noting that the last restriction handled in the framework, that is the
reduction degree restriction, is dealt with in the computation modules; namely, in step
4 of the procedures.

To sum up, computation modules (with the help of processing modules) not only use
the functionality of Kenzo to obtain homology and homotopy groups, but also execute
some test that enhance the original computation capabilities of Kenzo.

2.2.4 External Server

The external server is a Common Lisp component providing access to all services avail-
able in the microkernel interface through an XML-Kenzo interface. The external server
receives XML-Kenzo requests, analyzes them, invokes the microkernel and sends the
results back to the caller.
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The analysis performed in the external server consists of validating the XML-Kenzo
requests against the specification given in the XML-Kenzo language. This means that
restrictions imposed in the XML-Kenzo language (type restrictions, independent argu-
ment restrictions of the space constructors, implementation restrictions of the space
constructors, and restriction of the dimension in computations) are checked here.

To validate these constraints an XML validator has been implemented. It takes as
input an XML object, accesses to the XML-Kenzo schema definition and checks that the
XML object is valid against the XML-Kenzo specification. It is worth noting that if we
modify the XML-Kenzo schema definition, for instance adding a new kind of constructor,
the external server evolves without modifying the source code.

As we have seen previously, other restrictions which were not included in the XML-
Kenzo specification are checked at the microkernel level (namely, functional dependent
restrictions of the arguments of the constructors and reduction degree restrictions). Be-
sides, as we are working with XML objects as data, they must be well-formed XML, but
the task of verifying this aspect is responsibility of the adapter.

2.2.5 Adapter

The adapter is a Common Lisp module that provides access to the services available in
the external server through an OpenMath [Con04] interface.

As we explained in Subsection 2.2.1, the main reason to define the fresh XML-Kenzo
language instead of using the standard OpenMath language was the general purpose
of this standard which makes its adaptation to our context a bit hard. However, the
need of providing a suitable interface, uncoupled of the internal representation used in
the framework, for different clients turns the tables in the most external part of the
framework where we use OpenMath instead of using XML-Kenzo.

The OpenMath standard defines several mathematical objects of general purpose,
such as linear algebra operators or arithmetic functions. However, specific objects, such
as the mathematical structures used in Algebraic Topology, have not been declared; but,
they can be defined following the guidelines given in [Dav00].

In particular, we have extended the OpenMath standard defining the objects specified
in XML-Kenzo. To declare new objects in OpenMath we defined Content Dictionaries.
A Content Dictionary is the declaration of a collection of objects, their names, descrip-
tions, and rules. Namely, we have defined five Content Dictionaries, one for each one of
the groups defined in XML-Kenzo (CC, SS, SG, ASG and Computing). Each one of these
Content Dictionaries contains the declaration of the elements that belong to that group
in XML-Kenzo; see Figures 2.5 and 2.10.

The definition of an object in a Content Dictionary includes its name, its description,
examples of the object and sometimes its formal properties specified using OpenMath
(in which case the equivalent commented property using natural language should also be
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given). For instance, the definition of the sphere element in OpenMath starts as follows:

<CDDefinition>

then the name of the object

<Name>sphere</Name>

the description

<Description>
This symbol is a function with one argument, which should be a natural number
n between 1 and 14. When applied to n it represents the sphere of dimension n.

</Description>

an example (namely S3)

<Example>
<OMOBJ>
<OMA>
<OMS cd="SS" name="sphere"/>
<OMI>3</OMI>

</OMA>
</OMOBJ>

</Example>

the commented property in natural language

<CMP>The dimension of the sphere must be a natural number between 1 and 14 </CMP>

the formal property using the OpenMath standard
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<FMP>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/> <OMV name="n"/> <OMS name="N" cd="setname1"/>

</OMA>
<OMA>
<OMS cd="relation1" name="leq"/> <OMI>1</OMI> <OMV name="n"/>

</OMA>
<OMA>
<OMS cd="relation1" name="leq"/> <OMV name="n"/> <OMI>14</OMI>

</OMA>
</OMA>

</FMP>

are given and finally the definition is closed.

</CDDefinition>

In this way, all the objects represented in the XML-Kenzo language are specified
in OpenMath. Moreover, another Content Dictionary called Aux to specify the objects
belonging to the results XML-Kenzo group, such as the elements to return warnings
or results, has been defined. The complete definition of the Content Dictionaries can be
seen in [Her11].

At first glance, formal properties could seem a suitable way to represent the restric-
tions imposed in the XML-Kenzo language and this is true for some of them. However
some restrictions (namely, type restrictions) can only be given here by means of the com-
mented properties that are just properties in natural language, and this is not enough
to our purpose.

Therefore, although OpenMath is not strong enough to represent all the mathemat-
ical knowledge that we need in our framework, we can use it in the most external part
of our framework to represent our mathematical objects and exchange them with other
systems, a task that suits perfectly to OpenMath.

Once we have defined the OpenMath objects, we need a software in charge of con-
verting from XML-Kenzo representation to OpenMath representation and viceversa, this
component is called Phrasebook and is programmed as a Common Lisp module of the
adapter.

To sum up, the adapter receives OpenMath requests, checks that the OpenMath
request is well-formed XML by means of a XML package of Common Lisp [Inc05],
converts the OpenMath request into a well-formed XML-Kenzo request, invokes the
external server with the XML-Kenzo request and sends the result received from the
external server back to the caller using the OpenMath format.
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2.3 Execution Flow

Once we have presented all the components of our framework, let us illustrate the execu-
tion flow of the system with a detailed scenario: the computation of the sixth homotopy
group of the sphere of dimension 3, π6(S

3), in a fresh session of the Kenzo framework;
that is, neither objects were constructed or computations were performed in the Kenzo
framework previously. The execution flow of this scenario is depicted in Figure 2.15 with
a UML-like sequence diagram.

The OpenMath representation of π6(S
3) is the following one:

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homotopy"/>
<OMA>

<OMS cd="SS" name="sphere"/>
<OMI>3</OMI>

</OMA>
<OMI>6</OMI>

</OMA>
</OMOBJ>

The adapter receives the previous OpenMath data from a client. This module checks
that the OpenMath instruction is well-formed and the Phrasebook converts the Open-
Math object into the following XML-Kenzo object:
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<operation>
<homotopy>

<sphere>3</sphere>
<dim>6</dim>

</homotopy>
</operation>

which is sent to the external server. The external server validates the XML-Kenzo object
against the XML-Kenzo specification, in this case as the root element is operation it
checks that:

1. The child element of operation is homology or homotopy. X

2. The homotopy element has two children. X

3. The first child of the homotopy element belongs to one of the groups CC, SS, SG or
ASG. X

4. The value of the sphere element is a natural number higher than 0 and lower than
15. X

5. The second child of the homotopy element is the dim element. X

6. The value of the dim element is a natural number. X

All the tests are passed, so, a valid request is sent to the microkernel. In the mi-
crokernel the homotopy module is invoked. When the homotopy module is invoked, the
procedure explained in Paragraph 2.2.3.4.2 is executed. First, the homotopy module
search in *object-list* list of the internal memory if the sphere of dimension 3 was
constructed previously, as this space was not constructed, the sphere module is invoked
to construct it, this module in turn calls the reduction degree module to obtain the
reduction degree of the sphere. Subsequently, once constructed the mk-space-sphere,
as the reduction degree of the space S3 is two, the homotopy module can call the HES.
The HES tries to apply its rules; however, as all the rules which can be applied to
mk-space-sphere instances depend on dynamic facts, it cannot apply any rule (since
we are working with a fresh session, then dynamic facts have not been computed yet).
Therefore, the HES invokes the HAM which performs some intermediary computations
and, in this case as the intermediary tests succeed, calls the internal server to compute
π6(S

3). The result returned by the internal server is:

<result>
<component>12</component>

</result>
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This result is stored in the internal memory, to avoid re-computations or to use it
as dynamic fact, by the homotopy module and sent to the adapter through the external
server. Then, the adapter converts the result into its OpenMath representation:

<OMOBJ>
<OMA>

<OMS cd="ringname" name="Zm"/>
<OMI>12</OMI>

</OMA>
</OMOBJ>

and this is the result returned to the client.

2.4 Integration of local and remote Kenzo compu-

tations

As we have said several times throughout this memoir, some Kenzo computations can
be very time and space consuming (requiring, typically several days of CPU time on
powerful dedicated computers). Then, we realized that we could use a dedicated server
to perform those heavy computations instead of overloading the Kenzo framework user’s
computer. This section is an ongoing work, so just some ideas are provided in order to
give a flavor of the way of integrating local and remote Kenzo computations.

As a first step to integrate local and remote Kenzo computations, we can consider
the framework depicted in Figure 2.16 where the computations are not longer performed
locally but in a remote server.

There are two new components in this framework. A powerful and external Kenzo
server and a Kenzo server client.

The external Kenzo server is a dedicated sever which receives XML-Kenzo compu-
tation requests and returns XML-Kenzo results. The Kenzo server client is a program
which is able to invoke the services which the Kenzo sever offers and receive the results
returned by the Kenzo server. It is worth noting that the Kenzo server client can be
seen as a new internal server of the Kenzo framework.

In this new organization we are keeping in our framework the internal sever since
both construction and processing modules use it. However, the computations are not
longer performed in the internal server but in the Kenzo server; then, the computation
modules are not connected with the internal server but with the Kenzo server through
the Kenzo server client.

Therefore, we have two different ways of performing computations of groups of spaces
in the Kenzo framework. On the one hand, the original way of working, where all the
computations are locally performed by means of the Kenzo internal server. On the
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Figure 2.16: Kenzo framework with remote Kenzo computations

other hand, the new approach presented in this section where all the computations are
performed in an external Kenzo server.

The second mode has obvious drawbacks related to the reliability of Internet connec-
tions, to the overhead of management where several concurrent users are allowed, and
so on. But the original way of working is not fully satisfactory since interesting Kenzo
computations used to be very time and space consuming. Thus a mixed strategy should
be convenient: the computation modules of the microkernel of the Kenzo framework
should decide if a concrete calculation can be done in the local computer or it deserves
to be sent to the Kenzo server. In this case, as it is not sensible to maintain open an
Internet connection for several days waiting for the end of a computation, a subscription
mechanisms, allowing the Kenzo framework to disconnect and to be subscribed to the
process of computation in the remote server, should be used.

The difficulties of how to mix local and remote computations have two sources: (1)
the knowledge here is not based on well-known theorems since it is context-dependent
(for instance, it depends on the computational power of a local computer), and so it
should be based on heuristics; and (2) the technical problems to obtain an optimal
performance are complicated, due, in particular, to the necessity of maintaining a shared
state between two different computers.

With respect to the kind of heuristic knowledge to be managed into the intermediary
level, there is some part of it that could be considered obvious: for instance, to ask for a
homology group Hn(X) where the degree n is big, should be considered harder than if n
is small, and then one could wonder about a limit for n before sending the computation
to the remote server. Nevertheless, this simplistic view is to be moderated by some
expert knowledge: it is the case that in some kinds of spaces, difficulties decrease when
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the degree increases. The heuristics should consider each operation individually. For
instance, it is true that in the computation of homology groups of iterated loop spaces,
difficulties increase with the degree of iteration. Another measure of complexity is re-
lated to the number of times a computation needs to call the Eilenberg-Zilber algorithm
(see [DRSS98]), where a double exponential complexity bound is reached. Further re-
search is needed to exploit the expert knowledge in the area suitably, in order to devise
a systematic heuristic approach to this problem.

In order to understand the nature of the problem of sharing the Kenzo state between
two computers it is necessary to consider that there are two kinds of state in our context.
Starting from the most simple one, the state of a session can be described by means of
the spaces that have been constructed so far. Then, to encode (and recover) such a
state, a session file containing a sequence of constructors is enough.

Moreover, there exists another kind of state. A space in Kenzo consists of a number
of methods describing its behavior (explaining, for instance, how to compute the faces of
its elements), it was already explained in Subsection 1.2.1. Due to the high complexity
of the algorithms involved in Kenzo, a strategy of memoization has been implemented
(see Section 1.2.5). As a consequence, the state of a space evolves after it has been
used in a computation (of a homology group, for instance). Thus, the time needed to
compute, let us say, a homology group, depends on the concrete states of every space
involved in the calculation (in the more explicit case, to re-calculate a homology group
on a space could be negligible in time, even if in the first occasion this was very time
consuming). This notion of state of a space is transmitted to the notion of state of a
session. We could speak of two states of a session: the one sallow evoked before, that
is essentially static and can be recovered by simply re-constructing the spaces; and the
other deep state which is dynamic and depends on the computations performed on the
spaces.

To analyze the consequences of this Kenzo organization, we should play with some
scenarios. Imagine during a local session a very time consuming calculation appears;
then we could simply send the sallow state of an object to the remote server, because
even if some intermediary calculations have been stored in local memory, they can be
re-computed in the remote server (finally, if they are cheap enough to be computed on
the local computer, the price of re-computing them in the powerful remote server would
be low). Once the calculation is remotely finished, there is no possibility of sending
back the deep state of the remote session to the local computer because, usually, the
memory used will exhaust the space in the local computer. Thus, it could seem that to
transmit the sallow state would be enough. But, in this picture, we are losing the very
reason why Kenzo uses the memoization (dynamic programming) style. Indeed, if after
obtaining a difficult result (by means of the remote server) we resume the local session
and ask for another related difficult calculation, then the remote server will initialize a
new session from scratch, being obligated to re-calculate every previous difficult result,
perhaps making the continuation of the session impossible. Therefore, in order to take
advantages of all the possibilities Kenzo is offering now on powerful scientific servers, we
are faced with some kind of state sharing among different computers (the local computers
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and the server), a problem known as difficult in the field of distributed object-oriented
programming.

The same problem above presented appears in the organization of the Kenzo server.
At this moment, we are working with the Broker architectural pattern, see [B+96, B+07],
in order to find a natural organization of the Kenzo server. In a broker based server, there
would be several Kenzo kernels and a component called broker. The broker component
will be responsible for the distribution of requests arriving to the Kenzo server across the
different Kenzo kernels, and the returning of results. One of the main advantages of using
the Broker pattern is the fact that Kenzo kernels not only can work individually but also
can collaborate to obtain results. However, to achieve the cooperation of different Kenzo
kernels we find the problem of sharing the state among the different kernels presented
in the previous paragraph.

Therefore, more work is necessary to find a plausible solution to integrate local and
remote Kenzo computations.

2.5 Towards a distributed framework

In the previous section, an ongoing work devoted to increase the computational capa-
bilities of the Kenzo framework through the distribution of computations across local
and remote Kenzo kernels was presented. On the contrary, this section, also related
to a work in progress, presents an alternative to the Kenzo framework which will take
advantage of the collaborative work of different clients by means of a system located
not in user’s computer but in a shared server. The new framework will be called server
framework.

The server framework has some common concerns with the Kenzo framework, since
both frameworks provide a mediated access to the Kenzo system. There are, however,
important differences. The Kenzo framework is installed in the local computer of its
clients. On the contrary, the server framework is located in a remote server, and users of
this system only need a light client able to communicate with the server framework; due
to this fact, we have a collaborative work among different clients of the server framework,
since a client can take advantage of the computations performed by other one. However,
no reward comes without its corresponding price, and several problems, which do not
exist in the Kenzo framework (for instance, the reliability of Internet connections or
the management of concurrency problems), appear in the development of the server
framework.

The most important challenges that we faced in the development of our server frame-
work were:

1. Functionality. The system should provide access to the Kenzo capabilities for
computing (homology and homotopy) groups.
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2. Interaction with different clients. The server framework should be designed in such
a way that it could support different kinds of clients (graphical user interfaces, web
applications and so on).

3. Reusability the Kenzo framework components. As far as possible, we want to reuse
the different components implemented in the Kenzo framework, in order to take
advantage of the enhancements included in that framework.

4. Error handling. The server framework should forbid the user some manipulations
raising errors. This question is easily handled due to the reuse of Kenzo framework
components.

5. Decoupling components. In spite of partly reusing the modules implemented for
the Kenzo framework, we are aware that the message passing communication style
of the Kenzo framework is not suitable for a server architecture. Then, a kind of
asynchronous communication among the components must be provided in order
to decouple them.

6. Storage of results. The results must be stored in a persistent way to avoid recal-
culations.

7. Multithreading. The server framework should be designed in such a way that it
could support the process of several requests at the same time.

8. Management of concurrency problems. The control of concurrency issues is one of
the most important questions when a system can process several requests at the
same time.

9. Subscription mechanism. It is not sensible to keep open an internet connection for
several days waiting for the end of a computation; then, some reactive mechanism
should be implemented, allowing the client to disconnect and to be subscribed in
some way to the process of computation in the remote server.

The previous requirements led us, inspired by the work of [MlBR07], to choose both
the Linda model [Gel85] and the Shared Repository architectural pattern [B+96, B+07]
to reorganize the Kenzo framework components in a server framework. The communi-
cation between the server framework and its clients will be provided by means of web
services [C+07] based on OpenMath. In addition, a mail subscription mechanism will
be implemented to avoid the problem of keeping open a connection during too much
time.

The rest of this section is organized as follows. First of all, Subsection 2.5.1 is
devoted to introduce the Linda model and the Shared Repository pattern. Our server
framework based on the Linda model and the Shared Repository pattern is presented in
Subsection 2.5.2.
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2.5.1 The Linda model and the Shared Repository pattern

Our server architecture has been inspired by both the Linda model [Gel85] and the
Shared Repository architectural pattern [B+96, B+07].

The Linda model is based on generative communication, a mechanism for asyn-
chronous communication among processes based on a shared data structure. The asyn-
chronous communication is performed by means of the insertion and extraction of data
over the shared space.

The shared space is called tuple space, since it contains a set of tuples produced
by the different processes. As soon as a tuple is inserted in the tuple space, it has an
independent existence.

Tuples are represented by means of a list of items, the items are split by means
of commas and closed between brackets. Tuples can contain both actual and formal
items. An actual item contains a specific value, like 3 or foo. A formal item acts like a
placeholder (a character “?” denotes a variable which has to be treated as formal).

Example 2.2. Some examples of tuples are as follows:

(Paris, Toronto, ?)
(Peter, 15)
(car1, 10, 15.35)

In the Linda model, processes access the tuple space using five simple operations:

out: adds a tuple from the process to the tuple space.

in: deletes a tuple from the tuple space and returns it to the process. The process
is blocked if the tuple is not available.

rd: returns a copy of one tuple of the tuple space. The process is blocked if the
tuple is not available.

inp: a non blocking version of the in operation.

rdp: a non blocking version of the rd operation.

By means of the last four operations tuples can be retrieved from a tuple space.
The arguments of these functions are tuple templates, possibly containing formal items
(placeholders or wildcards).

The Shared Repository pattern is based on a very similar idea to the Linda model.
It adds the nuance that a component has no knowledge of both what components have
produced the data it uses, and what components will use its outputs.
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Figure 2.17 shows a feasible framework which brings together both Linda model and
the Shared Repository pattern.

An architecture based on the combination of the Linda model and the Shared Reposi-
tory pattern solves two of the challenges that were stated at the beginning of this section.
On the one hand, the communication among the modules of our framework will be per-
formed through the tuple space; in this way, the different components of our system will
be decoupled. On the other hand, the question of storing results is easily solved using
the Linda model due to the fact that all the computations can be stored as tuples in the
tuple space avoiding re-computations.

2.5.2 A server framework based on the Linda model

A high level perspective of the server framework, based on both the Linda model and
the Shared Repository pattern, as a whole is shown in Figure 2.18.

The rest of this subsection is devoted to present the components of this framework,
as well as some important issues tackled in its development.
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2.5.2.1 Components of the server framework

As we said at the beginning of this section, we decided to reuse, as much as possible, the
components implemented in the Kenzo framework in our server framework. This decision
was taken due to the fact that we did not want a powerful Kenzo server which can be used
just by the Kenzo framework to perform long computations (as in the case presented in
Section 2.4), but a server framework which can be employed for different clients taking
advantage of the Kenzo enhancements implemented in the Kenzo framework and the
collaborative work with other clients.

XML keeps on being the chosen technology to encode the data of our framework.
Namely, XML-Kenzo is used for data interchange among the different components of
the framework, and OpenMath is the language employed to communicate the server
framework with the outside world.

The main innovation of the server framework with respect to the Kenzo framework
is the tuple space of the Linda model. In order to use the Linda model in our context,
a running implementation of it must be available. There are different Linda model
implementations for Java [FHA99], C++ [Slu07], and even one for Common Lisp [Bra96].
Instead of using any of them, we have preferred to develop a fresh Allegro Common Lisp
implementation adapted to our very concrete situation since the Common Lisp version
presented in [Bra96] is out-of-date and the integration of either Java or C++ versions
in our framework could be difficult.

We have developed our implementation of a tuple space holding the following prop-
erties: it must be shared (different modules can access it concurrently), persistent (once
a tuple is stored in the tuple space, it stays in it until a module deletes it) and should
comply with the ACID (Atomicity, Consistency, Isolation and Durability) rules.

Two possibilities were considered when designing our Linda model implementation.
The first one consists of implementing the Linda model from scratch, without using any
kind of external tool (for instance, the tuple space could be installed in computer memory
and we could store the data as lists). This option would be very time consuming since
it must solve well known problems in the domain of concurrent systems. Additionally,
since our data are expressed as XML data, something like XQuery or XPath [E+07]
should be implemented in our case to search tuples inside our system, too.

These problems oriented us towards the second possibility: using already existing
technology. Our previous remarks gave us the clue: XML databases [CRZ03] could be
a good support in our case.

There are two kinds of XML databases: native XML databases and XML enabled
databases . Native XML databases has XML documents as its fundamental unit of
storage; on the contrary, XML enabled databases work with XML objects as data and
use as internal model a tradicional (relational or object oriented) database; then, we
chose XML enabled databases because we are going to work with XML-Kenzo objects.
In XML enabled databases, each XML object is mapped to a datum of the internal
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(relational or object oriented) model of the database giving access to all the features
and the performance that can be found in the corresponding database manager. These
databases include two kind of processes: map XML data to objects or tables, and convert
database elements into XML data.

The chosen database was AllegroCache [Aas05]. AllegroCache is an object oriented
database of Allegro Common Lisp. One of the main advantages of working with Alle-
groCache is that the data are always stored persistently but one can work directly with
objects as if they were in standard memory. Besides it supports a full transactional model
with long and short transactions, meets the classic ACID requirements for a database
and maintains referencial integrity of complex data objects. Persistent classes located
by AllegroCache are just usual CLOS classes, where the metaclass persistent-class is
declared.

In order to complete our Linda model implementation, we still have to deal with
both tuples and the operations to interact with the tuple space. Since we have decided
that tuples rely on XML-Kenzo data but the repository (to be understood as a tuple
space) is based on AllegroCache, it is necessary to convert from XML-Kenzo objects to
instances of persistent classes stored in the database and viceversa. To this aim, we have
devised a class system represented with UML notation in Figure 2.19.

As we have said previously, the server framework is devoted to perform computations;
then, the requests which arrive to this framework are computation requests. Each com-
putation request is made up of both a topological space and an operation over it, so two
classes, XML-Object (with just one slot whose value is the XML-Kenzo representation of
the space) and operation (with two slots, name and dim, which provide respectively the
name of the operation, homology or homotopy, and the dimension) have been defined to
model the two components of a computation request. The tuple class binds these two
components of a request.

Moreover, in our server framework a tuple can have three different states: (1) the
tuple is pending of being validated, (2) the tuple has been validated, and (3) the system
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has obtained the result of the computation request associated with the tuple, and, then,
the tuple has finished its work. Then, a tuple is implemented as an instance of the
pending subclass in the first case, as a valid instance in the second one; and as a
finished instance in the last one. It is worth noting that instances of the finished

class have two additional slots: (1) the correct slot indicates if some problem was found
when processing the tuple by means of a boolean value, and (2) the result slot stores a
warning XML-Kenzo object if some problem was found when processing the tuple or a
result XML-Kenzo object otherwise.

Finally, as our tuple space is an AllegroCache database, the Linda model opera-
tions are implemented in a natural way from the select, insert and delete-instance

functions of AllegroCache. For instance, the inp operation of the Linda model can be
programmed by combining a select operation and a delete-instance one. Thus, we
have built five methods with the following signatures:

writetuple: tuple→ Boolean,
taketuple: tuple→ tuple,
readtuple: tuple→ tuple,
taketuplep: tuple→ tuple ∨ nil and
readtuplep: tuple→ tuple ∨ nil,

These are, respectively, our versions for out, in, rd, inp and rdp.

This finishes the description of our Linda model implementation. The rest of the
server framework components are three Common Lisp modules based on the components
of the Kenzo framework and the interface which allows the communication with the
outside. All the modules are organized in two layers: the business logic layer and the
persistence layer. The persistence layer is in charge of communicating the module with
the tuple space through the operations (writetuple, taketuple and so on) of our Linda
model implementation. The business logic layer always works with XML-Kenzo objects
produced by the persistence layer from the tuples of the tuple space.

Then, our modules are as much independent as possible from the chosen technology
used to implement the Linda model, since the business logic layers always work with
the same representation of objects; then, if we change our implementation of the Linda
model, we only need to change the persistence layers; remaining untouched the business
logic layers.

Let us explain the three modules.

2.5.2.1.1 The I/O module The I/O module business logic layer consists of the
Kenzo framework adapter, presented in Subsection 2.2.5. The persistence layer of this
module allows it to interact with the tuple space by means of the insertion of pending
tuples and the reading of finished tuples. When, a new OpenMath computation request
arrives to the server framework this module is activated and proceeds as follows.
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1. Check that the OpenMath request is well formed:

(a) If the request is not well formed a warning OpenMath object is returned.

(b) Otherwise, go to step 2.

2. Transform the OpenMath object into an XML-Kenzo object.

3. The persistence layer searches among the finished tuples of the tuple space if the
result for that request was previously computed:

(a) If the result was stored, the finished tuple which stores the result is read
by the persistence layer and an XML-Kenzo object result is returned to the
business logic layer. Go to step 6.

(b) Otherwise, go to step 4.

4. The persistence layer constructs a pending tuple from the XML-Kenzo request and
writes it in the tuple space.

5. When the server framework obtains a result for the computation request, the
finished tuple which stores the result for that request is read by the persistence
layer and an XML-Kenzo object result is returned to the business logic layer.

6. Transform the XML-Kenzo result into an OpenMath result.

7. Return the OpenMath result to the client.

2.5.2.1.2 The Processing module The Processing module business logic layer is
a combination of the external server, presented in Subsection 2.2.4 and part of the
functionality of the microkernel (namely, the knowledge included in that component to
manage errors), presented in Subsection 2.2.3. This module is in charge of validating the
correctness of requests; namely, all the knowledge included in both the external server
and the microkernel to handle errors is gathered in this module. To be more concrete
all the restrictions managed in the Kenzo framework (that is to say; type restrictions,
independent argument restrictions of the space constructors, implementation restrictions
of the space constructors, functional dependent restrictions of the arguments of the con-
structors, reduction degree restrictions and restriction of the dimension in computations)
are handled in the processing module. Let us note that in spite of only working with
computing requests, the server framework also has to check the constraints related to
the construction of spaces in order to avoid errors.

The persistence layer of this module allows it to interact with the tuple space by
means of the insertion of valid and finished tuples and the reading of pending tuples.
When, a pending tuple is written in the tuple space the processing module is activated
and proceeds as follows.

1. The persistence layer takes the pending tuple.
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2. The persistence layer transforms the pending tuple into an XML-Kenzo object
which is sent to the business logic layer.

3. The business logic layer checks all the constraints about the XML-Kenzo object:

(a) the business logic layer indicates to the persistence layer to write a valid

tuple in the tuple space if all the constraints are fulfilled.

(b) Otherwise, indicates to the persistence layer to write a finished tuple in the
tuple space with nil as value of the correct slot and the warning produced
as value of the result slot.

4. The persistent layer writes the indicated tuple in the tuple space.

2.5.2.1.3 The Kenzo module The Kenzo module business logic layer is the internal
server of the Kenzo framework, presented in Subsection 2.2.2. The persistence layer of
this module allows it to interact with the tuple space by means of the insertion of
finished tuples and the reading of valid tuples. When, a valid tuple is written in the
tuple space the Kenzo module is activated and proceeds as follows.

1. The persistence layer takes the valid tuple.

2. The persistence layer transforms the valid tuple into an XML-Kenzo object which
is sent to the business logic layer.

3. The business logic computes the value of the request and sends an XML-Kenzo
result to the persistence layer.

4. The persistence layer constructs a finished tuple from the XML-Kenzo result and
writes it in the tuple space.

At this moment the server framework has only a Kenzo kernel; however, as we said
in Section 2.4, we should use several Kenzo kernels in order to deal with different Kenzo
computations. To this aim, we could use the Broker pattern [B+96, B+07] which will
allow us to distribute different parts of a computation among different Kenzo kernels.
Nevertheless, this task remains as further work.

2.5.2.1.4 Relations among the modules and the tuple space The relations
among the modules and the tuple space are shown in Figure 2.20.

It is worth noting that pending and valid tuples are respectively removed from the
tuple space by the processing module and the Kenzo module; on the contrary, finished
tuples remain in the tuple space to avoid re-computations achieving the challenge of
storing results.
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2.5.2.1.5 Web Services The previous paragraphs have been devoted to present the
different components of the framework and their relations with the tuple space. Let us
focus now on other innovation with respect to the Kenzo framework: the use of web
services to communicate the server framework with different clients.

In order to offer transparent access to our server computing infrastructure, three web
services have been developed (briefly, a web service is a program, based on XML, which
provides access to an application over the network). These three web services allow the
use of the server framework only knowing the OpenMath format of the computation
requests (no knowledge about Lisp or Kenzo is needed). So, a developer could build an
application (in platforms with support for web services, such as Java, .Net, Lisp and
so on) for our web services only knowing the OpenMath syntax, which is described in
the OpenMath Content Dictionaries, and, of course, the web services technology of the
concrete programming language. We have implemented these web services using the
SOAP 1.1 API for Allegro Common Lisp [Incd]. This API allows us to open the access
to our server on the internet via the SOAP protocol [G+] (a web services protocol). Let
us explain the differences among the three web services.

The first web service makes a request to the server framework and waits until the
result is returned. This web service can be useful in the implementation of a light client
where all the computations are done in the server. However, if the computation asked
to the server framework takes too much time, the connection must be kept open all that
time.

On the contrary, in the second web service, the connection is not maintained, and
therefore it needs not only the OpenMath computation request but also an e-mail address
where the result will be returned. In this case, to send mails, we have chosen to use
Java joins with the JavaMail API [Mic99]. The JavaMail API is a set of abstract APIs
modeling a mail system and providing the required technology. In order to do this, we
need to communicate our framework (developed in Lisp) with a Java application. There
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exists different solutions to this problem: we could use the middleware CORBA [Gro],
or use the jLinker package [Incc] provided by Allegro Common Lisp; nevertheless, these
options are too general for our concrete aim. Then, we have used a solution based on
one of the jLinker ideas. jLinker requires two open socket connections between Lisp and
Java, one for calls from Lisp to Java, and another one for the inverse communication. In
our case we only need one socket for communicating Lisp with Java, because our Lisp
system does not require information from our Java system. In Java we have a passive
socket waiting for the creation of a connection by means of an active socket (it is the same
idea presented in Subsubsection 2.5.2.2 to activate the server framework components).
In the Lisp system, whenever a new result is created, the web service creates an active
socket which connects with the passive socket of Java and sends both the e-mail address
of the client and the result of the computation requested. Finally, the Java program
sends an e-mail to the client with the result of the computation asked for the client.
However, this web service is not fully satisfactory, since even if the computation asked
to the server framework only taking a few microseconds, the client always has to check
his e-mail to obtain the result.

As we have said, neither of the two previous web services is fully satisfactory, since
they implement two extreme interactions: the first one always keeps open the connection
until the result is returned; on the contrary, the second one never does it. Then, to solve
this problem a third web service has been implemented mixing the good properties of
the others. This web service receives an OpenMath computation request and an e-mail
address. When the result is obtained the system checks if the connection with the user is
still open, in that case the web service directly returns the result to the user; otherwise
it sends the result to the e-mail address. Clients of this web service must decide how
much time the connection remains open, an issue which depends on each concrete client.

These web services solve two of the challenges stated at the beginning of this section.
On the one hand, web services and OpenMath are general enough to be used for different
clients. On the other hand, a subscription mechanism is implemented, then, instead of
waiting for the end of a computation, this reactive mechanisms sends an e-mail with the
result to the user if the user connection is not longer available.

2.5.2.2 Communication among modules

Up to now, how the different modules are communicated has not been explained. This is
one of the most important issues, and has been tackled by means of a reactive mechanism,
to be more concrete by means of a publish-subscribe machinery.

This mechanism is based on the existence of both subjects, which can be modified,
and observers subscribed to any possible subjects modification. This design has been im-
plemented following the Publish-Subscriber pattern [B+96, B+07]. This design pattern,
also called Observer, helps to keep synchronized the state of cooperating components,
providing a mechanism for asynchronous communication.

In this pattern, each subject has associated a component which takes the role of
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publisher. All the components which depend on changes in the subject are its subscribers
(or observers). The publisher component maintains a registry of currently-subscribed
components. Moreover, subscribers can be interested only in a kind of changes of the
subject, so, this information is also kept by the publisher. Then, whenever the state of
a subject changes, its publisher sends a notification to all the subscribers interested in
that change.

In our context, we only have one subject that is our tuple space (the AllegroCache
database) which has associated a publisher component (a bunch of Common Lisp func-
tions), and the subscribers are the three modules wrapped with a notification mechanism
(several Common Lisp functions) which allow them to receive the notifications from the
publisher.

To store the subscriptions, an AllegroCache database, called from now on subscription
database, is associated with the publisher of the tuple space. This database contains
instances of the subscription class which is defined as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defclass subscription ()
((host :type string :initarg :host :accessor host )
(port :type integer :initarg :port :accessor port )
(type-tuples :type symbol :initarg :type :accessor type :index any))

(:metaclass persistent-class))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has three slots:

• host, a string being the host of a subscriber.

• port, an integer being the port of a subscriber.

• type-tuples, a symbol (’pending, ’valid or ’finished) indicating the kind of
tuples which are interesting for the subscriber. In addition this slot is an index
slot. Index slots are the way of filtering and ordering the results of a search in
AllegroCache.

Moreover we have defined this class as persistent by means of the metaclass
persistent-class. This implies that every instance of this class will be permanently
stored (until a module explicitly deletes it) in the database.

The subscription database always contains, at least, three instances: one per each
module of the server framework. To be more concrete, the instance associated with the
I/O module includes its host, port and the interesting tuples for this module, that are
finished tuples:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-instance ’subscription :host "localhost" :port 8001 :type-tuples ’finished)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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the instance associated with the processing module includes its host, port and the in-
teresting tuples for this module, that are pending tuples:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-instance ’subscription :host "localhost" :port 8002 :type-tuples ’pending)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and, finally, the instance associated with the Kenzo module includes its host, port and
the interesting tuples for this module, that are valid tuples:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-instance ’subscription :host "localhost" :port 8003 :type-tuples ’valid)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is worth noting that in this case the host of all the modules is the same. That is
to say, currently, all the modules are located in the same computer. However, we could
install each module in a different computer, and devote a dedicated computer for each
one of the modules.

In the future, if we want to include a new module as subscriber of the tuple space,
we only need to define an instance with its host, port and the interesting tuples. In
this way, whenever an interesting tuple for the module is written in the tuple space, a
notification is sent to the module by the publisher.

Let us explain now the notification mechanism which is based on sockets technology
and is implemented with the Allegro Common Lisp socket package [Inca]. This package
provides all the necessary tools to communicate our modules and the publisher by means
of sockets technology.

Each one of the modules of our server framework has a passive socket in the port
specified in its subscription instance. This passive socket is waiting its activation by
means of the following function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun observer-<module> ()
(loop
(let ((sock (make-socket :connect :passive :local-port <port>)))
(wait-for-input-available sock)
(close sock) (validate))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where <module> and <port> are replaced with the name of the module and the port
specified in the subscription database for that module. The rest of the function must
be read as follows. We have a loop instruction that repeats always the same process:
(1) creates a passive socket, (2) waits until the passive socket is activated, (3) closes the
socket, and, finally, (4) does the job associated with the module.

Let us stress in the observer-<module> definition the use of the
wait-for-input-available function. This function waits the connection of an
active socket with the passive socket sock. Therefore, the well-known busy-waiting
concurrency problem is solved (a good description of the concurrency issues presented
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in this memoir can be consulted in [Sch97]). Busy-waiting happens when a process
repeatedly checks if a condition is true (for instance, the availability of a shared
resource), the problem is that the processor spends all its time waiting for some
condition. A sensible solution to this problem consists of using semaphores which is
the approach followed with the wait-for-input-available function. Note that this
function acts as a binary semaphore, to be precise as a P operation (the P operation
sleeps the process until the resource controlled by the semaphore becomes available).
Then, the module is not repeatedly checking if a new tuple has been written in the
tuple space, but it is slept until someone activates it (this activation is produced when
an interesting tuple for the module is written in the tuple space).

After the description of the implementation of the notification mechanism from the
modules side, let us present now the publisher side. In the publisher we have the following
function definition.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun notify (type-tuple)
(open-network-database "localhost" 8010)
(let ((subscrites

(retrieve-from-index ’subscription ’type-tuple type-tuple :all t)))
(dolist (temp subscrites)
(let ((socket (make-socket :remote-host (host temp) :remote-port (port temp))))
(close socket))))

(close-database))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This function is called when a new tuple is written in the tuple space with the type
of the written tuple, type-tuple, as argument. The workflow followed by this function
when it is activated is as follows: (1) open the subscription database, (2) search all the
modules which are subscribed to the writing of a tuple of type-tuple type in the tuple
space, (3) creates an active socket for each one of the subscribers, and, finally, (4) close
the database. It is worth noting that this function is acting as the V operation in a
binary semaphore (the V operation is the inverse of the P operation: it makes a resource
available). In this way, all the subscribers to the tuples of type-tuple type are activated.

Therefore, the tuple space and the modules are communicated achieving the challenge
of an asynchronous communication among the modules of the framework.

2.5.2.3 An example of complete computation

Once we have described our server architecture, the communication among the modules
and the communication between the server framework and its clients by means of web
services, let us illustrate the execution flow of the server framework with a detailed
scenario: the computation of the sixth homotopy group of the sphere of dimension
3, π6(S

3), in a fresh session of the server framework; that is, computations were not
previously performed. The execution flow of this scenario is depicted in Figure 2.21
with a UML-like sequence diagram.
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Figure 2.21: UML sequence diagram

The server has received the OpenMath request by means of anyone of the three web
services presented in the previous subsubsection. The process of the request is the same
for all of them, the only difference is the way of returning the result; but that was
explained in the previous subsubsection. The OpenMath representation of π6(S

3) is the
following one:

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homotopy"/>
<OMA>

<OMS cd="SS" name="sphere"/>
<OMI>3</OMI>

</OMA>
<OMI>6</OMI>

</OMA>
</OMOBJ>

The I/O module receives the previous OpenMath data from a client through one of
the web services. This module checks that the OpenMath instruction is well-formed and
converts the OpenMath object into the following XML-Kenzo object:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

<operation>
<homotopy>
<sphere>3</sphere>
<dim>6</dim>

</homotopy>
</operation>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the I/O module, which has access to the finished tuples, asks if a
finished tuple with the result of the request exists in the tuple space. To this aim, a
finished template object is created from the XML-Kenzo datum in order to query the
tuple space as follows (the wildcard ’? allows us to define a search template on tuples):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (readtuplep
(make-instance ’finished
:operation (make-instance ’operation

:name "homotopy"
:dim 6)

:XML_Object (make-instance ’XML_Object
:xml-object "<sphere>3</sphere>")

:correct ’? :result ’?)) z
NIL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, NIL is returned, meaning the result is not in the database (as we have
said, we are working in a fresh session, so, no computation has been performed previ-
ously). Then the I/O module writes a pending tuple (corresponding to the request) in
the tuple space (from now on, we will not include the attribute values of the instances
if they are not different from the previous ones):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (writetuple (make-instance ’pending :operation (...) :XML_Object (...))) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Due to the existence of a new pending tuple the processing module is activated, and
it asks for a pending tuple:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (taketuplep (make-instance ’pending :operation ’? :XML_Object ’?)) z
#<PENDING @ #x2143918a>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With (make-instance ’pending :operation ’? :XML Object ’?), the processing
module asks for a general pending tuple. The taketuplep method deletes the element
of the database and creates an XML-Kenzo object used by the processing module to
validate the request. In this case, the request is considered sensible so the processing
module writes a valid tuple in the tuple space:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (writetuple (make-instance ’valid :operation (...) :XML_Object (...))) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, the Kenzo module is activated due to the writing of a new valid tuple
in the tuple space. Then it asks for the new tuple:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (taketuplep (make-instance ’valid :operation ’? :XML_Object ’?)) z
#<VALID @ #x214be502>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and computes the result of the request writing the result as a finished tuple:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (writetuple
(make-instance ’finished :operation (...) :XML_Object (...)

:correct t :result "<component>12</component>")) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then the I/O module is activated and asks again for the result of the request.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (readtuplep
(make-instance ’finished :operation (...) :XML_Object (...)

:correct ’? :result ’?)) z
#<FINISHED-PERSISTENT oid: 5022 @ #x214cff02>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, the result is not deleted from the tuple space because a readtuplep

operation is used. Then, the result can be used again, without recomputing it.

Eventually, the I/O module converts the result into its OpenMath representation

<OMOBJ>
<OMA>

<OMS cd="ringname" name="Zm"/>
<OMI>12</OMI>

</OMA>
</OMOBJ>

and this is the result returned to the client.

2.5.2.4 Concurrency issues

In the previous subsubsection, we have presented an execution scenario where there is
only one request in the system. In general, in a server several requests coexist at the
same time; then, some concurrency problems can appear and must be dealt with. Let
us remember that the management of concurrency problems was one of the challenges
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that we faced in the development of the server framework.

It is worth noting that most of the typical concurrency problems are solved thanks to
the organization of our framework, based on the Linda model. As the server is based on
this model, if a process wants to modify a tuple, it must extract it, modify it and then
insert it again in the tuple space (remark that the extraction and the insertion operations
are atomic). Therefore different processes keep independent among themselves, avoiding
the occurrence of several problems related to concurrency.

Concurrency appears in two different ways in our server architecture. On the one
hand, different modules can work at the same time; that is to say, while the Kenzo module
is computing a homology group, the processing module can validate the correctness of a
request and the I/O module can receive new requests and write them in the tuple space.
On the other hand, several processes of the same module can work at the same time;
that is to say, the Kenzo module can perform several computations simultaneously.

In the former case (different modules working at the same time), the most important
concurrency features which must be considered in our server framework are:

• Absence of deadlocks. A deadlock happens when two processes are waiting for the
other to finish, and thus neither ever does. In our server framework this situation
never happens since the execution of each one of the modules is independent from
the others.

• Mutual exclusion. Mutual exclusion occurs when some algorithms avoid the simul-
taneous modification of a shared resource. In our server, the shared resource is the
tuple space; however, each server framework component only access to a kind of
tuples. Therefore, in spite of concurrently accessing to the tuple space, the server
framework components access to different kinds of tuples; then, inconsistencies are
avoided and the good property of mutual exclusion is achieved.

• Absence of starvation. Starvation describes a situation where a process is unable
to access to shared resources and is unable to make progress. This situation is not
feasible in our server framework, since the modules are only activated when new
resources are included in the tuple space. Moreover, the modules access to the
tuple space by means of non blocking operations; then, if a module asks data to
the tuple space but there is no datum, then the module backs to sleep. Therefore,
our server framework components never starve.

Let us focus now on the latter case (several processes of the same module working
at the same time). Every time that a module is activated a new thread (in charge of
executing the instruction of the correspondent module) is built from the main process. In
order to do this, a multiprocessing package of Common Lisp which provides all the server
framework modules with the main tools for working in a concurrent way (management of
threads, locks, queues and son on) has been used. In this situation, the most important
concurrency features which must be considered in our server framework are:
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• Absence of deadlocks. Each thread of a module is independent from the rest of
threads of the module. Then, none waits for the others to finish and, then, dead-
locks never happen.

• Absence of starvation. A module launches a thread only when the module has
received some data to process and this thread is killed when if finishes its task.
Therefore, starvation never happens since the thread does not access to the shared
resource to receive the data, because they are created with the data that must
process.

• Absence of race condition problems. Race conditions arise in software systems
when separate threads of execution depend on some shared state. It is worth
noting that if two processes read (readtuplep) the same tuple, two different tuples
will be created when each process writes its result, then, the race condition problem
is avoided.

This short analysis shows that some typical inconsistencies produced by concurrency
problems will be avoided in our framework.





Chapter 3

Extensibility and Usability of the
Kenzo framework

The previous chapter was devoted to present a framework which provides a mediated
access to the Kenzo system, constraining its functionality, but providing guidance to
the user in his navigation on the system. However, we cannot consider that the Kenzo
framework is enough to cover fully our aims.

On the one hand, we want to be able to increase the capabilities of the system
by means of new Kenzo functionalities or the connection with other systems such as
Computer Algebra systems or Theorem Prover tools. On the other hand, the XML
interface (to be more concrete, the OpenMath interface) is not desirable for a human user;
then, a more suitable way of interacting with the Kenzo framework must be provided.

To cope with the extensibility challenge, we have deployed the Kenzo framework as
a client of a plug-in framework that we have developed. This allows us to add new
functionality to the Kenzo framework without accessing to the original source code.
Moreover, as a client of both Kenzo and plug-in frameworks, an extensible friendly
front-end has been developed. By combining the frameworks and the front-end we are
able to improve the usability and the accessibility of the Kenzo system, increasing the
number of users who can take profit of the Kenzo computation capabilities. The whole
system, that is to say, the combination of the two frameworks and the front-end, is called
fKenzo, an acronym for friendly Kenzo [Her09].

The rest of this chapter is organized as follows. The plug-in framework, which the
Kenzo framework is a client of, is explained in Section 3.1. The main client of the Kenzo
framework, an extensible user interface, is introduced in Section 3.2.

101
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3.1 A plug-in framework

Architectures providing plug-in support are used for building software systems which
are extensible and customizable to the particular needs of an individual user. Several
interesting plug-in approaches exist. One of the first plug-in platforms was Emacs (“Ed-
itor MACroS”) [Sta81], whose extensions are written in elisp (a Lisp dialect) and can be
added at runtime. The Eclipse platform [OTI03] is certainly the most prominent repre-
sentative of those plug-in platforms and has driven the idea to its extreme: “Everything
is a plug-in”. Plug-ins for Eclipse are written in Java. Other examples are OSGi [Ini03],
a Java-based technology for developing components, or Mozilla [Moz], a web browser
with a great amount of extensions.

Kenzo is also a plug-in system: to add new functionality to the Kenzo system, a file
with the new functions must be included; remaining untouched the Kenzo main code.
In general, all the systems implemented in Common Lisp are extensible. Therefore, to
extend the functionality of a Common Lisp program, we, usually, only need to load new
functions by means of Common Lisp files.

One of the most important challenges that we faced in the development of the Kenzo
framework was the management of its extensibility. On the one hand, we wanted that
the Kenzo framework could evolve at the same time as Kenzo. On the other hand, the
framework should be enough flexible to integrate new tools, such as other Computer
Algebra systems and Theorem Provers tools. In addition, we wanted that the original
source code of the Kenzo framework remained untouched when the system was extended.
Therefore, we decided to include a plug-in support in our framework by means of a plug-
in framework developed by us.

The rest of this section is organized as follows. Subsection 3.1.1 is devoted to present
the architecture of the plug-in framework. Moreover, explanations about the way of
adding new functionality to the Kenzo framework through the plug-in framework are
provided in Subsection 3.1.2.

3.1.1 Plug-in framework architecture

Extensibility is very important because an application is never really finished. There
are always improvements to include and new features to implement.

With the aim of being able to extend different systems we have developed a plug-
in framework. This framework may have systems of very different nature as clients.
Therefore, the way of extending a client can be different to the way of extending the rest
of them. This issue has been taken into account in the design of the plug-in framework.

The implementation of the plug-in framework has been based on the plug-in pattern
presented in [MMS03]. This pattern distinguishes two main components: the plug-ins
and the plug-in manager. Moreover, we have included two improvements of our own, the
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Figure 3.1: Plug-in framework

plug-in repository and the plug-in registries (each client of the plug-in framework will
have associated a plug-in registry). A high level perspective of the plug-in framework
is depicted in Figure 3.1. Let us explain each one of the constituents of our plug-in
framework.

A plug-in in our system consists of different resources used to extend a concrete
client. Since the clients of the plug-in framework are very different, the nature of the
resources included in them too. However, it would be desirable that the format of all
the plug-ins (not the format of the resources which obviously depends on each client)
was common for the different clients.

Then, we have chosen OMDoc [Koh06] as format to codify our plug-ins. OMDoc is
an open markup language for mathematical documents, and the knowledge encapsulate
in them. The OMDoc plug-ins are documents that wrap the necessary resources to
extend a concrete client of the plug-in framework.

Essentially, an OMDoc plug-in is an XML document, that stores the metadata about
the plug-in (authorship, title, and so on) and wraps the resources (by means of references
to other files that, of course, depend on the concrete client) which extend a client of the
plug-in framework.

For instance, let us suppose that we have a client, called client-1, of our plug-in
framework; and we want to extend that client by means of the resources stored in a
file called client-1-resources. Then, the OMDoc plug-in, called new-module-client-1,
will contain, in addition to the metadata about the plug-in, the following XML fragment
(all the OMDoc plug-ins follow the same pattern).

<code id="new-module-client-1">
<data format="client-1"> client-1-resources </data>

</code>

The above XML code must be read as follows. The id argument of the code tag
indicates the name of the new module. Inside this tag the different resources to extend
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client-1 with the new plug-in are referenced by means of the data tag. This tag has as
format attribute the name of the concrete client, in this case client-1, and the value of
the data tag is the reference to the concrete resource. This information is very useful
for the plug-in manager.

When the plug-in framework receives as input an OMDoc plug-in, the plug-in man-
ager is invoked. The plug-in manager is a Common Lisp program that consists of several
modules, one per client of the plug-in framework. As we have said, each one of these
modules is related to a concrete client, and then, is implemented depending on the exten-
sibility needs of each one of them. The plug-in manager, depending on the information
stored in the plug-in (namely the value of the format attribute of the data tag), invokes
the corresponding client module. Subsequently, this module extends the client with the
indicated resources.

The plug-ins and the resources referenced by them are stored in a folder included in
the plug-in framework called the plug-in repository.

Finally, each client of the plug-in framework has associated a file called plug-in reg-
istry. Each one of these files stores a list of the plug-ins that were added to the cor-
responding client. When a new plug-in is included in a client, the information about
that plug-in is stored in its plug-in registry. Moreover, when a client is started its first
task consists of sending the information of the plug-in registry to the plug-in manager
in order to achieve the same state of the last configuration of the client.

If some problem appears during the loading of a plug-in the plug-in framework in-
forms of the error and constructively suggests a solution. The way of returning the error
is by means of a warning OpenMath object whose value is the produced error and the
feasible solution.

Once we have presented the plug-in framework, let us explain how one of its clients,
that is the Kenzo framework, uses it. Another client of this framework is a customizable
front-end that will be presented in Section 3.2.

3.1.2 The Kenzo framework as client of the plug-in framework

As it was discussed earlier, one of the most important issues tackled in the design of the
Kenzo framework was the deployment of an extensible architecture. A good approach
to solve this question consists of having a component-based architecture as base-system,
and then equipping it with different components. This is the approach followed in the
Kenzo framework. As was explained in the previous chapter, the base-system of the
Kenzo framework is based on the Microkernel architectural pattern, therefore, we have
a component-based architecture. Moreover, to be able to include new improvements
and features, the Kenzo framework has been implemented as a client of the plug-in
framework.

As we explained previously, all the Kenzo framework components are Common Lisp
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modules, see Section 2.2, and since Common Lisp programs are designed to be extensible,
we only need to load new functions in each component by means of Common Lisp files.
This is the same method followed in Kenzo to extend its functionality.

The plug-in manager of the plug-in framework contains a component that is devoted
to load new functionality in the Kenzo framework. This module extends the functionality
of the Kenzo framework components with two different aims. On the one hand, to
provide access to new Kenzo functionality through the Kenzo framework. On the other
hand, to interact with other systems, such as Computer Algebra systems or Theorem
Provers tools, by means of the Kenzo framework. Let us present the integration of new
functionality in the Kenzo framework.

Let us suppose that we have developed a new module for Kenzo that allows us
to construct a kind of spaces that were not included in the Kenzo system, we will see
concrete examples in Chapter 5, and, of course, we want to include the new functionality
in our framework. Then, we need to extend all the components of the framework by
means of the following files:

• a file (let us called it new-constructor.lisp) with the functionality to include the
new constructor developed for the Kenzo system in the Kenzo component of the
internal server,

• a file (let us called it new-constructor-is.lisp) with the functionality to expand
the interface of the internal server to support the access to the new Kenzo func-
tionality,

• a file (let us called it new-constructor-m.lisp) with the functionality for the mi-
crokernel to include a new construction module. This functionality follows the
pattern explained in Subsubsection 2.2.3.3 for constructions modules. Moreover,
this file also expands the microkernel interface to provide access to the functionality
of the new construction module,

• the new specification of the XML-Kenzo language including the new constructor.
As we have explained previously in Subsection 2.2.4, this will extend the capabili-
ties of the external server. The file containing the XML-Kenzo specification is the
XML-Kenzo.xsd file, and

• a file (let us called it new-constructor-a.lisp) with the functionality which in-
creases the adapter functionality to transform from OpenMath requests to XML-
Kenzo requests.

The new-constructor plug-in, is an OMDoc document called
new-constructor.omdoc, which contains some metadata about the document, and
references the different files in the following way.
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<code id="new-constructor">
<data format="Kf/internal-server"> new-constructor.lisp </data>
<data format="Kf/internal-server"> new-constructor-is.lisp </data>
<data format="Kf/microkernel"> new-constructor-m.lisp </data>
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/adapter"> new-constructor-a.lisp </data>

</code>

Each data element has specified in the format attribute one of the Kenzo framework
components (internal server, microkernel, external server and adapter). The value of a
data element is a file which extends the Kenzo framework. The indicated component in
the format attribute of a data element is extended by means of the file indicated with
the value of the data element. For instance in the case of the first data element, the
functionality of the internal server is extended by means of the new-constructor.lisp

file.

The plug-in framework receives as input the new-constructor.omdoc plug-in. Subse-
quently, the Kenzo framework module of the plug-in framework is invoked. This module
is split in four constituents, one per Kenzo framework component. The behavior of the
constituents in charge of the internal server, the microkernel and the adapter consists of
loading the new functionality in the corresponding Kenzo framework component. The
constituent for the external server overwrites the XML-Kenzo specification with the new
one (no additional interaction is needed to extend the functionality of the external server,
since when the XML-Kenzo specification is changed the external server is automatically
upgraded).

Finally, the information of the new plug-in is stored in the plug-in registry of the
Kenzo framework to store the configuration for further uses.

This was related to the inclusion of new Kenzo functionality in the Kenzo framework;
the case of widening the Kenzo framework through the addition of an internal server (a
Computer Algebra system or a Theorem Prover tool) is practically analogous. The main
difference is the file related to the internal server which, instead of adding new Kenzo
functionality to the current internal server, shows how to connect with the new system.
Examples of the addition of new internal servers will be presented in Chapter 4.

The features associated to the Kenzo framework owing to its implementation as a
client of the plug-in framework are listed below.

• Extensibility: the Kenzo framework can be extended by plug-ins. Each new func-
tionality can be realized as an independent plug-in.

• Flexibility: each unnecessary plug-in can be removed and each necessary plug-in
can be loaded at run-time. Therefore the Kenzo framework can be configured in
such a way that it has only the needed functionality.

• Storage of configuration: thanks to the registry associated to the Kenzo framework,
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the configuration of a session is stored for the future.

• Easy to install: the installation of plug-ins is friendly from the plug-in folder.

3.2 Increasing the usability of the Kenzo framework

The design of a client for our framework was one of the most important issues tackled
in our development. The client should not only take advantage of all the enhancements
included in the Kenzo framework but also be designed to increase the usability and
accessibility of the Kenzo system. In this context, the program designers in Symbolic
Computation always meet the same decision problem: two possible organizations1.

1. Provide a package of procedures in the programming language L, allowing a user
of this language to load this package in the standard L-environment, and to use
the various functions and procedures provided in this package. The interaction
with the procedures is by means of a command line interface.

2. Provide a graphical user interface (GUI) with the usual buttons, menus and other
widgets to give to an inexperienced user a direct access to the most simple desired
calculations, without having to learn the language L.

The main advantage of the former alternative is that the total freedom given by
the language L remains available; however, the technicalities of the language L remain
present as well. Moreover, the prompt of a command line interface do not usually provide
adequate information to the user about the correct command syntax. Besides, since the
user has to memorise the syntax and options of each command, it often takes consid-
erable investment in time and effort to become proficient with the program. Therefore,
command line interfaces may not be appealing to new or casual users of a software sys-
tem. The vast majority of Computer Algebra systems fall in this category, including
GAP, CoCoA, Macaulay, and Kenzo. On the contrary, graphical interfaces (the second
alternative) are easier to use, since instead of relying on commands, the GUI commu-
nicates with the user through objects such as menus, dialog boxes and so on. These
objects are a means to provide a more intuitive user interface, and supply more informa-
tion than a simple prompt. However, no reward comes without its corresponding price,
and GUIs can slow down expert users.

Since the final users of our framework are Algebraic Topology students, teachers
or researchers that usually do not have a background in Common Lisp, we opted for
implementing a user-friendly front-end allowing a topologist to use the Kenzo program
guiding his interaction by means of the Kenzo framework, without being disconcerted
by the Lisp technicalities which are unavoidable when using the Kenzo system. This
GUI is communicated with the Kenzo framework through the OpenMath interface of the

1These are, of course, two extreme positions: many other possibilities can be explored between them.
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adapter and can be customized by means of the plug-in framework. The whole system,
that is to say the two frameworks and the GUI, is called fKenzo, an acronym for friendly
Kenzo [Her09]. We have talked at length about the Kenzo framework in Chapter 2 and
also about the plug-in framework in Section 3.1, so, let us present now the GUI of the
fKenzo system.

The fKenzo GUI was implemented with the IDE of Allegro Common Lisp [Incb].
Various features have been implemented in this GUI. They improve the interaction with
the Kenzo system from the user point of view. The main features of the fKenzo GUI
are listed below.

1. Easy to install : the installation process is based on a typical windows installation.

2. No external dependencies : the fKenzo GUI does not need any additional installa-
tion to work.

3. Functionality : the fKenzo GUI allows the user to construct topological spaces of
regular usage and compute homology and (some) homotopy groups of these spaces.

4. Error handling : this GUI is a client of the Kenzo framework; and all the enhance-
ments included in the framework are inherited by the GUI. In this way, the user
is guided in his interaction with the system and some errors are avoided.

5. Consistent metaphors : an advanced user of Kenzo feels comfortable with the
fKenzo GUI; in particular, the typical two steps process (first constructing an
space, then computing groups associated to it) is explicitly and graphically cap-
tured in the GUI.

6. Interaction styles : the user can interact with the GUI by means of the mouse and
also using keyboard shortcuts.

7. Mathematical rendering : the fKenzo GUI shows results using standard mathemat-
ical notation.

8. Storage of sessions : session files include the spaces constructed during a session,
and can be saved and loaded in the future. Moreover, these session files can be
exported, used to communicate them to other users and rendered in browsers.

9. Storage of results : result files storing the results obtained during a session, as in
the case of session files, can be saved, exported, used to communicate them to
other users and rendered in browsers.

10. Customizable: the fKenzo GUI can be configured to the needs of its users.

11. Extensibility : the fKenzo GUI can evolve with the Kenzo framework using the
plug-in framework.

The rest of this section is devoted to present the GUI of the fKenzo program, trying
to cover both the user (Subsections 3.2.1 and 3.2.2) and the developer (Subsections 3.2.3
and 3.2.4) perspectives.
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Figure 3.2: Initial screen of fKenzo

3.2.1 fKenzo GUI: a customizable user interface for the Kenzo
framework

To use fKenzo, one can go to [Her09] and download the installer. After the installation
process, the user can click on the fKenzo icon, accessing to an “empty” interface, shown
in Figure 3.2.

Then, the first task of the user consists of loading some functionality in the fKenzo
GUI through the different modules included in the distribution of fKenzo. From the user
point of view, a module is a file which loads functionality in the fKenzo GUI.

The main toolbar of the fKenzo GUI is organized into two menus: File and Help.
The File menu has the following options: Add Module, Delete Module, and Exit. The
aim of the Add Module option consists of loading the functionality of a module. The
user can configure the interface by means of five modules: Chain Complexes, Simplicial
Sets, Simplicial Groups, Abelian Simplicial Groups and Computing. Each one of these
modules corresponds with one of the XML-Kenzo groups explained in Subsection 2.2.1.
In addition, some other experimental modules can be installed, such as a possibility
of interfacing the GAP Computer Algebra system or the ACL2 Theorem Proving tool;
these modules will be presented in Chapter 4.

When one of the “construction modules” (Chain Complexes, Simplicial Sets, Simpli-
cial Groups or Abelian Simplicial Groups) is loaded, a new menu appears in the toolbar
allowing the user to construct the spaces specified in the XML-Kenzo schema for that
type, see Figure 2.5 of Subsection 2.2.1. Moreover, two new options called Save Session
and Load Session are added to the File menu. When saving a session a file is produced
containing the spaces which have been built in that session. These session files are saved
using the OpenMath format and can be rendered in different browsers. These session
files can be loaded, from the Load Session option, and allow the user to resume a saved
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session.

When the Computing module is loaded, a new menu appears in the toolbar allowing
the user to compute homology and homotopy groups of the constructed spaces. Besides,
a new option called Save Computing appears in the File menu. This option works in
a similar way to Save Session but instead of saving the spaces built during the current
session, it saves the computations also using the OpenMath format. However, these
results cannot be reloaded into the fKenzo GUI, since they cannot be re-used in further
computations. It is worth noting that computations depend on the state of the system,
and this state cannot be exported, so we cannot re-use computations performed in
a different session. When the user exits fKenzo, its configuration is saved for future
sessions.

The visual aspect of the fKenzo panel is as follows. The “Main” tab contains, at its
left side, a list of the spaces constructed in the current session, identified by its type (CC
= Chain Complex, SS = Simplicial Set, SG = Simplicial Group, AG = Abelian simplicial
Group) and its internal identification number (the idnm slot of the mk-object instance
of the microkernel). When selecting one of the spaces in this list, its standard notation
appears at the bottom part of the right side. At the upper part, there are two tabs
“Session” (containing a textual description of the constructions made, see an example
of session in Figure 3.3) and “Computing” (containing the homology and homotopy
groups computed in the session; see an example in Figure 3.4). In both “Session” and
“Computing” tabs the results are rendered using again standard mathematical notation.

In the fKenzo GUI, focus concentrates on the object (space) of interest, as in Kenzo.
The central panel takes up most of the place in the interface, because it is the most
growing part of it (in particular, with respect to computing results). It is separated by
means of tabs not only because on the division between spaces and computed results
(the system moves from one to the other dynamically, putting the focus on the last user
action), but also due to the extensibility of fKenzo. To be more precise, our system is
capable of evolving to integrate with other systems (computational algebra systems or
theorem proving tools), so playing with tabs in the central panel allows us to produce a
user sensation of indefinite space and separation of concerns. Examples of the integration
of a Computer Algebra system and a Theorem Prover tool in fKenzo will be presented
in Chapter 4.

3.2.2 fKenzo in action

To illustrate the performance of the fKenzo program, let us consider a hypothetical
scenario where a graduate course is devoted to fibrations, in particular introducing the
functors loop space Ω and classifying space B. In the simplicial framework, [May67]
is a good reference for these subjects. In this framework, if X is a connected space,
its loop space ΩX is a simplicial group, the structural group of a universal fibration
ΩX ↪→ PX → X. Conversely, if G is a simplicial group, the classifying space BG is
the base space also of a universal fibration G ↪→ EG → BG. The obvious symmetry
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Figure 3.3: Example of session in fKenzo

between both situations naturally leads to the question: in an appropriate context, are
the functors Ω and B inverse of each other?

For the composition BΩ, let us compare for example the first homology groups of S2

with the homology groups of BΩS2, and the homology groups of ΩS2 and ΩBΩS2.

Since we are planning to work with simplicial sets and simplicial groups, we
can load the necessary functionality using File → Add Module, and then choosing
Simplicial-Groups.omdoc. The interface changes including now a new menu called Sim-
plicial Sets and another one called Simplicial Groups. When selecting Simplicial Sets
→ sphere, fKenzo asks for a natural number, as we saw in the definition of XML-Kenzo,
limited to 14. Then (see Figure 3.3) the space denoted by SS 1 appears in the left side
of the screen; when selecting it, the mathematical notation of the space appears in the
bottom part of the right side of the panel. The history of the constructed spaces is
shown in the “Session” tab.

If we try to construct a classifying space from the Simplicial Group menu, fKenzo
informs us that it needs a simplicial group (thus likely an error is avoided). We can then
construct the space ΩS2. Since ΩS2 is the only simplicial group in this session, when
using Simplicial Groups → classifying space, ΩS2 is the only available space appearing
in the list which fKenzo shows. Finally, we can construct the space ΩBΩS2.

When loading the Computing.omdoc file, the menu Computing, where we can select
“homology”, becomes available. In this manner we can compute the homology groups
of the spaces as can be seen in Figure 3.4.

These results give some plausibility to the relations BΩ = id and ΩB = id.

The reader could wonder why the simpler case of S1 has not been considered. Using
again fKenzo this time a warning is produced; yet the result BΩS1 ∼ S1 is true. But
the Eilenberg-Moore spectral sequence cannot be used in this case to compute H∗ΩS

1,
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Figure 3.4: Example of computations in fKenzo

Figure 3.5: Reduction degree error in fKenzo

because S1 is not simply connected, and fKenzo checks this point (see Figure 3.5).
The symmetry comparison between S1 and ΩBS1 fails too, for another reason: the
“standard” S1 is a topological group, but the standard simplicial representation of S1

cannot be endowed with a structure of simplicial group. This situation is reflected in
the construction of classifying spaces in fKenzo since the sphere S1 does not appear in
the list which fKenzo shows.

This is a good opportunity to introduce the Eilenberg MacLane space K(Z, 1), the
“minimal” Kan model of the circle S1, a simplicial group. In order to work with Eilenberg
MacLane spaces in fKenzo, the Abelian Simplicial Group module should also be loaded,
in this way the space K(Z, 1) can be built, as can be seen in Figure 3.3. The fKenzo
comparison between the first homology groups of K(Z, 1) and ΩBK(Z, 1) does give the
expected result.

We think this illustrates how fKenzo can be used as a research tool, precisely a
specialized computer tool, for Algebraic Topology.

Up to now, we have presented the user point of view. In the following subsections,
some explanations on the development of the fKenzo GUI are given.
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3.2.3 Customization of the fKenzo GUI

The most important challenge that we have faced in the development of the fKenzo GUI
was the deployment of an extensible and modular user interface. Modularity has two
aims in fKenzo. One of them is related to the separation of concerns in the user interface.
The second one allows us to design a dynamically extensible GUI, where modules are
plugged in.

3.2.3.1 Declarative programming of User Interfaces

In all the graphical user interfaces exist a separation of concerns, hence if we want to
extend a GUI we need to extend it at all its levels. With respect to this aspect, our
inspiration comes from [HK09], where a proposal for declarative programming of user
interfaces was presented. In [HK09], the authors distinguished three constituents in any
user interface: structure, functionality and layout.

Structure: Each UI has a specific hierarchical structure which typically consists of
basic elements (like text input fields or selection boxes) and composed elements
(like dialogs).

Functionality: When a user interacts with a UI, some events are produced and the UI
must respond to them. The event handlers are functions associated with events of
some widget and that are called whenever such event occurs (for instance clicking
over a button).

Layout: The elements of the structure are put in a layout to achieve a visually appealing
appearance of the UI. In some approaches layout and structural information were
mixed, however in order to obtain clearer and reusable implementations these
issues should be distinguished.

The approach presented in [HK09] used the Curry language [Han06] to declare all
the ingredients. Instead of doing a similar work, but using the Common Lisp language
(recall that our GUI is implemented in Common Lisp) to all the ingredients, we have
preferred to employ different technologies devoted to each one of the constituents. Let
us present each one of these ingredients in our context using a concrete example, that
is the window used to construct a sphere in the fKenzo GUI, see Figure 3.6.

The structure of our GUI is provided by XUL [H+00]. XUL, XML User Interface,
is Mozilla’s XML-based user interface language which lets us build feature rich cross-
platform applications defining the structure of all the elements of a UI. Then, a XUL
description must be provided in order to define the structure of the elements of our
GUI. The main reason to codify the structure of our GUI by means of XUL is the
reusability of this language. The XUL code can be used in order to build forms in
different environments for different applications without designing new interfaces.
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Figure 3.6: Sphere dialog

Let us examine the structure of the window of Figure 3.6. That window is called
“sphere” and gathers in a groupbox the following elements: the text “Build a Sphere of
dimension:”, a textbox to introduce a natural number between 1 and 14, and a row that
contains both “Create” and “Cancel” buttons. Moreover, each button has associated an
event when its state is changed, namely when the button is clicked. We can specify that
structure in the following XUL code:

<window name="sphere">
<groupbox>

<label value="Build a Sphere of dimension:"/>
<textbox id="n" type="number" min="1" max="14"/>
<hbox>
<button label="Create" name="create" event="on-change"/>
<button label="Cancel" name="cancel" event="on-change"/>

</hbox>
</groupbox>
</window>

As we have said previously, we can use the above XUL code in different clients.
For instance, the previous XUL is presented in a Mozilla browser [Moz] as shown in
Figure 3.7.

As can be thought, providing the XUL description of an element of a GUI can be a
tedious task due to the XML nature of XUL. To make this task easier, an interpreter
which is able to convert from the Allegro Common Lisp IDE forms to their XUL repre-
sentation, and viceversa, has been developed. This is a more comfortable way of working
because we define the forms in the Allegro IDE using a graphical interface, and then,
the interpreter automatically generates the XUL code.

The functionality of the elements of our GUI, that is the set of event handlers, has
been programmed in Common Lisp keeping the following convention in order to define
the names of the event handlers functions:
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Figure 3.7: Sphere form in Firefox browser

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun <window-name>-<element-name>-<event> (params)
;; event handler code

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where <window-name>, <element-name> and <event> must be replaced with the name of
the dialog, the name of the element and the event, respectively. For instance, the event
associated with the “Create” button of the sphere dialog, see Figure 3.6, is codified as
follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun sphere-create-on-change (params)
;; event handler code

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, the layout of the elements of our GUI, that is the visual appearance of the
GUI, can be configured by means of a stylesheet [K+07]. For instance, if we define the
following (fragment of a) stylesheet:
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Figure 3.8: Sphere dialog with a stylesheet

<xsl:template name="window">
<xsl:param name="color">blue</xsl:param>

</xsl:template>

<xsl:template name="groupbox">
<xsl:param name="color">orange</xsl:param>

</xsl:template>

<xsl:template name="label">
<xsl:param name="background-color">yellow</xsl:param>
<xsl:param name="font-color">red</xsl:param>

</xsl:template>

the sphere dialog would have the aspect shown in Figure 3.8. That is to say, the stylesheet
is used to modify the visual attributes of the elements of the GUI. If we do not provide
a stylesheet the default values of the visual aspect attributes are used.

In this way, all the graphical constituents of the interface can be defined.

The next subsubsection is devoted to present how the information related to the
different constituents is stored in our modules.

3.2.3.2 fKenzo GUI modules

A fKenzo GUI module is an OMDoc document that references at least two resources: a
file that contains the structure of the graphical elements of the module and another one
containing the functionality of those elements. In addition, a fKenzo GUI module can
reference a file with the layout. Besides, a fKenzo GUI module provides some metadata
(authorship, title and so on). The following conventions have been followed in the four
fKenzo GUI construction modules and also in the computation one.

A fKenzo GUI module follows the schema presented for the rest of plug-ins of the
plug-in framework, see Subsection 3.1.1. For instance, in the case of the “Simplicial
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Groups” module:

<code id="Simplicial Groups">
<data format="fKenzo/GUI/structure"> simplicial-groups-structure </data>
<data format="fKenzo/GUI/functionality"> simplicial-groups-functionality </data>

</code>

The first reference corresponds to the structure of the graphical constituents of that
module. This document is called “<Module>-structure” where “<Module>” is the
name of the correspondent module. This file is an OMDoc document. To introduce XUL
code in these documents we have used an OMDoc feature called OpenMath foreign objects
(the <OMForeign> tag) which allows us to introduce non-OpenMath XML in OMDoc
files. For instance, the module of Simplicial Groups includes a new menu with two menu
items: one to construct Loop spaces (which has associated the shortcut “Ctrl+L” and
the event show-loop-space) and another one to Classifying spaces (which has associated
the shortcut “Ctrl+Y” and the event show-classifying). In this case the structure of the
new menu is stored in the document “Simplicial-Groups-structure” with the following
XUL code.

<OMForeign>
<toolbarbutton type="menu" label="Simplicial Groups">
<menupopup>
<menuitem label="Loop Space" acceltext="Ctrl" accesskey="L"

command="show-loop-space"/>
<menuitem label="Classifying Space" acceltext="Ctrl" accesskey="Y"

command="show-classifying"/>
</menupopup>

</toolbarbutton>
</OMForeign>

The functionality related to a concrete module is encoded in an OMDoc document
called “<Module>-functionality” where “<Module>” is the name of the corresponding
module. To this aim, we use an OMDoc feature which allows us to introduce code (in our
case Common Lisp functions) in OMDoc files by means of the code tag. For instance,
the functionality of the event called show-loop-space associated to the Loop Space menu
item of the Simplicial Groups menu is encoded in the “Simplicial-Groups-functionality”
document as follows.

<code id="show-loop-space">
<metadata>

<description> The event associated to the Loop Space menuitem </description>
</metadata>
<data format="application/fKenzo">

<![CDATA[ (defun show-loop-space ()
;; code ) ]]>

</data>
</code>
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Figure 3.9: Plug-in framework and fKenzo GUI

Finally, the resource related to the layout is optional, and in particular the fKenzo
GUI modules use the default layout, so they never reference any layout file. Anyway,
if we want to provide a different appearance for the graphical elements of a module we
can define an OMDoc document where we encode the stylesheet, which customizes the
visual aspect of the elements of the module, using the same feature employed in the case
of structure documents, that is the <OMForeign> tag.

The organization presented here allows us to deal with the design of a dynamically
extensible GUI, where modules are plugged in. Our front-end becomes extensible thanks
to the plug-in framework since each user interface unit is encoded in a unique OMDoc
file, with its inner modular organization: structure, functionality and (optionally) layout.

3.2.3.3 fKenzo GUI as client of the plug-in framework

To tackle the extensibility question in our user interface, the fKenzo GUI has been
designed not only as a client of the Kenzo framework, but also as a client of the plug-in
framework presented in Section 3.1. In this way, the fKenzo GUI can be extended in
an easy way by means of modules, described in the previous subsubsection. In this
context, instead of using the term plug-in we prefer the term module which is more
appropriate (an application which is extended by means of modules does not have any
functionality, apart from the one which allows us to load modules, if we have not added
any module, as the fKenzo GUI; on the contrary, an applications which is extended
by means of plug-ins can work without adding them, as the Kenzo framework). The
relations among the fKenzo GUI, the Kenzo framework, and the plug-in framework are
depicted in Figure 3.9.

The plug-in manager (see Subsection 3.1.1) of the plug-in framework contains a
module in charge of extending the fKenzo GUI. This module extends the GUI providing
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access to a concrete part of the functionality of the Kenzo framework by means of the
five modules explained for the fKenzo GUI (the four construction modules and the
computing one).

In particular, the plug-in manager of the plug-in framework includes a module in
charge of processing the modules related to the fKenzo GUI. This module is split in
two constituents. The first one is an interpreter in charge of converting from XUL code
to Common Lisp code the different graphical components. In addition if a layout file
is specified, then the layout properties are applied to the graphical components. The
second one associates the functionality of the event handlers to the elements defined in
the structure document.

Then, it is enough to produce an OMDoc file with the suitable components, and
then it can be interpreted and added in our GUI. It is exactly what happened when
in Subsection 3.2.2 we described the way of working with fKenzo: using File → Add
Module with the Simplicial-Groups.omdoc module sends this module to the plug-in
framework. Subsequently, the plug-in manager invokes the fKenzo module (one of the
subcomponents of the plug-in manager) that extends the user interface.

The implementation of the fKenzo GUI as a client of the plug-in framework shows
the feasibility and usefulness of this framework.

The fKenzo GUI features partly owing to the implementation of the user interface
as a client of the plug-in framework are listed below.

• Modularity: the GUI is organized in different modules, each one devoted to a
concrete concern.

• Extensibility: the GUI can be extended by the modules. Each new functionality
can be realized as an independent module.

• Flexibility: each unnecessary module can be removed and each necessary module
can be loaded at run-time. Therefore the GUI can be configured in such a way
that it has only the needed functionality.

• Easy to install: the installation of modules is friendly (only select a file with the
option Add Module) from the plug-in folder.

• Internet based update: the GUI supports an update mechanism from the Help

menu. This allows the GUI to download new modules or updates.

• Storage of configuration: the GUI configuration is automatically saved for further
sessions.

3.2.3.4 Extending the Kenzo framework from the fKenzo GUI

The previous subsubsections have been devoted to explain how the fKenzo GUI can be
customized by means of the plug-in framework. Moreover, the plug-in framework can
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also be employed to increase the functionality of the Kenzo framework as we presented in
Subsubsection 3.1.2. Besides, in the same way that we wanted that the Kenzo framework
could evolve at the same time as Kenzo, we also hope that the fKenzo GUI will be able
to evolve at the same time that the Kenzo framework.

Up to now, the fKenzo modules that we have presented (the four construction mod-
ules and the computation one) to customize the fKenzo GUI do not suppose any im-
provement in the Kenzo framework. However, it is worth noting that the modules for
the GUI not only can extend the GUI but also the Kenzo framework.

Let us retake the example presented in Subsubsection 3.1.2 where a plug-in called
new-constructor was defined to increase the functionality of the Kenzo framework by
means of a new constructor. Now, following the guidelines of Subsubsection 3.2.3.2,
we can define three files (structure, functionality and layout) to customize the GUI to
interact with the new constructor. Finally, we define a fKenzo GUI module which not
only references the three files (structure, functionality and layout) to customize the GUI
but also the plug-in which adds new functionality to the Kenzo framework.

<code id="new-constructor">
<data format="fKenzo/GUI/structure"> new-constructor-structure </data>
<data format="fKenzo/GUI/functionality"> new-constructor-functionality </data>
<data format="fKenzo/GUI/layout"> new-constructor-layout </data>
<data format="fKenzo/GUI/Kf"> new-constructor-plug-in </data>
</code>

When the user selects this new module from the Add Module option, the plug-in
framework will extend both the fKenzo GUI and the Kenzo framework. In Subsubsec-
tion 3.2.3.3, we explained that the plug-in framework includes a module in charge of
processing the modules related to the fKenzo GUI. We said that this module is split in
two constituents but we have included a new constituent devoted to invoke the Kenzo
framework module of the plug-in framework for the cases explained in this subsubsec-
tion. This last constituent is only invoked if the fKenzo GUI module references a Kenzo
framework plug-in, in that case the Kenzo framework module of the plug-in manager is
also called.

In addition, the fKenzo GUI plug-in registry and the Kenzo framework plug-in reg-
istry must be coherent in order to avoid inconsistencies in the whole system.

A high level perspective of the interaction between the two frameworks and the GUI
can be seen in Figure 3.10.

This extensibility principle makes very easy to us the incorporation of experimental
features to the system, without interfering with the already running modules, as we will
see in Chapters 4 and 5.
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Figure 3.10: Plug-in framework, fKenzo GUI and Kenzo framework

3.2.4 Interaction design

In the previous subsection we have explained the design decisions that we took to develop
an extensible and modular interface, probably the most important feature of the fKenzo
GUI from the developer perspective. However, other decisions were taken on the fKenzo
user interface design.

3.2.4.1 Task model

The first idea guiding the construction of a user interface must be the objectives of the
interaction. In fKenzo there is only one higher-level objective: to compute groups of
spaces. This main objective is later on broken in several subobjectives, trying to emulate
the way of thinking of a typical Kenzo user. Once this first objective analysis is done,
the next step is to design a task model. That is to say, a hierarchical planning of the
main actions the user should undertake to get his objectives. This is a previous step
before devising the navigation of the user, which will give the concrete guidelines needed
to implement the interface.

In our case, the two main actions of the system are: (1) computing groups, and (2)
constructing spaces. Note that the second task is necessary to carry out the first one.
In turn, the task of constructing spaces can be separated into: (a) constructing new
fresh spaces and (b) loading spaces from a previous session. Thus, the notion of session
comes on the scene. With respect to the construction of fresh spaces, once the user has
decided to go for it, he should decide which type of space he wants to build: simplicial
set, simplicial group, and so on. Note that the construction of a space of a type can
involve the construction of other space of whether its same type or a different type. This
third layer of tasks gives us the module organization of the interface, while computing
produces a separated module.

The task design is organized hierarchically by diagrammatic means. See in Fig-
ure 3.11 a first decomposition layer depicted by means of a package diagram [Gro09].
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Figure 3.11: Hierarchical decomposition of the “Construct Fresh Space” user task

Each task (each frame) is linked to auxiliary tasks (giving a horizontal dependency
structure). Then, each frame is described in more detail (vertical structure) by making
explicit its subtasks graph.

Task modeling provides us with both the high level modular structure and the dif-
ferent steps needed to reach a user subobjective. The concrete actions a user should
perform to accomplish the tasks are devised in the control and navigation models.

3.2.4.2 Control and navigation model

The design of the interaction between a user and a computer program involves well-
known challenges (use of convenient metaphors, consistency of the control through
the whole application, and so on). In order to avoid some frequent drawbacks we
have followed the guidelines of the Noesis method (see [DZ07] for the general theory,
and [CMDZ06] for the design of reactive systems). In particular, our development has
been supported by the Noesis models for control and navigation in user interfaces. These
graph-supported models enable an exhaustive traversal study of the interfaces, allowing
the analyst to detect errors, disconnected areas, lack of uniformity, etc. before the pro-
gramming phase. Figure 3.12 shows the control and navigation submodel describing the
construction of a loop space ΩnX. Different kinds of interactions are graphically repre-
sented in Figure 3.12 by different icons. For instance, selecting from a list is depicted
with a form icon; directly writing an input is depicted with a pen, and so on. These
pictures help the programmer to get a quick overall view of the different controls to be
implemented.

Let us observe that this diagrammatic control model is abstract, in the sense that
nothing is said about the concrete way the transitions should be translated into the user
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Figure 3.12: Control graph for the construction of ΩnX

interface. In fact, in the fKenzo GUI this model is implemented in two different manners:
one by means of the “menu & mouse” style, and the other one through control-keys. The
second style has been included thinking of advanced users, who want to use shortcuts
to access the facilities of the interface. The adaptation to different kinds of users is one
of the principles for design usability in [Nie94], and has been considered, as the rest of
principles, in our development.

3.2.4.3 Challenges in the design of the fKenzo GUI

User interface design is a central issue for the usability of a software system. Ideally, the
design of a user interface should be done following certain rules, such as those listed in
guidelines documents, see for instance [KBN04]. However these guidelines have hundreds
of rules, then instead of strictly following those rules the design of a user interface abides
by heuristics rules based on common sense. A small set of heuristic principles more suited
as the basis for practical design of user interfaces was given in [Nie94]. We have used
the nine principles given in [Nie94] for guiding the design decisions of the fKenzo GUI.

1. Visibility of system status. the fKenzo GUI should always keep users informed
about what is going on. As we have said previously, the fKenzo GUI can be used
to construct spaces and compute groups. In the case of the spaces constructed
in the fKenzo GUI this first principle is achieved, since the fKenzo GUI shows a
list with the spaces constructed in the current session to the user. Related to the
computation of groups, some calculations in Algebraic Topology may need several
hours, then to dealt with the visibility of the fKenzo status, a message informs the
user of this situation when a computation is performed. Besides, the fKenzo GUI
allows the user to interrupt the current computation and keep on working with his
session.

2. Match between system and the real world. the fKenzo GUI should show results
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using well-known Algebraic Topology mathematical notation. This second aspect
has been solved by means of combining OpenMath and stylesheets. When selecting
one of the spaces of the left list of the main fKenzo GUI window, its standard nota-
tion appears at the bottom part of the right side of the fKenzo GUI. A stylesheet
has been defined using XSLT [K+07]. This stylesheet is in charge of rendering
using mathematical notation the object represented with an OpenMath instruc-
tion. In both “Session” and “Computing” tabs the results are also rendered using
mathematical notation thanks to the same stylesheet .

3. Consistency and standards. A user of Kenzo feels comfortable with the fKenzo
GUI; in particular, the typical two steps process (first constructing an space, then
computing groups associated to it) is explicitly and graphically captured. Then,
the fKenzo GUI is consistent with respect to Kenzo. It is worthwhile noting
that this is the most influential requirement with respect to the visual aspect of
our interface. In addition to the menu bar, there are three main parts in the
screen: a left part, with a listing of the objects already constructed in the current
session, a right panel with several tabs, and a bottom part with the standard
mathematical representation of the object selected. Thus, focus concentrates on
the object (space) of interest, as in Common Lisp/Kenzo. The central panel takes
up most of the place in the interface, because it is the most growing part of it. It
is separated by means of tabs not only because on the division among spaces and
computing results (the system moves dynamically from one to the other), but also
due to the capability of integrating other systems, playing with tabs in the central
panel allows us to produce a user sensation of indefinite space and separation of
concerns.

4. Error prevention. The fKenzo GUI should forbid the user the manipulations rais-
ing errors. The most important design decision related to this point is the use of the
GUI as client of the Kenzo framework. In this way, all the enhancements included
in the framework are inherited by the GUI forbidding the user some manipulations
raising errors and guiding his interaction with the system.

5. Recognition rather than recall. The fKenzo GUI should minimize the user’s mem-
ory load. This design principle is fulfilled thanks to the combination of stylesheets
and OpenMath that are used to inform the user about the selected space. More-
over, this principle was important for the design of the dialogs used to construct
spaces from other spaces and compute groups. For example, if a space is selected
in the screen of the fKenzo GUI the dialogs used to construct spaces from other
spaces and compute groups take that space by default as input, then the user does
not need to select the space in the dialog.

6. Flexibility and efficiency of use. The fKenzo GUI should provide shortcuts that
speed up the interaction for the expert user and also suit the needs of each user. To
handle this question, the interaction with the GUI is implemented in two different
manners: one by means of the “menu & mouse” style, and the other one through
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control-keys used as accelerators. Moreover, thanks to the organization of the
system by means of modules, a user can load the functionality that he needs.

7. Minimalist design. The fKenzo GUI should not contain irrelevant information; to
that aim, the dialogs showed to the user only contain the key information.

8. Good error messages. the fKenzo GUI should indicate precisely the problems.
Thanks to the use of the GUI as client of the Kenzo framework, the warnings
obtained from the framework are used in the GUI. These warnings express in
plain language the problem, and constructively suggest a solution.

9. Help and documentation. The fKenzo GUI should include a good documenta-
tion. Even though the fKenzo GUI can be used without documentation, help and
documentation are provided in the Help menu. This help is always available, is
focused on the user’s tasks, lists concrete steps to be carried out, and contains both
information about the use of the fKenzo GUI and the underlying mathematical
theory.

In summary, design principles has been followed in the fKenzo GUI obtaining in this
way a usable interface for the Kenzo system through the Kenzo framework.





Chapter 4

Interoperability for Algebraic
Topology

When working in Mathematics, a researcher or student uses different sources of informa-
tion to solve a problem. Typically, he can consult some papers or textbooks, make some
computations with a Computer Algebra system, check the results against some known
tables or, more rarely, try some conjectures with a Proof Assistant tool. That is to say,
mathematical knowledge is dispersed among several sources.

Our aim consists of mechanizing, in some particular cases, the management of these
multiple-sources information systems by means of fKenzo. Since it would be too preten-
tious to try to solve fully this problem, we work in a very concrete context. Thematically,
we restrict ourselves to (a subset of) Algebraic Topology. With respect to the sources,
in order to have a representation wide enough, we have chosen two Computer Algebra
systems (Kenzo and GAP), and a Theorem Prover (ACL2).

This aim has some common concerns with the well known SAGE project [Ste] and the
Software Composability Science project [F+08], since all of us are trying to join several
mathematical software packages. There are, however, important differences. SAGE is an
integrated system in which users interact with the SAGE front-end and the Computer
Algebra systems are used as back-end servers. The representation of mathematical
objects in SAGE is based on an internal representation. On the other hand, the Science
project provides a framework that allows services to be both provided and consumed by
any Computer Algebra system. The Science project uses OpenMath as representation
for mathematical objects.

Our approach combines some of the characteristics of both SAGE and Science
projects but also has some significant differences. As in the SAGE initiative, we pro-
vide a common front-end to use the different systems that are integrated in the Kenzo
framework as internal servers; however, the SAGE front-end is a command line inter-
face, with the problems that this approach presents for a non expert user (we discussed
this question in Section 3.2); whereas, in our case we provide a friendly graphical user
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interface, the fKenzo GUI. Moreover, when a user wants to invoke a system from SAGE,
he must do it explicitly; on the contrary our front-end hides the details about the sys-
tem employed at each moment. To communicate the mathematical objects between
our system and other systems we use both OpenMath, as in the Science project, and
our XML-Kenzo language. In addition, we use some of the programs developed by the
Science initiative in our development.

It is worth noting that we do not only want to integrate Computer Algebra systems
in our framework (as in the case of SAGE and Science projects), but also Theorem
Prover tools.

In addition, our final aim not only consists of having several Computer Algebra
systems and Theorem Prover tools, and use them individually by means of a common
GUI, but also making them work in a coordinate and collaborative way to obtain new
tools and results not reachable if we use severally each system.

In general, the integration of Computer Algebra systems and systems for mechanized
reasoning tries to overcome their weak points: efficiency in the case of Theorem Provers
and consistency in the case of Computer Algebra systems. There are several possibilities
to interface Computer Algebra and Theorem Prover systems, let us cite only three of
them: (1) use a Computer Algebra system as a hint engine for a Theorem Prover, (2)
use a Computer Algebra system as a proof engine for a Theorem Prover, and (3) prove
in the Theorem Prover the correctness of Computer Algebra algorithms.

Both first and second cases involve a certain degree of trust of the prover to the
Computer Algebra system; several experiments have been performed in these lines, see
for instance the interaction between HOL and Maple [HT98] or the communication
between Coq and GAP [KKL]. The last track (prove in the Theorem Prover the cor-
rectness of Computer Algebra algorithms) allows us to build more reliable and accurate
components for a Computer Algebra system, for instance Buchberger’s algorithm for
computing Gröbner basis (one of the most important algorithms in Computer Algebra)
has been formalized in [MPRR10] using the ACL2 theorem prover. In the work presented
in this memoir, we have focussed on the third aspect.

The rest of this chapter is mainly organized in two parts devoted to present how the
GAP Computer Algebra system and the ACL2 Theorem Prover were integrated in our
system as new internal servers.

First of all, the integration and composability of the GAP Computer Algebra system
in fKenzo is presented. Namely, first things first, to achieve the composability of GAP
in our framework we need first its integration; then, Section 4.1 presents the integration
of GAP. How Kenzo and GAP work in a coordinate and collaborative way is explained
in Section 4.2.

In the second part, some explanations about how ACL2 is integrated in fKenzo are
given. The integration of ACL2 in the system is shown in Section 4.3. The coordinate
way of working of Kenzo, GAP and ACL2 is presented in Section 4.4.
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Finally, Section 4.5 is devoted to present a methodology to integrate different systems
as internal servers in our system.

4.1 Integration of the GAP Computer Algebra sys-

tem

The second Computer Algebra system that we have integrated in our framework (the
first one was Kenzo) is GAP [GAP] with its HAP package [Ell09]. This decision was
taken inspired by the work presented in [RER09] where Kenzo and GAP (and, namely, its
HAP package) have been communicated to create new tools. From now on, GAP/HAP
refers to the GAP Computer Algebra system where its HAP package has been loaded.

In this first stage of the integration of GAP/HAP in our system, we have provided
support for the construction of cyclic groups and the computation of their homology
groups.

The rest of this section is organized as follows. Subsection 4.1.1 introduces the basic
background about group homology; in Subsection 4.1.2 the GAP Computer Algebra
system and its HAP package are presented; Subsection 4.1.3 explains how our framework
is extended to include the GAP/HAP functionality. Moreover, an enhancement of the
framework to deal with the properties of their objects is presented in Subsection 4.1.4.
Finally the way of broadening the fKenzo GUI to include the GAP/HAP Computer
Algebra system is detailed in Subsection 4.1.5.

4.1.1 Mathematical preliminaries

The following definitions and important results about homology of groups can be found
in [Bro82].

Definition 4.1. Let G be a group and ZG be the integral group ring of G (see [Bro82]).
A resolution F∗ for a group G is an acyclic chain complex of ZG-modules

. . .→ F2
d2−→ F1

d1−→ F0
ε−→ F−1 = Z→ 0

where F−1 = Z is considered a ZG-module with the trivial action and Fi = 0 for i < −1.
The map ε : F0 → F−1 = Z is called the augmentation. If Fi is free for all i ≥ 0, then
F∗ is said to be a free resolution.

Given a free resolution F∗, one can consider the chain complex of Z-modules (that is
to say, abelian groups) C∗ = (Cn, dCn)n∈N defined by

Cn = (Z⊗ZG F∗)n, n ≥ 0
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(where Z ≡ C∗(Z, 0) is the chain complex with only one non-null ZG-module in dimen-
sion 0) with differential maps dCn : Cn → Cn−1 induced by dn : Fn → Fn−1.

Although the chain complex of ZG-modules F∗ is acyclic, C∗ = Z ⊗ZG F∗ is, in
general, not exact and its homology groups are thus not null. An important result in
homology of groups claims that the homology groups are independent from the chosen
resolution for G.

Theorem 4.2. Let G be a group and F∗, F
′
∗ be two free resolutions of G. Then

Hn(Z⊗ZG F∗) ∼= Hn(Z⊗ZG F
′
∗), for all n ∈ N.

This theorem leads to the following definition.

Definition 4.3. Given a group G, the homology groups Hn(G) are defined as

Hn(G) = Hn(Z⊗ZG F∗)

where F∗ is any free resolution for G.

The problem now consists of determining a free resolution F∗ for G. For some
particular cases, small resolutions can be directly constructed. For instance, let G be
the cyclic group of order m with generator t. The resolution F∗ for G

. . .
t−1−−→ ZG N−→ ZG t−1−−→ Z→ 0,

where N denotes the norm element 1 + t+ . . .+ tm−1 of ZG, produces the chain complex
of abelian groups

. . .
0−→ Z m−→ Z 0−→ Z→ 0

and therefore

Hi(G) =


Z if i = 0
Z/mZ if i is odd, i > 0
0 if i is even, i > 0

In general is not easy to obtain a resolution for a group G. As we will see in Subsec-
tion 4.1.2, the GAP package HAP has been designed as a tool for constructing resolutions
for a wide variety of groups.

4.1.2 GAP and HAP

GAP [GAP] is a Computer Algebra system, well-known for its contributions, in partic-
ular, in the area of Computational Group Theory.

HAP [Ell09] is a homological algebra library (developed by Graham Ellis) for use
with GAP still under development. The initial focus of this package is on computations
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related to cohomology groups. A range of finite and infinite groups are handled, with
particular emphasis on integral coefficients. It also contains some functions for the
integral (co)homology of: Lie rings, Leibniz rings, cat-1-groups an digital topological
spaces.

Let us see an example of the use of the GAP/HAP system. To construct the cyclic
group of dimension 5 in the GAP system we proceed in the following way:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> c5:=CyclicGroup(5); z
<pc group of size 5 with 1 generators>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A GAP display must be read as follows. The initial gap> is the prompt of GAP.
The user types out a gap statement, here c5:=CyclicGroup(5); and the maltese cross
z (in fact not visible on the user screen) marks in this text the end of the GAP state-
ment. The Return key then asks GAP to evaluate the GAP statement. Here the
cyclic group C5 is constructed by the GAP CyclicGroup function (functions in GAP
are case sensitive), taking account of the argument 5, and this cyclic group is assigned
to the symbol c5 for later use. Also evaluating a GAP statement returns an object,
the result of the evaluation, in this case the cyclic group of dimension 5, displayed as
<pc group of size 5 with 1 generators>.

From GAP we can obtain properties of the group; for instance, if we want to know
if our group is abelian we proceed as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> IsAbelian(c5); z
true
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, the cyclic group C5 is an abelian group. It is worth noting that this kind
of properties (for instance, being abelian, cyclic, solvable and so on) are assigned to the
group based on the mathematical definition of the group when it is constructed, this
means that GAP does not perform any computation to know if the group satisfies a
property but just checks if the object has associated it.

The homology groups of C5 are computable by means of the HAP GroupHomology

function (this function has as input two arguments, a group G and an integer n, and
the output is Hn(G)) in the following way:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> GroupHomology(c5,0); z
[0]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To be interpreted as stating H0(C5) = Z. We can compute several homology groups if
we introduce the instructions in a loop; for instance, to compute Hn(C5) with 0 ≤ n ≤ 6:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> for i in [0..6] do Print(GroupHomology(c5,i), " "); od; z
[ 0 ] [ 5 ] [ ] [ 5 ] [ ] [ 5 ] [ ]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, the above result must be interpreted as H0(C5) = Z, H1(C5) =
Z/5Z, H2(C5) = 0, H3(C5) = Z/5Z, H4(C5) = 0, H5(C5) = Z/5Z and H6(C5) = 0 (the
expected results as we have seen in the previous subsection).

As we have just seen, HAP can be used to make basic calculations in the homology
of finite and infinite groups with the command GroupHomology. This command performs
two steps to compute the homology groups of a group G: (1) construct a free resolution
F∗ of G and (2) compute the homology from Z ⊗ZG F∗ using a version of the Smith
Normal Form algorithm [Veb31].

4.1.3 Integration of GAP/HAP

As we claimed in Section 2.1 one of the challenges of the fKenzo system was the in-
tegration of different tools as new internal servers. This is the first example of this
integration.

We present here the integration of some of the functionality of the GAP/HAP system
in fKenzo, namely the functionality devoted to construct cyclic groups, obtain group
properties and compute group homology. The procedure followed here to integrate that
functionality (a simple example) is general enough to be applied in the integration of
other more interesting GAP/HAP functionality without any special hindrance. We have
developed a plug-in following the guidelines given in Subsubsection 3.1.2. This new plug-
in references the following resources:

<code id="gap">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> gap-invoker.lisp </data>
<data format="Kf/microkernel"> gap-cyclic-m.lisp </data>
<data format="Kf/microkernel"> gap-homology-m.lisp </data>
<data format="Kf/adapter"> gap-a.lisp </data>

</code>

These resources deserve a detailed explanation that is provided in the following sub-
subsections.

4.1.3.1 Extending the XML-Kenzo schema

We want to introduce new functionality in our system which allows us to construct cyclic
groups, compute their homology groups and obtain some of their properties by means
of GAP/HAP. Therefore, we have extended the XML-Kenzo specification to represent
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Figure 4.1: cyclic element in XML-Kenzo

Figure 4.2: constructor and homology elements

the requests and results related to GAP/HAP. In the XML-Kenzo specification, we
have defined a new element: cyclic, which has one child of natural number type (see
Figure 4.1) and belongs to a new type called A (the type of GAP abelian groups).

Moreover, the group A has been included as a possible child of both constructor

and homology elements, see Figure 4.2. Therefore, the two following requests are valid
XML-Kenzo objects which can be processed.

<constructor>
<cyclic>5</cyclic>

</constructor>

<operation>
<homology>
<cyclic>7</cyclic>
<dim>3</dim>

</homology>
</operation>

This means that we can request the construction of cyclic groups and the computation
of their homology groups in our system.

In addition, a result type element called gap-id which is used to return information
about the properties of GAP groups has been defined. In particular this element has as
value a natural number and has 9 attributes which represent respectively 9 properties (if
the group is abelian, cyclic, elementary abelian, nilpotent, perfect, solvable, polycyclic,
supersolvable and monomial) of the group by means of boolean values: true if the group
satisfies the property and false otherwise (see Figure 4.3).

As we explained in Subsection 3.1.2, the external server evolves when the
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Figure 4.3: gap-id element in XML-Kenzo

XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is upgraded with
these new elements, the external server can validate requests such as the above ones.

4.1.3.2 A new internal server: GAP/HAP

Up to now, the Kenzo system was the unique computing kernel of the framework. Now,
let us integrate the GAP/HAP system to construct groups and perform group homology
computations.

GAP/HAP could be integrated locally as Kenzo was, but the installation of
GAP/HAP is not so easy, and will need some interaction of the final user. Since, this
option seems to us too uncomfortable, we devised the following organization.

4.1.3.2.1 A new internal server: GAP/HAP + SCSCP The connection with
GAP/HAP server is available by means of SCSCP - the Symbolic Computation Soft-
ware Composability Protocol [FHK+09]. SCSCP is a remote procedure call framework
for computational algebra systems in which both data and protocol instructions are en-
coded in the OpenMath language [Con04]. This protocol has been successfully used to
communicate several Computer Algebra systems as can be seen in [F+08]. GAP has
a package, called SCSCP [KL09], which implements this protocol. This package has
two main components: a server and a client; we are interested in the server part. The
server component can be configured to supply the GAP procedures that can be invoked
from different clients (which can be a GAP client with the SCSCP package, one of the
SCSCP clients developed for Computer Algebra systems or in general a program with
both socket support to invoke the GAP services and knowledge about the encoding of
SCSCP OpenMath requests). In particular, our GAP/HAP server provides procedures
to construct cyclic groups, to get some properties of the cyclic groups and to compute
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homology groups of cyclic groups.

The GAP/HAP server is available thanks to the SCSCP protocol without any ad-
ditional development from our side; however, it has been necessary to deploy a client,
that will be integrated in our framework. This client, from now on called gap-invoker,
has been implemented as a Common Lisp program and has the functionality included
in the gap-invoker.lisp file. This program has two parts: a Phrasebook and a socket
client. The former component is able to transform from the internal XML-Kenzo rep-
resentation to the SCSCP OpenMath representation and viceversa. It is worth noting
that the Phrasebook included in this component is not the same Phrasebook included
previously in the adapter (see Subsection 2.2.5), since the OpenMath requests that are
sent/received to/from the GAP/HAP server are wrapped with additional information
about the location of the server and necessary information for the SCSCP package. An
example of this kind of requests is as follows:

<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>

<OMS cd="scscp_transient_1" name="Homology"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>
<OMI>5</OMI>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>
<?scscp end ?>

This request has the following parts: the beginning of a SCSCP request
(<?scscp start ?>), the location of the server (in this case located in the server
esus.unirioja.es in the port 7500):

<OMATP>
<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>

the invocation of the GAP/HAP service by means of:

<OMS cd="scscp1" name="procedure_call"/>
<OMA>
<OMS cd="scscp_transient_1" name="Homology"/>
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In this case the procedure associated with Homology is the GroupHomology HAP com-
mand; the arguments of the procedure Homology, in this case the cyclic group and the
dimension:

<OMA>
<OMS cd="group1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
<OMI>5</OMI>

and, finally, the end of the SCSCP request (<?scscp end ?>).

The socket client component of the gap-invoker is a bunch of functions in charge of
sending requests and receiving results to/from the GAP/HAP server by means of sockets
technology.

4.1.3.3 Cyclic groups construction module of the microkernel

The gap-cyclic-m.lisp file contains the Common Lisp functions which allow the plug-
in framework to extend the microkernel in order to include a new module, called
cyclic-groups.

When the microkernel receives a construction request where the child of the
constructor element is cyclic, the cyclic-groups module of the microkernel is acti-
vated. For instance, if the microkernel receives the request:

<constructor>
<cyclic>5</cyclic>

</constructor>

the cyclic-groups module is activated.

When the cyclic-groups module is activated two situations are feasible: (1) a new
group is created in the microkernel or (2) the object was previously built and its identi-
fication is simply returned. In the former case, this module constructs an object which
represents a cyclic group. It is worth noting that no warnings are produced by the
cyclic-groups module since all the restrictions (namely, this constructor only has as-
sociated the restriction of the type of its argument, which must be a natural number)
about this constructor are handled in the XML-Kenzo specification, and, therefore, they
are validated in the external server.

In Subsection 2.2.3, we have presented a representation for microkernel objects
(MK-OBJECT), which was specialized for Kenzo spaces (MK-SPACE-KENZO). Now, we need
a different specialization for cyclic groups constructed in the microkernel. Instead of
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defining a specialization just for cyclic groups we have decided to define a general repre-
sentation for GAP groups, since in the future we could be interested in including support
for the construction of other GAP groups. In the same line, in the future we could be
interested in including not only groups, but also other GAP objects. As we said in Sub-
section 2.2.3 to include these new objects (which come from a different internal server)
we specialized the MK-OBJECT class by means of a subclass, that is the class MK-GAP, whose
definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-GAP (MK-OBJECT) () )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In turn, we specialize this class to represent GAP groups.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-GROUP-GAP (MK-GAP)
;; Is Abelian
(ia :type boolean :initarg :ia :reader ia)
;; Is Cyclic
(ic :type boolean :initarg :ic :reader ic)
;; Is Elementary Abelian
(iea :type boolean :initarg :iea :reader iea)
;; Is Nilpotent Group
(ing :type boolean :initarg :ing :reader ing)
;; Is Perfect Group
(ipg :type boolean :initarg :ipg :reader ipg)
;; Is Solvable Group
(isg :type boolean :initarg :isg :reader isg)
;; Is PolyCyclic Group
(ipcg :type boolean :initarg :ipcg :reader ipcg)
;; Is SuperSolvable Group
(issg :type boolean :initarg :issg :reader issg)
;; Is Monomial Group
(img :type boolean :initarg :img :reader img)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has nine slots in addition to the idnm and orgn slots of the MK-OBJECT class:

1. ia, a boolean, indicates if the group is abelian.

2. ic, a boolean, indicates if the group is cyclic.

3. iea, a boolean, indicates if the group is elementary abelian.

4. ing, a boolean, indicates if the group is nilpotent.

5. ipg, a boolean, indicates if the group is perfect.

6. isg, a boolean, indicates if the group is solvable.

7. ipcg, a boolean, indicates if the group is polycyclic.

8. issg, a boolean, indicates if the group is supersolvable.
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9. img, a boolean, indicates if the group is monomial.

All the information included in the previous nine slots is obtained from GAP/HAP.

The procedure to construct cyclic group instances in the cyclic-groups module is
very similar to the procedure followed in the construction of spaces presented in Subsub-
section 2.2.3.3. However, in this case, this module does not need to check any additional
restriction, since all the restrictions are imposed in the XML-Kenzo specification; there-
fore, all the requests that come from the external server related to cyclic group objects
are always safe. The procedure to construct a cyclic group is as follows.

1. Search in the *object-list* list if the object was built previously.

(a) If the object was built previously, return its identification number and the
properties about the group in a gap-id XML-Kenzo object.

(b) Otherwise, go to step 2.

2. Construct an instance of the MK-GROUP-GAP class where:

• idnm is automatically generated (remember that idnm is the object identifier
in the microkernel).

• the XML-Kenzo object received as input is assigned to orgn.

• the information of the rest of the slots is obtained invoking the GAP/HAP
internal server.

3. Push the object in the *object-list* list of already created objects.

4. Return its identification number and the properties about the group in a gap-id

XML-Kenzo object.

In this way, cyclic groups are constructed in the microkernel. It is worth noting that
in spite of being constructed by different internal servers, all the objects are stored in
the *object-list* list in the internal memory.

4.1.3.4 Enhancing the homology computation module

The gap-homology-m.lisp file contains the Common Lisp functions which allow the plug-
in framework to extend the homology module of the microkernel in order to include the
functionality to compute the homology groups of cyclic groups.

In Paragraph 2.2.3.4.1 the homology module of the microkernel was explained. The
homology module implements a procedure in Common Lisp that allows us to compute
homology groups through the microkernel. We have implemented that procedure in
such a way that we do not need to overwrite the code of the procedure to allow the
microkernel to deal with several internal servers.
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Namely, we have used a very powerful tool of Common Lisp: the combination of
generic functions and methods [Gra96]. When the class system and the functional orga-
nization of Common Lisp are considered, the notions of generic functions and methods
are normally used. A generic function is a functional object whose behavior will depend
on the class of its arguments; a generic function is defined by a defgeneric statement.
The code for a generic function corresponding to a particular class of its arguments is a
method object; each method is defined by a defmethod statement. This technique was
used in the implementation of the class system of Kenzo [Ser01] and also in the homology
computation module of the microkernel.

In particular, we have defined a generic function which corresponds with Step 5 of
the procedure explained in Paragraph 2.2.3.4.1:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC compute-homology (mk-object n))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This generic function can have several methods to adapt the generic function to
specific cases. In particular, up to now, it had associated just the method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD compute-homology ((space mk-space-kenzo) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This method invokes the Kenzo internal server from an mk-space-kenzo.

Now, we have defined a new class of objects; and in this case the system does not
use Kenzo as kernel to compute the homology groups, but the GAP/HAP server. Then,
the gap-homology-m.lisp file defines the method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD compute-homology ((group mk-group-gap) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which allows us to compute homology groups using the GAP/HAP server through the
gap-invoker.

It is also worth noting that the instances of the class mk-group-gap do not have a rede

slot which is used in the procedure explained in Paragraph 2.2.3.4.1 to check whether
Kenzo could compute the homology groups or not. The way of managing this situation
is based on the same idea: use generic functions and methods. Namely, we have defined
the generic function which corresponds with the Step 4 of the procedure explained in
Paragraph 2.2.3.4.1:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC check-constraints (mk-object))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the case of dealing with mk-space-kenzo instances we have the method:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD check-constraints ((space mk-space-kenzo))
(if (>= (rede space) 0) t nil))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On the contrary, the method implemented for the case of mk-group-gap instances is
the following simple method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD check-constraints ((group mk-group-gap)) t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way, the homology module of the microkernel allows us to use GAP/HAP
to perform computations. To sum up, homology groups of spaces are computed with
Kenzo and homology groups of groups are computed with GAP. In general, we can use
different methods to compute the homology groups of different classes of objects without
modifying the main procedure.

4.1.3.5 Increasing the functionality of the adapter

Cyclic groups are objects already defined in the OpenMath language, namely in the
groupname1 Content Dictionary. This Content Dictionary is added to the list of Content
Dictionaries which can be processed in the adapter. Moreover, we have defined a gap-id

object, in the Aux Content Dictionary, to return the identification and the information
related to a group.

In addition, we have extend the Phrasebook by means of new parsers which are able
to convert from XML-Kenzo objects related to GAP/HAP to OpenMath objects and
viceversa. For instance, the XML-Kenzo request:

<constructor>
<cyclic>5</cyclic>

</constructor>

is generated by the adapter when the following OpenMath request is received:

<OMOBJ>
<OMA>
<OMS cd="groupname1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
</OMOBJ>

Therefore, the gap-a.lisp file contains the new parsers and a list with both
groupname1 and Auxiliar Content Dictionaries in order to raise the functionality of
the adapter to be able to convert from the new OpenMath requests, devoted to GAP
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Figure 4.4: UML sequence diagram

operations, to XML-Kenzo requests.

4.1.3.6 Execution flow

To provide a better understanding of the integration of the GAP/HAP system in our
framework, let us present an execution scenario where a client asks our framework for
computing H5(C5) in a fresh session, that is, neither objects were constructed or com-
putations were performed previously. The execution flow of this scenario is depicted in
Figure 4.4 with a UML-like sequence diagram.

The OpenMath representation of the request H5(C5) is the following one:

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homology"/>
<OMA>

<OMS cd="groupname1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
<OMI>5</OMI>

</OMA>
</OMOBJ>

The adapter receives the previous OpenMath request from a client. This module
checks that the OpenMath instruction is well-formed and the Phrasebook converts the
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OpenMath object into the following XML-Kenzo object:

<operation>
<homology>

<cyclic>5</cyclic>
<dim>5</dim>

</homology>
</operation>

which is sent to the external server. The external server validates the XML-Kenzo object
against the XML-Kenzo specification, in this case as the root element is operation, then
it checks that:

1. The child element of operation is homology or homotopy. X

2. The homology element has two children. X

3. The first child of the homology element belongs to one of the groups A, CC, SS, SG
or ASG. X

4. The value of the cyclic element is a natural number. X

5. The second child of the homology element is the dim element. X

6. The value of the dim element is a natural number. X

All the tests are passed, so, we have a valid request that is sent to the microkernel.
In the microkernel the homology module is activated. When the homology module is
activated, the procedure explained in Paragraph 2.2.3.4.1 with the extension explained in
Subsubsection 4.1.3.4 is executed. First, the homology module searches in *object-list*

list if the cyclic group of dimension 5 was constructed previously; as this object was not
constructed, the cyclic module is invoked to construct it, this module in turn invokes
the GAP/HAP server through the gap-invoker to construct a mk-group-gap instance.
This instance is stored in the *object-list* list to avoid the duplication of elements.

Subsequently, once the object is constructed, the homology module sends the XML-
Kenzo request to the gap-invoker in order to send a request to the GAP/HAP server
to compute the group homology. The request sent to the GAP/HAP server by the
gap-invoker is:
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<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>

<OMS cd="scscp_transient_1" name="Homology"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>
<OMI>5</OMI>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>
<?scscp end ?>

It is worth noting that the above OpenMath request is a bit different from the original
one received by the adapter. Namely, it includes SCSCP enhancements.

When the GAP/HAP server receives the above request, it executes the following
instruction:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> GroupHomology(CyclicGroup(5),5); z
[5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result returned by the GAP/HAP server is:

<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name ="call_id"/>
<OMSTR> esus.unirioja.es:7500 </OMSTR>

</OMATP>
<OMA><OMS cd="scscp1" name ="procedure_completed"/>

<OMA><OMS cd="list1" name ="list"/><OMI>5</OMI></OMA>
</OMA>
</OMATTR>

</OMOBJ>
<?scscp end ?>

This result is converted by the gap-invoker into the following XML-Kenzo result.
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<result>
<component>5</component>

</result>

This result is stored in the internal memory to avoid re-computations by the homology

module and is sent to the adapter through the external server. Then, the adapter
converts the result into its OpenMath representation:

<OMOBJ>
<OMA>

<OMS cd="ringname" name="Zm"/>
<OMI>5</OMI>

</OMA>
</OMOBJ>

and this is the result returned to the client. It is worth noting that the OpenMath
representation of the result returned by the GAP/HAP server is different from the
representation of the result returned by the adapter. This is due to the fact that the
GAP/HAP server uses the SCSCP representation; but we consider that is better to
keep a consistent representation for all the results returned by our framework for the
computation of homology groups.

It is worth noting that from the client point of view, the internal server employed to
perform the computations is transparent.

4.1.4 Properties of objects

As we have explained in the previous subsection, when a (cyclic) group is constructed in
our framework not only its identification number is returned but also some properties of
that group. This additional information can be helpful, in a client, for instance to allow
a student to know some properties of the object.

Then, we realized that in the same way that some properties are associated with
groups, we can do the same with spaces. However, there is an important difference,
group properties are obtained from the GAP/HAP server, whereas the space properties
will be obtained from the knowledge included in the microkernel and not from Kenzo. To
include, this improvement in our system, the following small plug-in has been developed.

<code id="spaces-properties">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/microkernel"> properties-mk.lisp </data>
<data format="Kf/adapter"> properties-a.lisp </data>

</code>
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Figure 4.5: id element in XML-Kenzo

These resources deserve a detailed explanation that is provided in the following para-
graphs.

First of all, we want to modify the id XML-Kenzo object to not only store an
identification number but also properties about the object which has associated the
identifier. Therefore, we have extended the XML-Kenzo specification (XML-Kenzo.xsd
file) to admit the new definition of id which includes an attribute called properties, see
Figure 4.5.

The properties-mk.lisp file modifies the behavior of the following construction mod-
ules: Sphere, Delta, K-Z, K-Z2, Cartesian Product, Suspension, Classifying Space and
Loop Space. That is to say, the modules which are used by the HES, because they
provide additional information which can be interesting for a user. Then, the id XML-
Kenzo objects returned by these modules not only contain the identifiers but also some
properties. For instance, when the Cartesian Product module is activated and both
components of the Cartesian product are contractible spaces, the returned object is:

<id properties="The space is contractible because is the cartesian product of two
contractible spaces"> 1 </id>

It is worth noting that the rest of the modules of the microkernel return id XML-
Kenzo objects whose properties attribute is empty.

Finally, the properties-a.lisp file includes a new parser in the Phrasebook to be
able to handle the new specification of id XML-Kenzo objects.

4.1.5 Integration of GAP/HAP in the fKenzo GUI

Throughout this section, a plug-in that allows us to include in our system the function-
ality related to GAP/HAP has been presented. Now, the necessary resources to extend
the fKenzo GUI to provide support for the new functionality are explained.

In this case we have defined a fresh fKenzo module to enhance the GUI with
support for the GAP/HAP system. The new OMDoc module references three
files: gap-structure (that defines the structure of the graphical constituents),
gap-functionality (which provides the functionality related to the graphical con-
stituents) and the plug-in introduced in the previous subsection.

We have defined three graphical elements, using the XUL specification language, in
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Figure 4.6: Cyclic window

the gap-structure file:

• A menu called GAP which contains one option: Cyclic Group.

• A window called Cyclic (see Figure 4.6). It is worth noting that it is not neces-
sary to specify this window from scratch since it has the same structure that, for
instance, the Sphere window of the Simplicial Set module. So, we use a generic
specification with the concrete values of the new window.

The functionality stored in the gap-functionality document related to these com-
ponents works as follows. A function acting as event handler is associated with the
Cyclic Group menu option; this function shows a Cyclic window (see Figure 4.6). From
the Cyclic window, the user must introduce the dimension of the cyclic group that
must be a natural number. Once the user has introduced the dimension n of the cyclic
group, when he presses the Create button of the Cyclic window, an OpenMath request
is generated and sent to the framework.

Then, the cyclic group Cn is built and its identification number in a gap-id OpenMath
object is returned. Eventually fKenzo adds to the constructed objects list (situated in
the left side of the main tab of the fKenzo GUI) the new group. To identify the (Abelian)
groups in fKenzo we use the letter A and its identification number.

Finally, if the Computing fKenzo module is loaded (or has been previously loaded)
the user can ask fKenzo to compute the homology groups of a group using the Homology

option of the Computing menu, the results are shown, as usual, in the Computing tab.
Figure 4.7 shows the computation of the homology groups of C5.

It is worth noting that from the user point of view the computation of homology
groups of both spaces and groups has no differences, since he proceeds in both cases in
the same way. Therefore the system used in each moment is transparent to the user,
providing access to different software systems in an easy and comfortable way.

In addition to the graphical elements presented about GAP/HAP, a new constituent
has been added to the GUI to handle properties. Namely, a new tab called Description



4.1 Integration of the GAP Computer Algebra system 147

Figure 4.7: Homology groups of C5

is included in the central panel. This new graphical element is included whenever a
construction module or the GAP/HAP module is loaded in fKenzo. The functionality
associated with this new element is as follows.

As we explained in Subsection 3.2.1 when an object is selected from the list of con-
structed spaces, its standard notation appears at the bottom part of the right side of
the fKenzo GUI. This behavior is kept but, in addition, if some additional informa-
tion is accessible when an object is constructed, then, this information is shown in the
Description tab. For instance, when the cyclic group of dimension 5 is selected, the
Description tab shows the properties about the group included in the gap-id Open-
Math object returned, see Figure 4.8. The same happens when an id OpenMath object
contains some properties of the object.

The next subsubsection is devoted to present how objects are handled in the fKenzo
GUI.

4.1.5.1 Management of the objects in the fKenzo GUI

Let us present how the objects are managed in the fKenzo GUI.

The representation of objects in the fKenzo GUI has been inspired by the representa-
tion of objects in Kenzo. An object of the fKenzo GUI is implemented as an instance of
a CLOS class (let us remember that the fKenzo GUI is implemented in Common Lisp),
the class FKENZO-OBJECT, whose definition is:
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Figure 4.8: Description tab for GAP groups

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT ()
;; IDentification NuMber
(idnm :type fixnum :initarg :idnm :reader idnm)
;; ORiGiN
(orgn :type string :initarg :orgn :reader orgn))
;; PROPertieS
(props :type string :initarg :props :reader props)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has three slots:

1. idnm, an integer, identifier for the object in fKenzo. This is the value assigned
when a space is constructed.

2. orgn, a string containing the OpenMath object that is the origin of the object.

3. props, a string containing the properties obtained in the construction of the object
or the empty string if no property was returned.

The objects are stored in a list called *FKENZO-OBJECTS* which is used to generate
the shown list to the user in the left side of the fKenzo GUI.

Moreover, there is a function, called fK, which allows us to get information about
the n-th fKenzo GUI object. The fK function takes as argument a natural number n
and returns the n-th fKenzo GUI object.

The functionality of the event handler of the list of the left side, when an object is
selected from it, works as follows. From the selected object, for instance “SS 3”, extracts
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its identification number, in this case 3, and obtains the FKENZO-OBJECT by means of the
fK function. Subsequently, it invokes a Common Lisp method [Gra96] associated with
that FKENZO-OBJECT which shows the mathematical notation of the object in the bottom
part of the right side of the fKenzo GUI. Moreover, if the value of the props slot is
not empty, then, the system moves dynamically from the current selected tab to the
Description tab showing the properties of the object.

It is worth noting that the approach followed to store the properties of an object,
just using a string, is likely too simple, and several improvements can be consider, for
instance, replace the props string with an association with different classes. However,
that remains as further work.

Moreover, due to the fact that objects of very different nature can exists in fKenzo,
we have specialized the FKENZO-OBJECT with two different subclasses. On the one hand,
we have defined a new subclass of the FKENZO-OBJECT class; to store a name given by the
user to identify the object. Namely, the new class, FKENZO-OBJECT-NAME, whose definition
is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT-NAME (FKENZO-OBJECT)
;; NAME
(name :type string :initarg :name :reader name)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is a subclass of the FKENZO-OBJECT class with just one additional slot, name,
which provides a name for the object. The FKENZO-OBJECT-NAME instances will be useful
to store objects which do not have a concrete mathematical representation but which
include a name to identify them in fKenzo, for instance a simplicial set build from a list
of its elements.

On the other hand, we have defined a new subclass of the FKENZO-OBJECT class;
to store the path of a file associated with the object. Namely, the new class,
FKENZO-OBJECT-FILE, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT-FILE (FKENZO-OBJECT)
;; FILE
(file :type string :initarg :file :reader idnm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is a subclass of the FKENZO-OBJECT class with just one additional slot, file,
which provides the path of a file associated with the object. In turn this class can be
specialized depending on the type of the file which is associated with the object.

4.1.5.2 Behavior of the objects in the fKenzo GUI

It is worth noting that in spite of belonging to different classes, all the instances con-
structed in fKenzo are stored in the *FKENZO-OBJECTS*, used to show the list objects in
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the left side of the fKenzo GUI. However, when we select an object in the left list of
the GUI, the behavior of the interface depends on the class associated with the selected
object. To deal with this question we have used the Strategy pattern [GJ94] which is
implemented in Common Lisp by means of generic functions and methods.

In particular, we have defined the generic function to show information in the fKenzo
GUI about the selected object:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC show-object (object))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This generic function have several methods to adapt it to specific cases. The main
method is associated with the FKENZO-OBJECT class:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD show-object ((object FKENZO-OBJECT))
(show-mathematical-notation (orgn object))
(if (props object) (show-description (props object))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This method shows the mathematical representation of object in the bottom part of
the right side of the fKenzo GUI by means of the show-mathematical-notation function
which takes as argument the orgn slot of the FKENZO-OBJECT instance. Moreover, if some
additional information is stored in the props slot of the object, then, this information is
shown in the Description tab.

When the object associated with the selection of the left list of the GUI belongs to
the class FKENZO-OBJECT-NAME, the behavior of the GUI is different since we have defined
this new method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD show-object ((object FKENZO-OBJECT-NAME))
(show-name (name object))
(if (props object) (show-description (props object))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which instead of showing the mathematical representation of the object shows the name
given by the user. In addition, each specialization of the FKENZO-OBJECT-FILE will have
a concrete method to specify its behavior. In this way, the behavior of the left list of
the GUI is modified without touching the main code.

We foresee the definition of new specializations in the future, but we think that
approach presented here is general enough to be extrapolated to other cases.

4.2 Interoperability between Kenzo and GAP/HAP

As we said at the beginning of this chapter, the integration of several tools in fKenzo
was a means and not the end. The final goal of integrating different tools, as internal
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servers, in the framework (and in fKenzo, too) consists of achieving a composability
between them to produce results not reachable if the tools worked in an isolated way.

The first case study is the integration of the two Computer Algebra systems included
in our system (Kenzo and GAP/HAP). To achieve the goal of the composability of Kenzo
and GAP/HAP we have been inspired by the work presented in [RER09]. In that work,
Kenzo and GAP/HAP were manually communicated by means of OpenMath objects
in order to compute homology of groups of Eilenberg MacLane spaces of type K(π, 1).
In addition, this integration allowed the authors to develop new tools to compute more
algebraic invariants, such as homology groups of K(π, n)’s of certain 2-types or of central
extensions, as can be seen in [Rom10].

However, the approach followed in that paper to connect Kenzo and GAP/HAP had
some drawbacks that will be explained in the next subsection. Then, we have undertaken
the task of improving the cooperation between these systems thanks to our framework.

The interoperability between Kenzo and GAP/HAP is translated into the feasibility
of constructing Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic group,
thanks to the combination of Kenzo and GAP/HAP; and subsequently use these spaces
as any other space of the system (that means, use them for constructing other spaces
and computing their homology and homotopy groups).

The rest of this section is organized as follows. Subsection 4.2.1 is devoted to provide
an overview of the method to integrate Kenzo and GAP/HAP used in [RER09]; in addi-
tion, the necessary mathematical background is also explained there. The composability
of Kenzo and GAP/HAP in our framework is explained in Subsection 4.2.2. Finally, the
improvements added to the fKenzo GUI are presented in Subsection 4.2.3.

4.2.1 Mathematical preliminaries

In Subsection 4.1.1, we explained that is enough to determine a free resolution F∗ of a
group G to compute its homology groups. One approach consists of considering the bar
resolution B∗ = Bar∗(G) (explained, for instance, in [Mac63] and which can be always
constructed) whose associated chain complex Z ⊗ZG B∗ can be viewed as the chain
complex of the Eilenberg MacLane space K(G, 1). The homology groups of K(G, 1) are
those of the group G and this space has a big structural richness. But it has a serious
drawback: its size. If n > 1, then K(G, 1)n = Gn. In particular, if G = Z, the space
K(G, 1) is infinite. This fact is an important obstacle to use K(G, 1) as a means for
computing the homology groups of G.

However, the effective homology technique (see Subsection 1.1.3) and the Kenzo
program could have a role in the computation of the homology of a group G, since, as
we have seen in Section 1.2.2, Kenzo implements Eilenberg MacLane spaces K(G, n) for
every n but only for G = Z and G = Z/2Z. To our end, we need the Eilenberg MacLane
space K(G, 1), for other groups G. The size of this space makes it difficult to calculate
the groups in a direct way, but it is possible to operate with this simplicial set making use
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of the effective homology technique: if we construct the effective homology of K(G, 1)
then we would be able to compute the homology groups of K(G, 1), which are those of
G. Furthermore, it should be possible to extend many group theoretic constructions to
effective homology constructions of Eilenberg MacLane spaces. We thus introduce the
following definition.

Definition 4.4. A group G is a group with effective homology if K(G, 1) is a simplicial
set with effective homology.

The problem is, given a group G, how can we determine the effective homology of
K(G, 1)? If the group G is finite, the simplicial set K(G, 1) is effective too, so that
it has trivially effective homology. However, the enormous size of this space makes it
difficult to obtain real calculations, and therefore we will try to obtain an equivalence
C∗(K(G, 1))⇐⇐⇒⇒E∗ where E∗ is an effective and (much) smaller chain complex than
the initial chain complex.

In [RER09] the algorithm that computes this equivalence from a resolution of G was
explained. Here, we just state the algorithm.

Algorithm 4.5 ([RER09]).
Input: a group G and a free resolution F∗ of finite type.
Output: the effective homology of K(G, 1), that is, an equivalence C∗(K(G, 1))⇐⇐⇒⇒E∗
where E∗ is an effective chain complex.

This algorithm was implemented, by the authors of [RER09], in Common Lisp en-
hancing the Kenzo system. The free resolution of the group G is obtained from the
GAP/HAP system. Particulary to the case where G is a cyclic group, the process to
construct the space K(G, 1), in Kenzo, can be summed up as follows:

1. Load the necessary packages and files in GAP and Kenzo,

2. build the cyclic group G in GAP,

3. build a resolution of the cyclic group G using the HAP package,

4. export from GAP the resolution into a file using the OpenMath format,

5. import the resolution to Kenzo,

6. build the cyclic group G in Kenzo (thanks to a new Kenzo module developed
in [RER09]),

7. assign the resolution to the corresponding cyclic group G in Kenzo,

8. build the space K(G, 1) where G is the cyclic group in Kenzo.
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This approach has some drawbacks. First of all, the user must install several pro-
grams and packages: GAP, its HAP package, the OpenMath package for GAP [SC09],
an extension for this OpenMath package developed in [RER09], the Kenzo system and
the new module developed in [RER09]. In addition, of course, the user must know
how to mix all the ingredients in order to obtain the desired result. Moreover, some of
the steps could be performed automatically by a computer program; for instance, the
importation/exportation of the resolution from GAP to Kenzo.

Therefore, we undertook the task of integrating this composability of systems in
fKenzo but overcoming the drawbacks and hiding to the final user the composability
details.

4.2.2 Composability of Kenzo and GAP/HAP

We have modified the plug-in used to integrate GAP in our framework to include the
functionality related to the construction of Eilenberg MacLane spaces of type K(G, 1),
where G is a cyclic group. The resources included in that plug-in are:

<code id="gap">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> gap-kenzo.lisp </data>
<data format="Kf/internal-server"> gap-invoker.lisp </data>
<data format="Kf/microkernel"> gap-cyclic-m.lisp </data>
<data format="Kf/microkernel"> gap-homology-m.lisp </data>
<data format="Kf/microkernel"> gap-k-g-1-m.lisp </data>
<data format="Kf/microkernel"> homotopy-extension-m.lisp </data>
<data format="Kf/adapter"> gap-a.lisp </data>

</code>

It is worth noting that some new resources have been included to the orig-
inal GAP plug-in (in particular the files gap-kenzo.lisp, gap-k-g-1-m.lisp and
homotopy-extension-m.lisp), others have been modified to allow the integration of the
new tools (XML-Kenzo.xsd, gap-invoker.lisp and gap-a.lisp) and other files remain
untouched.

The modification of the resources and the new resources are going to be explained
in the following subsubsections.

4.2.2.1 New elements of the XML-Kenzo schema

We want to introduce a new kind of objects in our system (Eilenberg MacLane spaces
of type K(G, 1) where G is a group); then, it is necessary to provide a representation
for those objects in our framework. Therefore, we have extended the XML-Kenzo speci-
fication to admit the new objects related to Eilenberg MacLane spaces of type K(G, 1),
where G is a group. In the specification, we have defined a new element: k-g-1, which
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Figure 4.9: k-g-1 element in XML-Kenzo

has one child, that is, an element, of the group A (the type of the GAP abelian groups in
our specification, at this moment this group just has the cyclic element but we foresee
the inclusion of new groups), see Figure 4.9. In addition, the element k-g-1 belongs to
the ASG group (the type of Abelian Simplicial Groups); and therefore, this element can
be used as any other element of the ASG group, that is to say, we can construct requests
to compute its homology and homotopy groups and use it for constructing other spaces.

Therefore, the following request is a valid XML-Kenzo object.

<constructor>
<k-g-1>
<cyclic>5</cyclic>

</k-g-1>
</constructor>

As we explained in Subsection 3.1.2, the external server evolves when the
XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified the
external server can validate requests such as the above one.

4.2.2.2 Enhancements of Kenzo internal server and GAP/HAP server

The Kenzo internal server, the GAP/HAP server and the gap-invoker have been modified
in order to integrate the composability of Kenzo and GAP/HAP.

The GAP/HAP server presented in Subsubsection 4.1.3.2.1 supplied services to con-
struct cyclic groups, to obtain properties of them and to compute their homology groups
using the GAP Computer Algebra system and its HAP package. Now, we have included
a new service which allows the construction of a resolution of a (cyclic) group using
the HAP package. Then, a client can invoke this new service. For instance, when the
GAP/HAP server receives the following request:
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<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>
<OMS cd="scscp_transient_1" name="Resolution"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>
<?scscp end ?>

which asks the construction of a resolution for the cyclic group of dimension 5, the GAP
server executes the instruction:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> ResolutionFiniteGroup(CyclicGroup(5)); z
Resolution in characteristic 0 for <pc group of size 5 with 1 generators>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the GAP server transforms the result to its OpenMath format.

<OMOBJ>
<OMA>
<OMS cd="resolutions" name="resolution"/>
<!-- GROUP -->
<OMA>
<OMS cd="group1" name="cyclic_group"/>
<OMI>5</OMI>
</OMA>
<!-- More than 1000 lines skipped -->
...

</OMOBJ>

The OpenMath format of resolutions was explained in [RER09].

The gap-invoker (presented in Subsubsection 4.1.3.2.1), which was able to invoke the
GAP/HAP server in order to construct cyclic groups, obtain their properties and com-
pute their homology groups has been upgraded in the gap-invoker.lisp file in order to
be able to request resolutions to the GAP/HAP server. When this program invokes the
GAP/HAP server asking for a resolution of a group, the result returned by this program
is the resolution obtained from the GAP/HAP server keeping its OpenMath format.
We decided to keep resolutions with their OpenMath format instead of transforming
them to an XML-Kenzo representation. The main reason was due to the fact that we
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have re-used the programs implemented in [RER09] that work with resolutions based
on the OpenMath format. Therefore, we considered that converting from an OpenMath
resolution to an XML-Kenzo resolution and subsequently performing the inverse trans-
formation to obtain the original OpenMath resolution was unnecessary. Besides, the
idea of using XML-Kenzo to check the correctness of the resolutions against some rules
(as we have done with the rest of the objects of the system) was rejected because we
completely trust in the resolutions returned by the gap-invoker. This means (if con-
nection problems with the GAP/HAP server do not appear in which case the system
manages the situation) that the returned resolutions are always safe since they are not
manually produced, but automatically generated by a program following the rules which
ensure their correctness.

Finally, the functionality of the Kenzo kernel is increased by means of the
gap-kenzo.lisp file which loads in the Kenzo system the functionality implemented
in [RER09] to construct Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic
group. The functionality implemented in [RER09] includes the functions to construct
cyclic groups, to transform an OpenMath resolution into a Common Lisp functional
object and, eventually, to construct Eilenberg MacLane spaces of type K(G, 1) in the
Kenzo system.

Besides, the functionality of the Kenzo internal server is increased allowing the in-
vocation of the service which allows the construction of new Eilenberg MacLane spaces.
Namely, this service takes as argument an XML-Kenzo object which represents the
Eilenberg MacLane space of a group G and an OpenMath resolution of G obtained
from GAP. When this new service is activated, it extracts the cyclic group encoded
in the XML-Kenzo object and constructs a Kenzo object which represents that cyclic
group. Subsequently, the OpenMath resolution is codified as a Common Lisp functional
object and assigned to the cyclic group. Afterwards, the space K(G, 1), where G is
the cyclic group previously constructed in Kenzo, is built. As a result, an instance of
the Abelian-Simplicial-Group Kenzo class is obtained and its identification number is
returned as a result, in an id XML-Kenzo object, by the Kenzo internal server.

4.2.2.3 Increasing the functionality of the microkernel

The gap-k-g-1-m.lisp file contains the Common Lisp functions which allow the plug-
in framework to extend the microkernel in order to include a new construction module,
called k-g-1, to construct Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic
group.

When the microkernel receives a construction request where the child of the
constructor element is k-g-1, the k-g-1 module of the microkernel is activated. For
instance, if the microkernel receives the request:
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<constructor>
<k-g-1>
<cyclic>5</cyclic>

</k-g-1>
</constructor>

the k-g-1 module is activated.

When the k-g-1 module is activated two situations are feasible: (1) a new space is
created in the microkernel or (2) the object was previously built and its identification
number is simply returned.

The procedure to construct Eilenberg MacLane spaces of type K(G, 1), where G is
a cyclic group, in the k-g-1 module is very similar to the procedure followed in the
construction of spaces presented in Subsubsection 2.2.3.3. However, in this case, some
additional steps are needed.

1. Search in the *object-list* list if the object was built previously.

(a) If the object was built previously its identification number, in an id XML-
Kenzo object, is returned.

(b) Otherwise, go to step 2.

2. Extract the XML-Kenzo object which represents the cyclic group of the k-g-1

XML-Kenzo object.

3. Activate the gap-invoker to obtain a resolution associated with the XML-Kenzo
object which represents the cyclic group obtained in the previous step.

4. Invoke the service of the Kenzo internal server which allow the construction of
Eilenberg MacLane space of a group G with the k-g-1 XML-Kenzo object and the
resolution obtained in the previous step as arguments.

5. Construct an instance of the mk-space-k-g class (see Subsubsection 2.2.3.1) where:

• the value of the slot rede is 0,

• idnm is automatically generated,

• kidnm is the value returned by the Kenzo internal server in the previous step,

• the XML-Kenzo object received as input is assigned to orgn,

• the value of the slot iter is 1, and

• the value of the slot group is the dimension of the cyclic group.

6. Push the object in the *object-list* list of already created spaces.

7. Return the idnm of the object in an id XML-Kenzo object.
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In this way, Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic group,
are constructed in the microkernel. It is worth noting that the above procedure does not
need to check any extra constraint for these spaces, since the restriction (namely, the
constraint is the correct type of the argument of this constructor) about these Eilenberg
MacLane spaces is validated in the external server thanks to the XML-Kenzo specifica-
tion.

As we have explained previously, Eilenberg MacLane spaces play a key role in the
computation of homotopy groups of spaces in our system (see Paragraph 2.2.3.2.2).
Then, the homotopy-extension-m.lisp file extends the procedure implemented in the
HAM (see Paragraph 2.2.3.2.2). The procedure implemented in that module only allowed
the computation of homotopy groups if the first non null homology group of the space
was Z or Z/2Z; using the new functions implemented in [RER09] and included in the
Kenzo internal server, we can compute homotopy groups of spaces whose first non null
homology group is a cyclic group using the algorithm implemented in the HAM and the
new functionality related to Eilenberg MacLane spaces.

4.2.2.4 Increasing the functionality of the adapter

Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic group, have been defined
in the ASG OpenMath Content Dictionary. Then, we have upgraded the functionality of
gap-a.lisp (which was presented in Subsubsection 4.1.3.5) to raise the functionality of
the adapter in order to be able to convert from the new OpenMath requests, devoted
to the construction of Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic
group, to XML-Kenzo requests. Namely, we have extend the Phrasebook by means of a
new parser in charge of that task, then, the following XML-Kenzo request:

<constructor>
<k-g-1>
<cyclic>5</cyclic>

</k-g-1>
</constructor>

is generated by the adapter when the following OpenMath request is received:

<OMOBJ>
<OMA>
<OMS cd="ASG" name="k-g-1"/>
<OMA>
<OMS cd="groupname1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
</OMA>

</OMOBJ>
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Figure 4.10: UML sequence diagram

4.2.2.5 Execution flow

To provide a better understanding of the composability of Kenzo and GAP/HAP, let
us present an execution scenario where a client wants to compute π1(K(C5, 1)) in a
fresh session, that is to say, neither objects were constructed nor computations were
performed previously. The execution flow of this scenario is depicted in Figure 4.10 with
a UML-like sequence diagram.

The OpenMath representation of the request to compute π1(K(C5, 1)) is the following
one:

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homotopy"/>
<OMA>

<OMS cd="ASG" name="k-g-1"/>
<OMA> <OMS cd="groupname1" name="cyclic"/> <OMI>5</OMI> </OMA>

</OMA>
<OMI>1</OMI>

</OMA>
</OMOBJ>

The adapter receives the previous OpenMath request from a client. This module
checks that the OpenMath instruction is well-formed and the Phrasebook converts the
OpenMath object into the following XML-Kenzo object
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<operation>
<homotopy>

<k-g-1> <cyclic>5</cyclic> </k-g-1>
<dim>1</dim>

</homotopy>
</operation>

which is sent to the external server. The external server validates the XML-Kenzo object
against the XML-Kenzo specification. In this case as the root element is operation it
checks that:

1. The child element of operation is homology or homotopy. X

2. The homotopy element has two children. X

3. The first child of the homotopy element belongs to one of the groups CC, SS, SG or
ASG. X

4. The k-g-1 element has one child which belongs to the group A. X

5. The value of the cyclic element of the k-g-1 element is a natural number. X

6. The second child of the homotopy element is the dim element. X

7. The value of the dim element is a natural number. X

All the tests are passed, so, we have a valid request that is sent to the microkernel.
In the microkernel the homotopy module is activated. When the homotopy module is ac-
tivated, the procedure explained in Paragraph 2.2.3.4.2 is executed. First, the homotopy

module searches in *object-list* if the space K(C5, 1) was constructed previously; as
this space was not constructed, the k-g-1 module is invoked to construct it. When the
k-g-1 module is activated, the procedure explained in Subsubsection 4.2.2.3 is executed.

The gap-invoker is activated with the aim of obtaining a resolution from GAP/HAP
of the cyclic group C5 represented with the following XML-Kenzo object.

<constructor>
<cyclic>5</cyclic>

</constructor>

From the previous XML-Kenzo object, the gap-invoker constructs the following re-
quest, which is sent to the GAP/HAP server.
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<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>

<OMS cd="scscp_transient_1" name="Resolution"/>
<OMA>

<OMS cd="group1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
</OMA>

</OMA>
</OMATTR>

</OMOBJ>
<?scscp end ?>

When the GAP/HAP server receives the above request the following instruction is
executed in the GAP/HAP server:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> ResolutionFiniteGroup(CyclicGroup(5)); z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result returned by the GAP/HAP server to the gap-invoker (once we have re-
moved the SCSCP wrapper) is:

<OMOBJ>
<OMA>
<OMS cd="resolutions" name="resolution"/>
<!-- GROUP -->
<OMA>
<OMS cd="group1" name="cyclic_group"/>
<OMI>5</OMI>
</OMA>
<!--More than 1000 lines skipped-->
...

</OMOBJ>

This resolution is used by the k-g-1 module to invoke the Kenzo internal server and
construct both in the Kenzo kernel and in the microkernel the space K(C5, 1). The
identifier of the new object is returned to the homotopy module.

Afterwards, a mk-space-k-g is built in the microkernel as was explained in Subsub-
section 4.2.2.3. Subsequently, once the space is constructed in the microkernel, as we
are working with a mk-space-k-g, the HES is activated to compute the homotopy group
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of the space. The HES uses its rules and returns the result:

<result-HES>
<component>5</component>
<explanation>

The space was the Eilenberg MacLane space K(C5, 1). The homotopy groups
of an Eilenberg MacLane space K(G,m) are: πm(K(G,m)) = G and
πr(K(G,m)) = 0 if m 6= r.

</explanation>
</result-HES>

This result is stored in the internal memory to avoid re-computations by the homotopy

module and sent to the adapter through the external server. Then, the adapter converts
the result into its OpenMath representation:

<OMOBJ>
<OMA>

<OMS cd="computing" name="result-HES"/>
<OMI>5</OMI>
<OMSTR>
The space was the Eilenberg MacLane space K(C5, 1). The homotopy groups
of an Eilenberg MacLane space K(G,m) are: πm(K(G,m)) = G and
πr(K(G,m)) = 0 if m 6= r.

</OMSTR>
</OMA>

</OMOBJ>

and this is the result returned to the client.

4.2.3 Composability of Kenzo and GAP/HAP in the fKenzo
GUI

This subsection is devoted to present the necessary resources to extend the fKenzo GUI
to provide support for the new functionality presented in the previous subsection.

In this case we have modified the GAP fKenzo module, presented in Subsection 4.1.5,
to enhance the GUI with support for Eilenberg MacLane spaces of type K(G, 1). Now,
the GAP/HAP module references three files: gap-structure (that defines the structure
of the graphical constituents), gap-functionality (which provides the functionality re-
lated to the graphical constituents) and the plug-in introduced in the previous subsection
(this plug-in is an extension of the presented in Subsection 4.1.3).

We have defined additional graphical elements for the GAP module, using the XUL
specification language, in the gap-structure file:

• A menu option called k-g-1 into the menu Abelian Simplicial Groups.
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Figure 4.11: K-G-1 window

• A window called k-g-1 (see Figure 4.11). As we have explained previously, we do
not specify from scratch this window, but we use a generic specification with the
desired structure whose attributes take the concrete values of the new window.

In addition to the functionality explained in Subsection 4.1.5, the gap-functionality

document includes the functionality related to these new components. Namely, a func-
tion acting as event handler is associated with the k-g-1 menu option; this function
shows the k-g-1 window (see Figure 4.11) if a group was constructed previously in the
session; otherwise, it shows a message which indicates that a group must be constructed
before using this menu option.

From the k-g-1 window, the user must select a group from a list with the Add button.
Once the user has selected a group G, when he presses the Build button of the k-g-1

window, an OpenMath request is generated and sent it to our framework. The Eilenberg
MacLane space K(G, 1) and its identification number is returned. Eventually, fKenzo
adds to the list of constructed objects (situated in the left side of the main tab of the
fKenzo GUI) the new object.

Then, a fKenzo user can use an Eilenberg MacLane space of type K(G, 1) with
G a cyclic group as any other space. In particular, he can employ them to construct
other spaces (for instance the classifying space of these Eilenberg MacLane spaces, see
Figure 4.12) or to compute its homology and homotopy groups, see Figures 4.12 and 4.13.

It is worth noting that from the user point of view he can construct and use the space
K(G, 1) as any other space, so he does not know that internally the process to construct
this kind of spaces involves the composability of two Computer Algebra systems. There-
fore, we are providing an interoperability tool to the user without disconcerting him by
the technicalities needed to perform this composability.

In particular, the procedure that the user must follow to achieve the same behavior
presented in [RER09] is:

1. Load the GAP fKenzo module,

2. build the cyclic group G,
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Figure 4.12: Homology groups of K(C5, 1) and B(K(C5, 1))

Figure 4.13: Explanation facility window for homotopy groups of K(C5, 1)
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3. build the space K(G, 1).

As can be seen, this is a much more simpler approach than the one presented
in [RER09] from the user point of view. However, no reward comes without its cor-
responding price and some of the constructions developed in [RER09, Rom10] cannot be
made available in fKenzo (for instance 2-types, since their construction involves a study
of its internal structure and a knowledge of the definition of Lisp functions, and such a
meticulous study is difficult to integrate in a GUI, at least in an easy and usable way,
that is, without giving access to the internal Common Lisp code).

4.3 Integration of the ACL2 Theorem Prover

As we claimed in Section 2.1 one of the challenges of our system was the integration of
different kinds of tools; in particular, we were not only interested in integrating tools
which allow us to perform computations (such as Computer Algebra systems) but also
to certify the results (by means of Theorem Proving tools).

To this aim, as a first step, we have taken advantage of the semantical possibilities
of OpenMath. Concretely, we have added, in our Content Dictionaries, the properties
which the mathematical structures must satisfy. This opens the chance of interfacing
OpenMath with different theorem provers. A similar approach (in the sense that it
involved both OpenMath and a Theorem Prover), using the proof checkers Lego and
Coq, was proposed by Caprotti and Cohen in [CC99]. The approach followed in that
paper consisted of checking whether OpenMath expressions were well-typed with Lego
and Coq Theorem Provers or not. Our approach is a bit different, on the one hand,
we have used the ACL2 theorem prover instead of Coq and, on the other hand, we
want to define mathematical structures in Content Dictionaries; then, an interpreter
will transform those Content Dictionaries into ACL2 encapsulates (see Subsection 1.3.2)
which can be used later on in ACL2. The importance of this case study comes from
the fact that we are giving the first steps to store mathematical theories developed in
Theorem Provers in OpenMath/OMDoc documents, increasing the portability of those
theories to different theorem provers.

The rest of this section is organized as follows. Subsection 4.3.1 is devoted to present
how axiomatic information is added to our Content Dictionaries. The transformation
from Content Dictionaries to ACL2 encapsulates is explained in Subsection 4.3.2. The
integration of ACL2 in our framework and in the fKenzo GUI are presented respectively
in subsections 4.3.3 and 4.3.4.

4.3.1 Adding axiomatic information to Content Dictionaries

Up to now, we have defined four Content Dictionaries (see Subsection 2.2.5) related to
the different kind of objects that can be built in our system (Chain Complexes, Simplicial
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Sets, Simplicial Groups and Abelian Simplicial Groups). These Content Dictionaries,
which are www-available at [Her11], defined several objects (such as spheres, loop spaces
and so on) which instantiate a mathematical structure. However, they did not formally
define the mathematical structure. To deal with this question we have proceeded as
follows.

The Kenzo mathematical structures (see Figure 1.2 of Subsection 1.2.1) are alge-
braic structures which properties are axiomatically given and which have associated a
signature with the arities of the functions which define an object of that structure. For
each one of the Kenzo mathematical structures we have defined an OpenMath Content
Dictionary (or extended the ones already defined) to include the formal definition of
these mathematical structures.

To this aim we have based on the Small Type System formalism, see [Dav99] for de-
tails, which has been designed to give semi-formal signatures to OpenMath symbols. By
using this mechanism we have included signatures in the OpenMath objects definition.
In addition, we have specified their properties in two different ways (by means of <FMP>
and <CMP> tags) and we have associated an instance example with them.

We are going to focus on the SS Content Dictionary which defines the notion of
simplicial sets introduced in Definition 1.17; the rest of Content Dictionaries are based
on the same ideas.

To define the simplicial set structure, we must provide the disjoint sets {Kq}q≥0 and
both face and degeneracy operators. The sets {Kq}q≥0 can be seen as a graded set;
so, it is possible to consider its characteristic function which, from an element x and a
degree g, determines if the element x belongs to the set Kg. To be precise, an invariant
function can be used in order to encode the characteristic function of the graded set
{Kq}q≥0.

Based on the previous way of representation, the following signature, let us called it
SS, has been defined for simplicial sets.

inv : u nat -> bool
face : u nat nat -> u
deg : u nat nat -> u

where inv, face and deg represent the characteristic function of the underlying set and
the face and degeneracy operators respectively, and u denotes the Universe, of Lisp
objects in this case.

The SS signature can be codified using the OpenMath Signature element as follows:
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<Signature name="simplicial-set">
<OMOBJ xmlns="http://www.openmath.org/OpenMath">

<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA id="inv">

<OMS cd="sts" name="mapsto"/>
<OMV name="Element"/>
<OMV name="PositiveInteger"/>
<OMS cd="setname2" name="boolean"/>

</OMA>
<OMA id="face">

<OMS cd="sts" name="mapsto"/>
<OMV name="Element"/>
<OMV name="PositiveInteger"/>
<OMV name="PositiveInteger"/>
<OMV name="Element"/>

</OMA>
<OMA id="degeneracy">

<OMS cd="sts" name="mapsto"/>
<OMV name="Element"/>
<OMV name="PositiveInteger"/>
<OMV name="PositiveInteger"/>
<OMV name="Element"/>

</OMA>
<OMV name="Simplicial-Set"/>

</OMA>
</OMOBJ>

</Signature>

The above OpenMath Signature must be read as follows. Each application OMA inside
the main mapsto of the simplicial-set signature represents each one of the functions
of the SS signature. The value of the id of the application tag (<OMA id=" ">) is the
name of the function. The mapsto symbol, inside of the application tag, is applied to n
variables and/or symbols, the first n− 1 will be the inputs and the last one the output
of the function. The “type” of the inputs and outputs is also included. In this way, we
can provide the signature of each Kenzo mathematical structure.

The formal mathematical properties of the simplicial sets are given in the <FMP>

tags of the simplicial set definition. In this case <FMP> elements state the properties of
invariance of face and degeneracy operators and the relations between them (the five
properties included in the definition of simplicial sets). All of them have also been
included in natural language by using <CMP> elements. For instance, the face operator
invariance (x ∈ Kq ⇒ ∂ix ∈ Kq−1) is represented as follows:
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<CMP> Face operator invariance: x \in K^q => \partial_i x \in K^{q-1} </CMP>
<FMP>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA> <OMS name="inv"/> <OMV name="x"/> <OMV name="q"/> </OMA>
<OMA>
<OMS name="inv"/>
<OMA> <OMS name="face"/> <OMV name="x"/> <OMV name="i"/> <OMV name="q"/> </OMA>
<OMA> <OMS cd="arith1" name="minus"/> <OMV name="q"/> <OMI>1</OMI> </OMA>

</OMA>
</OMA>
</FMP>

Finally, an example of a concrete simplicial set has been included. Namely, the sim-
plicial set with one element belonging to each set Kq and with each face and degeneracy
operation of degree q returning the element of degree q − 1 and q + 1 respectively has
been considered.

<Example>
...
<OMBIND>

<OMS name="face"/>
<OMBVAR>

<OMV name="x"/> <OMV name="i"/> <OMV name="q"/>
</OMBVAR>
<OMS cd="list" name="nil"/>

</OMBIND>
....

</Example>

In this way, all the Kenzo mathematical structures can be defined by means of
OpenMath Content Dictionaries.

4.3.2 From Content Dictionaries to ACL2 encapsulates

Content Dictionaries, defined in the way presented in the previous subsection, open the
chance of interfacing OpenMath with theorem provers; namely, in our case, with the
ACL2 Theorem Prover (presented in Section 1.3). The main reason to choose ACL2
was the fact that, as Kenzo, it is a Common Lisp program, then, we can use ACL2 to
verify real Kenzo code, as we will see from the next chapter, improving in this way the
reliability of our system.

It is worth noting that our Content Dictionaries include all the necessary information
to generate ACL2 encapsulates. Let us remember that ACL2 supports the constrained
introduction of new function symbols by means of the encapsulate notion, a detailed
description of this ACL2 functionality was presented in Subsection 1.3.2. Briefly, an
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encapsulate allows the introduction of function symbols in ACL2, without a completely
specification of them, but just assuming some properties which define them partially.
An ACL2 encapsulate consists of a set of function signatures, a set of properties of these
functions and a “witness” for each one of the functions, where a witness is an existing
function that can be proved to have the required properties (witnesses are provided to
avoid the introduction of inconsistencies in ACL2).

From each Content Dictionary specified as the one presented in the previous subsub-
section, an ACL2 encapsulate can be generated. From now on, we are going to explain
the transformation from one of our Content Dictionaries (in particular the SS Content
Dictionary) to an ACL2 encapsulate.

First of all, the OpenMath signatures must be transformed to ACL2 signatures. Each
application OMA inside the main mapsto of the simplicial set signature is translated into a
function of the encapsulate in the following way. The value of the id of the application
tag (<OMA id=" ">) will be the name of the function, the mapsto symbol inside the
application tag is converted to => in ACL2. The mapsto symbol is applied to n variables
and/or symbols, the first n−1 will be the inputs and the last one the output. Note that
ACL2 is a system without explicit typing, so, although the “type” of the objects has
been included in the Content Dictionary they will be translated into asterisks in ACL2.
Adding the necessary brackets, the following ACL2 signature is obtained.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

((inv * *) => *))
(((face * * *) => *)
((degeneracy * * *) => *)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following step consists of transforming the mathematical properties, specified in
the Content Dictionary, into ACL2 lemmas. In order to do this, we proceed as follows.
First of all, the <CMP> tags will be translated into ACL2 comments, expressed with “;”.
To each <FMP> tag, a new lemma, defthm in ACL2 syntax, with the name prop-n where
n is a variable that indicates the number of the property, must be defined. The implies,
and, eq and minus OpenMath symbols are translated respectively into the implies, and,
equal and “-” ACL2 functions (these are some examples of the equivalences established
between OpenMath symbols and ACL2 functions). For instance, the following ACL2
lemma about the face operator invariance is obtained from the respective property in
the Content Dictionary.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

; Face operator invariance
(defthm prop-1 (implies (inv x q) (inv (face x i q) (- q 1))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

And, finally, from the <Example> tags, the witnesses are obtained. Each example in a
Content Dictionary will be a local definition in an ACL2 encapsulate. The OMBIND symbol
indicates the beginning of the definition, defun in ACL2, its first argument is a symbol
which indicates the name of the function, the second one is an OMBVAR element which
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specifies the name of the parameters and the third one is the body of the function.
If some of the arguments of the function does not appear in its body, they will be
ignored to obtain a correct ACL2 function, as we show in the translation of the previous
subsubsection.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(local (defun face (x i q) (declare (ignore x i q)) nil))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, we have an interpreter which is able to construct ACL2 encapsulates from
some concrete Content Dictionaries. This interpreter is a Common Lisp program which
takes as input an OMDoc file specified in the way presented in Subsubsection 4.3.1 and
constructs an ACL2 encapsulate. All the generated encapsulates can be evaluated in
ACL2.

In the same way that we have developed an interpreter which generates ACL2 en-
capsulates from Content Dictionaries, we can also implement other interpreters which
supply suitable code for other Theorem Provers such as Isabelle or Coq.

4.3.3 Integration of ACL2

To integrate the ACL2 Theorem Prover in our framework we have developed a plug-in
following the guidelines given in Subsubsection 3.1.2. This new plug-in will allow us
to verify ACL2 scripts (an ACL2 script is a file of ACL2 forms, such as definitions or
theorems, which is processed in a sequential way) obtaining as result a file with the ACL2
output obtained from the evaluation of the script in ACL2. Moreover, we have included
the interpreter presented in the previous subsection as a module of the microkernel
to generate ACL2 encapsulates from Content Dictionaries. This plug-in references the
following resources:

<code id="ACL2">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> ACL2-is.lisp </data>
<data format="Kf/microkernel"> ACL2-m.lisp </data>
<data format="Kf/microkernel"> CD-to-ACL2.lisp </data>
<data format="Kf/adapter"> ACL2-a.lisp </data>

</code>

These resources deserve a detailed explanation that is provided in the following sub-
subsections.

4.3.3.1 Extending the XML-Kenzo schema

As we have just explained, the new plug-in will allow us to execute ACL2 scripts and
store the output produced by ACL2 in a file. Then, we need to represent the way
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Figure 4.14: acl2-script XML-Kenzo specification

Figure 4.15: acl2-output XML-Kenzo specification

of providing the path of both the ACL2 script and the ACL2 output. Therefore, we
have extended the XML-Kenzo specification (XML-Kenzo.xsd file) to this aim. In this
specification, we have defined two new elements: a new element of the requests group
called acl2-script (see Figure 4.14), whose value is a string which indicates the path
of the ACL2 script, and a new element of the results group called acl2-ouput (see
Figure 4.15) whose value is a string which indicates the path of an ACL2 output file.

Moreover, we want to introduce new functionality in our system which allows us to
generate an ACL2 encapsulate from a Content Dictionary. Therefore, we have extended
the XML-Kenzo specification to admit this new functionality. In the XML-Kenzo spec-
ification, we have defined a new element of the requests group called CD-to-ACL2 (see
Figure 4.16), whose value is a string which indicates the path of an OMDoc document;
and a new element of the results group called ACL2-encapsulate (see Figure 4.17) whose
value is a string, namely an ACL2 encapsulate.

As we explained in Subsubsection 3.1.2 the external server evolves when the
XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified the
external server is able to receive XML-Kenzo objects such as:

<acl2-script> acl2-script-path </acl2-script>

<OMDoc-to-ACL2> OMDoc-path-file </OMDoc-to-ACL2>

Figure 4.16: CD-to-ACL2 XML-Kenzo specification
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Figure 4.17: acl2-encapsulate XML-Kenzo specification

4.3.3.2 A new internal server: ACL2

To integrate the ACL2 Theorem Prover, we have followed the same methodology ex-
plained in the Kenzo (see Subsection 2.2.2) case: we have ACL2 wrapped with an
XML-Kenzo interface and the communication between the microkernel and ACL2 is
performed by means of XML-Kenzo requests through an external interface which offers
the available services of our ACL2 internal server (at this moment the only available
service allow the execution of ACL2 scripts). As in the case of the GAP/HAP system
we must install ACL2 (the ACL2 installer can be downloaded from [KM]).

The ACL2-is.lisp provides all the necessary functionality to integrate the ACL2
internal server; that is to say, ACL2, the wrapper and the interface. The ACL2 inter-
face provides just one service called execute-acl2-script. The function associated with
this service, also called execute-acl2-script, takes as input an acl2-script XML-
Kenzo object. From the file indicated in the acl2-script XML-Kenzo object, the
execute-acl2-script function extracts the ACL2 code and executes it in ACL2. The
execute-acl2-script function returns the path of a file where the output generated by
ACL2, when executing the script, is stored. This path is returned in an acl2-output

XML-Kenzo object.

4.3.3.3 New modules of the microkernel

The ACL2-m.lisp file defines a new module for the microkernel called ACL2. The proce-
dure implemented in this module is just in charge of checking that the path indicated
by the acl2-script XML-Kenzo object exists in which case the module invokes the
ACL2 internal server; if the path does not exist this module informs the user about this
situation by means of a warning XML-Kenzo object. Moreover, this file enhances the
interface of the microkernel in order to be able to invoke the ACL2 module.

This new module can be considered neither a computation module nor a construction
module. This module belongs to a new category of modules related to theorem proving
tools called verification modules.

Moreover, the CD-to-ACL2.lisp defines a new verification module for the microkernel
called CD-to-ACL2. The procedure implemented in this module is the interpreter which
transforms an OMDoc document indicated in an OMDoc-to-ACL2 XML-Kenzo object to
an ACL2 encapsulate. In addition, this file enhances the interface of the microkernel in
order to be able to invoke the new module.
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4.3.3.4 Increasing the functionality of the adapter

Finally, we have extended the Aux Content Dictionary by means of the definition of four
new objects: acl2-script, acl2-ouput, CD-to-ACL2 and ACL2-encapsulate. Therefore,
the ACL2-a.lisp file contains the functions to raise the functionality of the adapter to
be able to convert from these new OpenMath objects, devoted to indicate the path of
a file, to XML-Kenzo requests. Namely, we have extend the Phrasebook by means of a
new parser in charge of this task. For instance, the XML-Kenzo request:

<acl2-script> acl2-script-path </acl2-script>

is generated by the adapter when the following OpenMath request is received:

<OMOBJ>
<OMA>

<OMS cd="Aux" name="acl2-script"/>
<OMSTR> acl2-script-path </OMSTR>

</OMA>
</OMOBJ>

4.3.4 Integration of ACL2 in the fKenzo GUI

This subsection is devoted to present the necessary resources to extend the fKenzo GUI
to provide access to the new functionality presented in the previous subsection.

In this case we have defined a fresh fKenzo module to enhance the GUI with support
for the ACL2 system. The new module references three files: acl2-structure (that
defines the structure of the graphical constituents), acl2-functionality (which provides
the functionality related to the graphical constituents) and the last plug-in introduced.

We have defined three graphical elements, using the XUL specification language, in
the acl2-structure file:

• A new tab called ACL2 which is included in the main panel (see Figure 4.18).

• A menu called ACL2 which contains two options: CD to ACL2 and CD to ACL2 in

file.

• A window called CD-to-ACL2 (see Figure 4.19).

The new tab page contains two areas and one button: the left area will be used to
display ACL2 instructions, the button will send the instructions of the left side to ACL2,
and finally, the right area will show the ACL2 result obtained from the evaluation of the
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Figure 4.18: The ACL2 tab with an example

Figure 4.19: The CD-to-ACL2 window
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Figure 4.20: The ACL2 tab with the simplicial sets encapsulate

instructions of the left area. A fKenzo user can manually write ACL2 definitions and
theorems in the left area and then execute them, but the idea is that the ACL2 scripts
are going to be automatically generated by the system and displayed in the left area of
the ACL2 tab.

The functionality stored in the acl2-functionality includes the new graphical con-
stituents. On the one hand, the event handler associated with the send-to-acl2 button
is defined in this file. This event handler obtains the ACL2 instructions which have
been written in the left side of the ACL2 tab, afterwards it stores them in a temporal
file, subsequently an acl2-script OpenMath request is created with the path of the
temporal file and sent to the framework. The returned result is shown in the right side
of the ACL2 tab.

On the other hand, the event handlers associated with the CD to ACL2 and CD to

ACL2 in file menu options are also included in the acl2-functionality file. The former
event handler shows the CD-to-ACL2 window (see Figure 4.19) which allows the user to
choose a Content Dictionary with the description of one of the Kenzo mathematical
structures. Once the user has selected a Content Dictionary; the system generates an
ACL2 encapsulate which is displayed in the left part of the ACL2 tab (see Figure 4.20).
Then, the user only has to use the functionality associated with the send-to-acl2 button
and the ACL2 output produced when the encapsulate is executed in ACL2 is shown in
the right side of the ACL2 tab (see Figure 4.20). The latter event handler, the one
associated with the CD to ACL2 in file menu option, instead of writing the encapsulate
generated in the left part of the ACL2 tab, generates a file with the encapsulate and asks
a path to the user to save the file.
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As can be noticed, our interface to interact with ACL2 is a plain text editor
which is obviously less usable than typical ACL2 interfaces (Emacs [Sta81] or ACL2
sedan [DMMV07]). It is worth noting that our goal was not the creation of an ACL2
interface which could compete with regular ACL2 editors. The idea is that the ACL2
scripts are automatically generated by the system and written in the left area of the
ACL2 tab (as we have seen for the case of the encapsulates generated from Content
Dictionaries) and the user only has to press the send-to-acl2 button, without typing
any additional ACL2 command, to obtain certificates.

4.4 Interoperability between Kenzo, GAP/HAP

and ACL2

As we have said several times throughout this chapter, we are interested not only in
integrating several tools in our framework and use them individually, but also in making
them work together.

The integration of Kenzo and GAP to construct the effective homology version of
Eilenberg MacLane spaces of type K(G, n) where G is a cyclic group was presented in
Section 4.2. Now, we want to increase the reliability of those programs by means of
the ACL2 Theorem Prover. The importance of this verification lies in the fact that
Eilenberg MacLane spaces of type K(G, n) where G is a cyclic group are instrumental
in the computation of homotopy groups.

We have integrated the already available tools in fKenzo to increase the reliability of
some Kenzo programs. In particular, we want to verify the correctness of the following
Kenzo statement using the ACL2 Theorem Prover.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (cyclicgroup 5) z
[K1 Abelian-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This means that we want to prove in ACL2 that the returned object by the
cyclicgroup Kenzo function really satisfies the axioms of an abelian group. This is
important, for instance, to ensure the following function,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (DEFMETHOD K-G-1 ((group AB-GROUP)) ...) z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which constructs the Eilenberg MacLane space of its argument, is really applied over
a meaningful input (that is to say, an actual abelian group). Let us recall that the
construction of the effective homology of that kind of Eilenberg MacLane spaces in-
volves the use of GAP/HAP to obtain a resolution (see Algorithm 4.5). To sum up,
we use Kenzo to construct Eilenberg MacLane spaces of cyclic groups; in addition by
means of GAP/HAP we are able to construct the effective homology of these Eilenberg
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MacLane spaces; and, ACL2 increases the reliability of the construction of these Eilen-
berg MacLane spaces verifying the correctness of their input argument. Then, these
three systems are combined producing a powerful and reliable tool.

The rest of this section is organized as follows. Subsection 4.4.1 explains the imple-
mentation of cyclic groups in the Kenzo system. Subsection 4.4.2 deals with the proof
in ACL2 of the correctness of the implementation of cyclic groups introduced in Sub-
section 4.4.1. The integration of Kenzo, GAP/HAP and ACL2 in our framework and in
the fKenzo GUI is presented in Subsections 4.4.3 and 4.4.4 respectively.

4.4.1 Implementation of cyclic groups in Kenzo

The abelian Group structure is a mathematical structure which was not included in
the original version of Kenzo; but it was included in the development of [RER09] to
construct Eilenberg MacLane spaces of abelian groups. This structure was defined,
following the same schema that the one used to define mathematical structures in Kenzo
(see Subsection 1.2.1), using the two following Common Lisp class definitions:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS GROUP ()
((elements :type group-basis :initarg :elements :reader elements)
(cmpr :type cmprf :initarg :cmpr :reader cmpr1)
(mult :type function :initarg :mult :reader mult1)
(inv :type function :initarg :inv :reader inv1)
(nullel :type gnrt :initarg :nullel :reader nullel)
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
(orgn :type list :initarg :orgn :reader orgn)
(resolution :type reduction :initarg :resolution :reader resolution)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS AB-GROUP (GROUP) ())
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is worth noting that the AB-GROUP class, which represents abelian groups, is a
subclass, without any additional slot, of the GROUP class. The relevant slots (relevant
in the sense of being important for our verification process) of this class are elements,
a list of the elements of the group; mult, the function defining the binary operation of
two elements of the group; inv, the function defining the inverse of the elements of the
group and nullel, which is the null element of the group.

The cyclicgroup function constructs instances of the AB-GROUP. In particular, it
takes as argument a natural number n and constructs an instance of the AB-GROUP which
represents the cyclic group Cn. The concrete definition of the cyclicgroup function is:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun cyclicgroup (n)
(build-ab-group
:elements (<a-b> 0 (1- n))
:mult #’(lambda (g1 g2) (mod (+ g1 g2) n))
:inv #’(lambda (g) (mod (- n g) n))
:nullel 0
:orgn ‘(Cyclic-group of order ,n)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This piece of code must be read as follows. From a natural number n the cyclicgroup

function constructs an AB-GROUP instance where the slot elements has as value the ordered
list of natural numbers from 0 to n−1 (generated from the <a-b> function), the slot mult
is a functional slot which from two elements g1 and g2 returns the value of (g1 + g2)
mod n, the slot inv is a functional slot which from an element g returns the value of
(n− g) mod n and 0 is the null element stored in the slot nullel. Finally, the orgn slot
is a comment which provides the “origin” of the object.

The rest of the slots of the AB-GROUP instance are either automatically generated, in
the case of idnm, or a value is assigned after the construction of the object using a GAP
resolution, in the case of the resolution slot.

4.4.2 The proof in ACL2 about cyclic groups

A group is a mathematical structure which can be defined by means of four functions
based on the following signature, called GRP:

invariant : u -> bool
mult : g g -> g
inv : g -> g
nullel : -> g

The four functions of this signature are: the invariant unary operation (which rep-
resents if an element belongs to the group, that is, the characteristic function of the
underlying set), the mult binary operation (the product), the inv unary operation (the
inverse) and the nullel constant operation (the null element). As concrete axiomatiza-
tion of a group we have chosen that of [Lip81].

Therefore, if we want to prove in ACL2 that four concrete functions, with the correct
arities given by the GRP signature, determine an (abelian) group, we need to prove that
these functions satisfy the properties of (abelian) groups.

Then, for instance if we want to verify in ACL2 that the Kenzo implementation of
the cyclic group C5 is an abelian group we must proceed as follows. First of all, we need
to define the four functions which determine the group (we add the suffix cn, where n is
the dimension of the group, to the function names):
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun invariant-c5 (g) (member g (<0-n> 5))

(defun mult-c5 (g1 g2) (mod (+ g1 g2) 5))

(defun inv-c5 (g) (mod (- 5 g) 5))

(defun nullel-c5 () 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is worth noting that the definitions of mult-c5, inv-c5 and nullel-c5 are exactly
the same as the ones used in the cyclicgroup function for the slots mult, inv and
nullel of the AB-GROUP instance in the case of n = 5. The invariant-c5 function is the
characteristic function of the group and is directly obtained from the elements slot of the
AB-GROUP instance; the transformation from this slot to our function can be considered
safe (we have replaced the <a-b> function with the <0-n> function which constructs the
ordered list of natural numbers from 0 to n−1; that is, the <0-n> function with argument
n has the same behavior that the <a-b> function with arguments 0 and n). Then, if we
prove that these functions (which have the correct arities specified in the GRP signature)
determine an abelian group (that is, they satisfy the axioms of abelian groups) we can
claim that the object constructed in the Kenzo system determines an abelian group.
Then, we need to prove theorems in ACL2 such as the following one:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm abelian-c5
(implies (and (invariant-c5 a) (invariant-c5 b))

(equal (mult-c5 a b) (mult-c5 b a))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The ACL2 Theorem Prover is able to generate a proof of this kind of theorems with-
out any external help. Therefore, we have a proof of the correctness of the cyclicgroup

Kenzo function in the case of n = 5; and we could proceed in the same way for every
concrete case of n. Then, we can say that the cyclicgroup Kenzo function taking as
input the value 5 produces an Abelian Group. However, it would be more interesting
to have a proof saying that for every natural number n the cyclicgroup Kenzo function
produces an Abelian Group.

The GRP signature represents a group. In order to handle different groups, in [LPR99]
an operation between signatures, called ()imp operation was introduced. From a signature
for an algebraic structure, a new signature for a family of the above algebraic structures
can be defined. In our case, the signature GRPimp is defined as follows:

imp-invariant : impGRP g -> bool
imp-mult : impGRP g g -> g
imp-inv : impGRP g -> g
imp-nullel : impGRP -> g

where the new sort impGRP is the sort for groups. This signature, really signatures
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()imp, is the one really used in the Computer Algebra systems because it allows the
manipulation of algebraic structures as data.

Therefore, if we want to prove in ACL2 that four concrete functions, with the correct
arities given by the GRPimp signature, determine an (abelian) group, we need to prove that
these functions satisfy the axioms of (abelian) groups for every element of the impGRP
sort.

In particular, we have the following four definitions for the case of cyclic groups
defined in Kenzo:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun imp-invariant (n g) (member g (<0-n> n))

(defun imp-mult (n g1 g2) (mod (+ g1 g2) n))

(defun imp-inv (n g) (mod (- n g) n))

(defun imp-nullel (n) (declare (ignore n)) 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which can be considered as the definitions used by the Kenzo systems for the construction
of objects which represent cyclic groups. Then, if we prove that these functions determine
an abelian group (that is, they satisfy the properties of abelian groups) for every natural
number, we can claim that every object constructed in the Kenzo system with the
cyclicgroup function, taking as argument a natural number, determines an abelian
group. Then, we need to prove theorems such as the following one:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm imp-abelian
(implies (and (natp n) (imp-invariant n a) (imp-invariant n b))

(equal (imp-mult n a b) (imp-mult n b a))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The ACL2 Theorem Prover is able again to generate a proof of those theorems
without any external help if we load in ACL2 an arithmetic library. Therefore, we have
a proof of the correctness of the cyclicgroup Kenzo function for every natural number.
That is to say, for every natural number n the cyclicgroup Kenzo function constructs
an Abelian Group.

4.4.3 Composability of Kenzo, GAP/HAP and ACL2

In the previous subsubsection we have presented the ACL2 code to verify that the
implementation of cyclic groups in the Kenzo system really constructs abelian groups.
We have included a new verification module in the microkernel to generate the ACL2
functions and theorems necessary to certify that a concrete group of the Kenzo system is
really an (abelian) group. That is to say, given a group G, our framework will generate
the four functions (invariant, mult, inv and nullel) which define the group and the
theorems which ensure that those four functions determine a group.
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Figure 4.21: generate-code XML-Kenzo specification

Figure 4.22: code XML-Kenzo specification

We have developed a new plug-in which allows us to integrate a code generator of
the functions and theorems explained in the previous subsection.

<code id="certificate">
<data format="Kf"> GAP </data>
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/microkernel"> code-generator.lisp </data>
<data format="Kf/adapter"> certificate-a.lisp </data>

</code>

It is worth noting that this plug-in needs the GAP plug-in presented in Subsec-
tion 4.2.2 to work; then the GAP plug-in is referenced from the certificate plug-in.
Let us explain now the rest of resources.

We want to introduce new functionality in our system which allows us to obtain the
necessary ACL2 functions and theorems to verify that a concrete group of the Kenzo
system is really an (abelian) group. Therefore, we have extended the XML-Kenzo specifi-
cation to admit this new functionality. In the XML-Kenzo specification, we have defined
a new element of the requests group called generate-code (see Figure 4.21), whose value
is an element of the A group, and a new element of the results group called code (see
Figure 4.22), whose value is a string, namely the functions and theorems associated with
a concrete group.

As we explained in Subsection 2.2.4 the external server evolves when the
XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified the
external server is able to receive XML-Kenzo objects such as:

<generate-code> <cyclic> 5 </cyclic> </generate-code>

The code-generator.lisp defines a new module for the microkernel called
code-generator. The procedure implemented in this module is a Common Lisp pro-
gram which generates the functions and theorems associated with the group indicated
in the generate-code XML-Kenzo object which invokes this module. Moreover, this file
enhances the interface of the microkernel in order to be able to invoke the new module.

Finally, we have extended the Aux Content Dictionary by means of the definition
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of two new objects: generate-code and code. Therefore, the certificate-a.lisp file
contains the functions to raise the functionality of the adapter to be able to convert
from these new OpenMath objects to XML-Kenzo objects. For instance, the above
XML-Kenzo request is generated by the adapter when the following OpenMath request
is received.

<OMOBJ>
<OMA>

<OMS cd="Aux" name="generate-code"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>

</OMA>
</OMOBJ>

It is worth noting that the generation of certificable code is only available for cyclic
groups; but we are willing to try the certification of all the objects that can be constructed
in our system.

4.4.4 Composability of Kenzo, GAP/HAP and ACL2 in the
fKenzo GUI

The composability of Kenzo, GAP/HAP and ACL2 in fKenzo to provide certificates of
the correctness of the implementation of Kenzo cyclic groups does not involve a great
development, since most of the ingredients were available from the modules related to
GAP/HAP and ACL2.

The new module which provides the tools to compose Kenzo, GAP/HAP and ACL2
in fKenzo is called GAP-Kenzo-ACL2. This module references the GAP/HAP (Sub-
section 4.2.3) and ACL2 (Subsection 4.3.4) modules and also three additional files:
gap-kenzo-acl2-structure (that defines the structure of the new graphical constituents),
gap-kenzo-acl2-functionality (which provides the functionality related to the graphi-
cal constituents), and the plug-in explained in the previous subsection.

When this new module is loaded in fKenzo, the graphical elements of the GAP/HAP
and ACL2 modules and their functionality are loaded in the system. Besides, two new
graphical elements have been defined, using the XUL specification language, in the
gap-kenzo-acl2-structure file:

• A menu called certificates which contains one option called: certificate.

• A window called certificate (see Figure 4.23).

The functionality stored in the gap-kenzo-acl2-functionality document related to
these components works as follows. A function acting as event handler is associated
with the certificate menu option; this function shows the certificate window (see
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Figure 4.23: Certificate window

Figure 4.24: Verification of the correctness of the cyclic group C5

Figure 4.23) if a cyclic group was constructed previously in the session, otherwise the
system informs the user about the need of constructing a group.

When, the user selects a cyclic group with the Add button and subsequently presses
the Build button the system invokes our framework with a generate-code OpenMath
object which has as argument the cyclic group. From the request, a code object with
the definition of the four functions which determine the group (that is the functions
invariant, mult, inv and nullel described in Subsection 4.4.2 with the corresponding
suffix) and the ACL2 theorems which state that these functions satisfy the abelian group
properties are generated. The fKenzo GUI extracts the code and writes it in the left
side of the ACL2 tab as can be seen in Figure 4.24.

Finally, if the user sends the script to ACL2 with the button send-to-acl2, a proof
trial is automatically generated and finally the proof of the correctness of the implemen-
tation of the cyclic group is obtained in the right side of the ACL2 tab (see Figure 4.24).



184 Chapter 4 Interoperability for Algebraic Topology

It is worth noting that in this case ACL2 obtains a proof without the help of the
user, a situation that does not usually happens. More interesting interactions between
Kenzo and ACL2 will be explained in the next chapters.

This is a simple example of the integration of Kenzo, GAP/HAP and ACL2 where
each system has a concrete aim. If we gather the composability of systems presented
in this subsection with the one presented in Section 4.2 we can claim that Kenzo,
GAP/HAP and ACL2 work together to provide a powerful and reliable tool thanks
to the fKenzo system.

4.5 Methodology to integrate a new internal server

in our system

Throughout this chapter we have presented how to integrate both GAP/HAP (see Sec-
tion 4.1) and ACL2 (see Section 4.3) in our system. The reader can notice that the same
process is followed in both cases, so we can extrapolate a methodology to integrate any
Computer Algebra system or Theorem Prover tool in our system.

Let us suppose that we are interested in integrating some functionality of a system
called CAS-or-TP, it does not really matters if it is a Computer Algebra system or a
Theorem Prover since the way of integrating them is analogous.

First of all, we must include the CAS-or-TP system as a new internal server of our
framework. To that aim, we define a new plug-in which references, at least, the following
resources.

<code id="CAS-or-TP">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> cas-or-tp-is.lisp </data>
<data format="Kf/microkernel"> cas-or-tp-m.lisp </data>
<data format="Kf/adapter"> cas-or-tp-a.lisp </data>

</code>

We want to introduce some functionality in our framework which allows us to interact
with some of the procedures of the CAS-or-TP system. Therefore, we must extend the
XML-Kenzo specification to represent the requests and results related to the CAS-or-TP
system. Then, we define in the XML-Kenzo specification the necessary new elements.

Subsequently, we include the CAS-or-TP system as a new internal server following
the same method explained in both the Kenzo (see Subsection 2.2.2) and ACL2 (see
Subsubsection 4.3.3.2) cases. To be more concrete, we have the CAS-or-TP system
wrapped with an XML-Kenzo interface and the communication between the microkernel
and the CAS-or-TP system is performed by means of XML-Kenzo requests through an
external interface which offers the available services of our CAS-or-TP internal server.
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This component is included in the file cas-or-tp-is.lisp.

The cas-or-tp-m.lisp file defines new modules for the microkernel related to the
CAS-or-TP system. The procedures implemented in these modules depend on the func-
tionality which is provided by the CAS-or-TP internal server. If several new modules
are included in the microkernel, it is better to devote a concrete file per each one of
them.

Finally, the cas-or-tp-a.lisp file contains the functions (new parsers) to raise the
functionality of the adapter to be able to convert from OpenMath objects, devoted to
ask requests and return results related to the CAS-or-TP internal server, to XML-Kenzo
requests.

In addition, if we want to be able to interact with the new functionality by
means of the fKenzo GUI, we must define a new module which references three
files: cas-or-tp-structure (that defines the structure of the graphical constituents),
cas-or-tp-functionality (which provides the functionality related to the new graphi-
cal constituents) and the plug-in introduced previously.

In this way, different tools can be integrated in our system as new internal servers.



Glossary

ACID A set of properties (Atomicity, Consistency, Isolation and Durability) that guar-
antee that transactions over a shared space are processed reliably. The atomicity
rule said that a modification over the shared space is fully completed; otherwise
the shared space state is unchanged. The consistency rule said that a modification
of the shared state will take the shared space from one consistent state to another.
The isolation rule refers to the requirement that other process cannot access data
that has been modified during a modification that has not yet completed. Finally,
durability rule ensures that a datum inserted in the shared space remains until a
process explicitly deletes it. 85

active socket An active socket is connected to a remote socket via an open data con-
nection. 93

architectural pattern An architectural pattern expresses a fundamental structural or-
ganization schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for organizing the
relationships between them. 42

binary semaphore A semaphore which has two operations (P and V) for controlling
access by multiple processes to a common resource. The P operation sleeps the
process until the resource controlled by the semaphore becomes available, at which
time the resource is immediately claimed. The V operation is the inverse, it makes
a resource available again after the process has finished using it. 94

bmp Image format used to store bitmap digital images. 210

byu Classic Brigham Young University file format for surfaces in 3D. 210

CLOS Common Lisp Object System (CLOS) [Gra96] is the facility for object-oriented
programming which is part of ANSI Common Lisp. 20, 21, 48

component A part of a software system. A component has an interface that provides
access to its services. On a programming language level components may be rep-
resented as modules, classes, objects or a set of related functions. 42, 53, 72

concurrency Property of systems in which several computations are executing simulta-
neously. 97

321
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CORBA The Common Object Request Broker Architecture, a distributed object com-
puting middleware standard defined by the Object Management Group (OMG),
see [Gro]. 40

Curry Curry [Han06] is a logic functional programming language, based on the Haskell
language. It merges elements of functional and logic programming. 113

event An action initiated either by the user or the computer. An example of a user event
is any mouse movement or a keystroke. An example of an internally generated
event is a notification based on the time of day. 327

event handler A software routine that provides the processing for various events such
as mouse movement, a mouse click, a keystroke or a spoken word. 114

expert system An expert system is an interactive computer-based decision tool that
uses both facts and heuristics to solve difficult decision problems based on knowl-
edge acquired from an expert. 60

framework A software system intended to be instantiated. A framework defines the
architecture for a system. 42

functional programming A programming paradigm that treats computation as the
evaluation of mathematical functions and avoids state and mutable data. 20,
325

hash table Hash tables are data structures which use a hash function to map certain
identifiers (keys) to associated values. 57

Haskell Haskell [Hut07] is a functional programming language. 325

IDE Integrated Development Environment (IDE). An editor that lets the programmer
edit, compile and debug all from within the same program. 108, 114

interface A publicly accessible portion of a component, subsystem, or application. 53,
55

jpeg Image format used by digital cameras and other photographic image capture de-
vices. 210

jvx Geometry file format for curves, surfaces and volumes in n-dimensional space. 210

Maple Maple is a general-purpose commercial computer algebra system. 39

Mathematica Mathematica is a computational software program used in scientific, en-
gineering, and mathematical fields and other areas of technical computing. 39
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MathML Mathematical Markup Language (MathML) [A+08] is a standard XML lan-
guage adopted by the World Wide Web Consortium (W3C) as the approved way
of expressing math on the web. 46

Maxima Maxima [Sch09] is a Lisp system for the manipulation of symbolic and nu-
merical expressions, including differentiation, integration, Taylor series, Laplace
transforms, ordinary differential equations, systems of linear equations, polynomi-
als, and sets, lists, vectors, matrices, and tensors. 40

memoization An optimization technique used to speed up computer programs by stor-
ing the results of function calls for later reuse, rather than recomputing them at
each invocation of the function. 30, 44

module A portion of a program that carries out a specific function and may be used
alone or combined with other modules of the same program. 118

Native XML databases A data persistence software system that allows data to be
stored in XML format; the internal model of such databases depends on XML
and uses XML documents as the fundamental unit of storage, which are, however,
not necessarily stored in the form of text files. 85

obj Popular geometry format 3D geometry file format for surfaces in 3D originally used
in Wavefront’s Advanced Visualizer and now by Sun’s Java3D. 210, 212, 216, 218

OMDoc OMDoc [Koh06] is an open markup language for mathematical documents, and
the knowledge encapsulate in them. This format extends OpenMath and hence
provides some features not available in OpenMath, for example a theory level and
a way of incorporating executable code. 103

OpenMath OpenMath [Con04] is an XML standard for representing mathematical ob-
jects with their semantics, allowing them to be exchanged between computer pro-
grams, stored in databases, or published on the worldwide web. 46, 73

passive socket A passive socket is not connected, but rather awaits an incoming con-
nection, which will spawn a new active socket. 93

pattern A pattern describes a problem that happens over and over, and also the solution
to that problem. Patterns cover various ranges of scale and abstraction. Some
patterns help in structuring a software system into subsystems. Other patterns
support the refinement of subsystems and components, or of the relationships
between them. 41

pbm Portable Bit Map (PBM). The PBM format is a monochrome file format for images.
210–212, 215, 218

Phrasebook A piece of software which transforms from the internal representation of
a data structure of an application to its OpenMath representation and viceversa.
45, 75
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platform The software that a system uses for its implementations. Software platforms
include operating systems, libraries, and frameworks. A platform implements a
virtual machine with applications running on top of it. 42

plug-in A set of software components that adds specific capabilities to a larger software
application. Plug-in based applications can be executed with no plug-ins. 101–104,
118

png Image format, that does not requiring a patent license, used to store bitmap digital
images. 210

prefix notation Mathematical notation where the function is noted before the argu-
ments it operates on. 35

process The actual running of a program module. 98

prompt A message on the computer screen indicating that the computer is ready to
accept user input. In a command-line interface, the prompt may be a simple “>”
symbol or “READY >” message, after which the user may type a command for
the computer to process. 107

raster A raster is a rectangular grid of picture elements representing graphical data for
display. 211

request An event sent by a client to a service provider asking it to perform some pro-
cessing on the client’s behalf. 45

semaphore A mechanism for controlling access by multiple processes to a common
resource in a concurrent programming environment. 94

service A set of functionality offered by a service provider or server to its clients. 53,
72, 73

SOAP Simple Object Access Protocol is a standard protocol for exchanging structured
information in the implementation of Web Services. 90

socket A mechanism for interprocess communication. A socket is an end-point of com-
munication that identifies a particular network address and port number. 93,
134–136

stack overflow An error which occurs when too much memory is used on the data
structure that stores information about the active computer program. 267

stylesheet A program used to render an XML document into another format. 115, 124

thread One subprocess in a multithreaded system. See multithreading. 98

UI User Interface. 113
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web service A web service is traditionally defined by the World Wide Web Consor-
tium as a software system designed to support interoperable machine-to-machine
interaction over a network. 82, 90

well-formed XML XML that follows the XML tag rules listed in the W3C Recommen-
dation for XML 1.0. A well-formed XML document contains one or more elements;
it has a single document element, with any other elements properly nested under
it; and each of the parsed entities referenced directly or indirectly within the doc-
ument is well formed. 73, 75

XML enabled databases A data persistence software system that allows data to be
stored in XML format; the internal model of such databases is a tradicional
database (relational or object oriented). This databases do the conversion be-
tween XML and its internal representation. 85

XML schema A formal specification of element names that indicates which elements
are allowed in an XML document, and in what combinations. It also defines
the structure of the document: which elements are child elements of others, the
sequence in which the child elements can appear, and the number of child elements.
It defines whether an element is empty or can include text. The schema can also
define default values for attributes. 46

XPath XML Path Language, is a query language for selecting nodes from an XML
document. 85

XQuery XQuery is a query and functional programming language that is designed to
query collections of XML data. 85

XSLT eXtensible Stylesheet Language Transformations (XSLT) [K+07] are procedures,
defined in XML, for converting one kind of XML into another. For viewing on the
Web, an XSLT can be written for conversion to XHTML. 124

XUL XML User Interface [H+00], it is Mozilla’s XML-based user interface language
which lets us build feature rich cross-platform applications defining all the elements
of a User Interface. 113
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