
Verifying a plaftorm for digital imaging: a
multi-tool strategy∗

J. Heras1, G. Mata2, A. Romero2, J. Rubio2, and R. Sáenz2

1School of Computing, University of Dundee (UK) -
2Department of Mathematics and Computer Science,

University of La Rioja (Spain)

Calculemus 2013

July 8, 2013

∗
Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European

Commission FP7, STREP project ForMath, n. 243847

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 1/22

Motivation

Motivation

ForMath project: Formalisation of mathematics.

One of the task of La Rioja node: Application of formal algebraic
topology libraries to biomedical imaging (reliable software).
Images provided by Miguel Morales’ biomedical team.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 2/22

Motivation

Motivation

ForMath project: Formalisation of mathematics.
One of the task of La Rioja node: Application of formal algebraic
topology libraries to biomedical imaging (reliable software).

Images provided by Miguel Morales’ biomedical team.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 2/22

Motivation

Motivation

ForMath project: Formalisation of mathematics.
One of the task of La Rioja node: Application of formal algebraic
topology libraries to biomedical imaging (reliable software).
Images provided by Miguel Morales' biomedical team.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 2/22

Motivation

Motivation

ForMath project: Formalisation of mathematics.
One of the task of La Rioja node: Application of formal algebraic
topology libraries to biomedical imaging (reliable software).
Images provided by Miguel Morales’ biomedical team.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 2/22

Motivation

Motivation

ForMath project: Formalisation of mathematics.
One of the task of La Rioja node: Application of formal algebraic
topology libraries to biomedical imaging (reliable software).
Images provided by Miguel Morales’ biomedical team.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 2/22

Motivation

Our approach

Biomedical
Image

(1) Monochromatic
Image

(2) Algebraic Topology
methods

properties

Up to now: formal verification of Step (2).

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards a

certified computation of homology groups for digital images, Proceedings 4th

International Workshoph on Computational Topology in Image Context

(CTIC’12), LNCS, vol. 7309, pages 49-57, 2012.

In this talk: towards a formal verification of Step (1).

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 3/22

Motivation

Our approach

Biomedical
Image

(1) Monochromatic
Image

(2) Algebraic Topology
methods

properties

Up to now: formal verification of Step (2).

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards a

certified computation of homology groups for digital images, Proceedings 4th

International Workshoph on Computational Topology in Image Context

(CTIC’12), LNCS, vol. 7309, pages 49-57, 2012.

In this talk: towards a formal verification of Step (1).

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 3/22

Motivation

Our approach

Biomedical
Image

(1) Monochromatic
Image

(2) Algebraic Topology
methods

properties

Up to now: formal verification of Step (2).

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles. Towards a

certified computation of homology groups for digital images, Proceedings 4th

International Workshoph on Computational Topology in Image Context

(CTIC’12), LNCS, vol. 7309, pages 49-57, 2012.

In this talk: towards a formal verification of Step (1).

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 3/22

Table of Contents

1 Tools and method

2 Verification of actual imaging code

3 Conclusions and Further work

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 4/22

Tools and method

Table of Contents

1 Tools and method

2 Verification of actual imaging code

3 Conclusions and Further work

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 5/22

Tools and method

Fiji/ImageJ

Fiji/ImageJ:

Java programs used in life-science and biomedicine.

Process and analyse biomedical images.

Extensible by means of plugins.

Functionality: binarise images, application of filters, maximum
projection of stack of images, . . .

Our plugins:

SynapCountJ: count number of synapses.

NeuronPersistentJ: detect neuronal structure.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 6/22

Tools and method

Fiji/ImageJ

Fiji/ImageJ:

Java programs used in life-science and biomedicine.

Process and analyse biomedical images.

Extensible by means of plugins.

Functionality: binarise images, application of filters, maximum
projection of stack of images, . . .

Our plugins:

SynapCountJ: count number of synapses.

NeuronPersistentJ: detect neuronal structure.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 6/22

Tools and method

Why/Krakatoa

Why/Krakatoa:

Environment for proving the correctness of Java programs
annotated with JML.

Three components:

Krakatoa: annotated Java program → Why input.
Why tool: compute proof obligations.
Automated provers: discharge proof obligations.

. . . but some proof obligations cannot be automatically discharge.
In those cases, Why generates Coq (and other proof assistants)
code.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 7/22

Tools and method

Why/Krakatoa

Why/Krakatoa:

Environment for proving the correctness of Java programs
annotated with JML.

Three components:

Krakatoa: annotated Java program → Why input.
Why tool: compute proof obligations.
Automated provers: discharge proof obligations.

. . . but some proof obligations cannot be automatically discharge.

In those cases, Why generates Coq (and other proof assistants)
code.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 7/22

Tools and method

Why/Krakatoa

Why/Krakatoa:

Environment for proving the correctness of Java programs
annotated with JML.

Three components:

Krakatoa: annotated Java program → Why input.
Why tool: compute proof obligations.
Automated provers: discharge proof obligations.

. . . but some proof obligations cannot be automatically discharge.
In those cases, Why generates Coq (and other proof assistants)
code.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 7/22

Tools and method

Coq – ACL2

Coq:

Interactive proof assistant.

Constructive higher-order logic based on the CoC.

Formalisation of relevant mathematical results.

ACL2:

A Computational Logic for Applicative Common Lisp.

Automated-Interactive prover.

Applied in formal methods projects of industrial and
commercial interest.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 8/22

Tools and method

Coq – ACL2

Coq:

Interactive proof assistant.

Constructive higher-order logic based on the CoC.

Formalisation of relevant mathematical results.

ACL2:

A Computational Logic for Applicative Common Lisp.

Automated-Interactive prover.

Applied in formal methods projects of industrial and
commercial interest.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 8/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

1 Fiji code → compilable Krakatoa code.

2 Specify Java programs.

3 Apply the Why tool.

4 Proof obligations are discharged?

Yes The verification has ended.

No Goto 5.

5 Are the failed attempts under-specified?

Yes Goto 2.

No Goto 6.

6 Extract Coq code.

7 Coq code → ACL2 code.

8 Are all the statements automatically proved in ACL2?

Yes The verification has ended.

No Are other specifications needed? Yes, Goto 2. No . . .

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Tools and method

The method

Our method to verify the correctness of Fiji/ImageJ code:

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 9/22

Verification of actual imaging code

Table of Contents

1 Tools and method

2 Verification of actual imaging code
Challenges to formalise Fiji code
Transforming Fiji/Java to Krakatoa/Java
Specifying programs for digital imaging
The role of ACL2
Demo

3 Conclusions and Further work

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 10/22

Verification of actual imaging code

Challenges to formalise Fiji code

Challenges:

Characteristics of Fiji code: developed by several authors,
messy, contains redundancies, dead code, . . .

Fiji is a big software system not devised to be formalised.

Why/Krakatoa does not support the complete Java
programming language.

Specification of programs.

ATPs does not automatically discharge all proof obligations.

ITPs lack automation.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 11/22

Verification of actual imaging code

Challenges to formalise Fiji code

Challenges:

Characteristics of Fiji code: developed by several authors,
messy, contains redundancies, dead code, . . .

Fiji is a big software system not devised to be formalised.

Why/Krakatoa does not support the complete Java
programming language.

Specification of programs.

ATPs does not automatically discharge all proof obligations.

ITPs lack automation.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 11/22

Verification of actual imaging code

Challenges to formalise Fiji code

Challenges:

Characteristics of Fiji code: developed by several authors,
messy, contains redundancies, dead code, . . .

Fiji is a big software system not devised to be formalised.

Why/Krakatoa does not support the complete Java
programming language.

Specification of programs.

ATPs does not automatically discharge all proof obligations.

ITPs lack automation.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 11/22

Verification of actual imaging code

Transforming Fiji-Java to Krakatoa-Java

Making Fiji/Java programs compilable in Krakatoa:

1 Delete annotations.

2 Move the classes that are referenced into Why folder.

3 Reproduce the behaviour of the class that we want to compile.

4 Remove import clauses.

5 Remove package declarations.

6 Rebuild native methods.

7 Add a clause in if-else structures in order to remove
“Uncaught exceptions”.

8 Remove debugging useless references.

9 Modify the declaration of some variables to avoid syntax
errors.

10 Change the way that Maximum and Minimum float numbers
are written.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 12/22

Verification of actual imaging code

Transforming Fiji-Java to Krakatoa-Java

1 Delete annotations.

JML annotations are placed between *@ and @*\.
Remove Java annotations preceded by @.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 12/22

Verification of actual imaging code

Transforming Fiji-Java to Krakatoa-Java

1 Delete annotations.

JML annotations are placed between *@ and @*\.
Remove Java annotations preceded by @.

6 Rebuild native methods.

Java allows the use of native methods written in C/C++ (dependent
on hardware/OS).
Methods in the class Math: exponential, logarithm, square root,
trigonometric functions, . . .
Native methods cannot be verified in Krakatoa =⇒ Rewrite them.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 12/22

Verification of actual imaging code

Transforming Fiji-Java to Krakatoa-Java

1 Delete annotations.

JML annotations are placed between *@ and @*\.
Remove Java annotations preceded by @.

6 Rebuild native methods.

Java allows the use of native methods written in C/C++ (dependent
on hardware/OS).
Methods in the class Math: exponential, logarithm, square root,
trigonometric functions, . . .
Native methods cannot be verified in Krakatoa =⇒ Rewrite them.

10 Change Maximum and Minimum float numbers format.

Used to avoid overflow errors.
They generate an error due to the eP exponent.
Conversion from 0x1.fffffeP+127d to 3.4028235e+38f.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 12/22

Verification of actual imaging code

Specifying programs for digital imaging

Specification in Krakatoa is not straightforward.

Specification of preconditions and postconditions using JML to
certify the correctness of the programs.

Precondition: requires.

Postcondition: ensures.

Notations: \result and old.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 13/22

Verification of actual imaging code

Specifying programs for digital imaging

Specification in Krakatoa is not straightforward.
Specification of preconditions and postconditions using JML to
certify the correctness of the programs.

Precondition: requires.

Postcondition: ensures.

Notations: \result and old.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 13/22

Verification of actual imaging code

Specifying programs for digital imaging

Specification in Krakatoa is not straightforward.
Specification of preconditions and postconditions using JML to
certify the correctness of the programs.

Precondition: requires.

Postcondition: ensures.

Notations: \result and old.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 13/22

Verification of actual imaging code

Example 1: Translating an object

private double x;

private double y;

/*@ ensures x == \old(x) + dx && y == \old(y) + dy; @*/

public void translate(final double dx, final double dy) {

this.x += dx; this.y += dy;

}

Small demo in Krakatoa.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 14/22

Verification of actual imaging code

Example 1: Translating an object

private double x;

private double y;

/*@ ensures x == \old(x) + dx && y == \old(y) + dy; @*/

public void translate(final double dx, final double dy) {

this.x += dx; this.y += dy;

}

Small demo in Krakatoa.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 14/22

Verification of actual imaging code

Example 2: xn

static double power(double x, int n){

int i=0;

double pot=1;

while (i<n) {

pot=pot*x;

i++;

}

return pot;

}

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 15/22

Verification of actual imaging code

Example 2: xn

/*@ axiomatic Power {

@ logic real lpower(real x, integer n);

@

@ axiom power_zero: \forall real x; lpower(x,0) == 1.0;

@

@ axiom power_one: \forall real x; lpower(x,1) == x;

@

@ axiom power_two: \forall real x; lpower(x,2) == x*x;

@

@ axiom power_sum:

@ \forall real x, integer i j; lpower(x,i+j) == lpower(x,i)+lpower(x,j);

@

@ axiom power_sum2:

@ \forall real x, integer i j; lpower(x,i*j) == lpower(lpower(x,i),j);

@

@ axiom power_multi:

@ \forall real x y, integer i; lpower(x*y,i) == lpower(x,i) * lpower(y,i);

@

@ axiom power_general1:

@ \forall real x , integer i;x > 1 && i%2 == 1

@ ==> lpower(x,i) == lpower(lpower(x,2),i/2)*x;

@ ... }

@*/
J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 15/22

Verification of actual imaging code

Example 2: xn

/*@ requires n >=0;

@ ensures \result==lpower(x,n);

@*/

static double power(double x, int n){

int i=0;

double pot=1;

/*@ loop_invariant

@ i <= n && pot==lpower(x,i) ;

@ loop_variant n-i ;

@*/

while (i<n) {

pot=pot*x;

i++;

}

/*@ assert i==n; @*/

return pot;

}

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 15/22

Verification of actual imaging code

Example 2: xn

/*@ requires n >=0;

@ ensures \result==lpower(x,n);

@*/

static double power(double x, int n){

int i=0;

double pot=1;

/*@ loop_invariant

@ i <= n && pot==lpower(x,i) ;

@ loop_variant n-i ;

@*/

while (i<n) {

pot=pot*x;

i++;

}

/*@ assert i==n; @*/

return pot;

}

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 15/22

Verification of actual imaging code

Example 2: xn

/*@ requires n >=0;

@ ensures \result==lpower(x,n);

@*/

static double power(double x, int n){

int i=0;

double pot=1;

/*@ loop_invariant

@ i <= n && pot==lpower(x,i) ;

@ loop_variant n-i ;

@*/

while (i<n) {

pot=pot*x;

i++;

}

/*@ assert i==n; @*/

return pot;

}

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 15/22

Verification of actual imaging code

Example 2: xn

/*@ requires n >=0;

@ ensures \result==lpower(x,n);

@*/

static double power(double x, int n){

int i=0;

double pot=1;

/*@ loop_invariant

@ i <= n && pot==lpower(x,i) ;

@ loop_variant n-i ;

@*/

while (i<n) {

pot=pot*x;

i++;

}

/*@ assert i==n; @*/

return pot;

}

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 15/22

Verification of actual imaging code

Example 2: xn

/*@ requires n >=0;

@ ensures \result==lpower(x,n);

@*/

static double power(double x, int n){

int i=0;

double pot=1;

/*@ loop_invariant

@ i <= n && pot==lpower(x,i) ;

@ loop_variant n-i ;

@*/

while (i<n) {

pot=pot*x;

i++;

}

/*@ assert i==n; @*/

return pot;

}

Small demo in Krakatoa.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 15/22

Verification of actual imaging code

Using ACL2 in our framework

How ACL2 can help in the proof verification process?

Scope of automated provers is smaller than the one of ACL2.

Interactive provers lack automation.

Coq2ACL2 – a Proof General extension.

Transforms Coq statements generated by Why to ACL2.

Automatically sends the ACL2 statements to ACL2.

Displays the proof attempt generated by ACL2.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 16/22

Verification of actual imaging code

Using ACL2 in our framework

How ACL2 can help in the proof verification process?

Scope of automated provers is smaller than the one of ACL2.

Interactive provers lack automation.

Coq2ACL2 – a Proof General extension.

Transforms Coq statements generated by Why to ACL2.

Automatically sends the ACL2 statements to ACL2.

Displays the proof attempt generated by ACL2.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 16/22

Verification of actual imaging code

Using ACL2 in our framework

How ACL2 can help in the proof verification process?

Scope of automated provers is smaller than the one of ACL2.

Interactive provers lack automation.

Coq2ACL2 – a Proof General extension.

Transforms Coq statements generated by Why to ACL2.

Automatically sends the ACL2 statements to ACL2.

Displays the proof attempt generated by ACL2.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 16/22

Verification of actual imaging code

Using ACL2 in our framework

How ACL2 can help in the proof verification process?

Scope of automated provers is smaller than the one of ACL2.

Interactive provers lack automation.

Coq2ACL2 – a Proof General extension.

Transforms Coq statements generated by Why to ACL2.

Automatically sends the ACL2 statements to ACL2.

Displays the proof attempt generated by ACL2.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 16/22

Verification of actual imaging code

The I2EA framework

Isabelle/HOL XLL ACL2

Original aim:

Isabelle/HOL theories → ACL2.

Isabelle/HOL first-order expressions → schema of the proof in
ACL2.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 17/22

Verification of actual imaging code

The I2EA framework

Isabelle/HOL XLL ACL2

XLL (Xmall Logical Language):

Intermediate language to port Isabelle/HOL theories to ACL2
and Ecore (UML + OCL).

Transformations are done by means of XSLT.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 17/22

Verification of actual imaging code

The I2EA framework

Isabelle/HOL

Coq

XLL ACL2

Integration of Coq in this framework.

Reuse XLL and XSLT transformations.

Coq statements → ACL2.

Coq2ACL2:

Lisp program XSLT
Coq XLL ACL2

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 17/22

Verification of actual imaging code

Demo

Motivation:

Images acquired by microscopy techniques.

Different planes from the same sample (same XY plane
different Z levels).

Maximum projection of the stack of images.

Maximum projection methods: maximum intensity or standard
deviation.

Demo: correctness of the calculateStdDev method.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 18/22

Verification of actual imaging code

Demo

Motivation:

Images acquired by microscopy techniques.

Different planes from the same sample (same XY plane
different Z levels).

Maximum projection of the stack of images.

Maximum projection methods: maximum intensity or standard
deviation.

Demo: correctness of the calculateStdDev method.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 18/22

Conclusions and Further work

Table of Contents

1 Tools and method

2 Verification of actual imaging code

3 Conclusions and Further work

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 19/22

Conclusions and Further work

Our approach to verify Java code

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 20/22

Conclusions and Further work

Conclusions and Further work

Conclusions:

Verification of Fiji/ImageJ Java code.
Isolate relevant parts of programs to formalise them.
Fiji is unsound but the errors are minor and can be easily
corrected.
Integration of several tools keeping transformations as simple
as possible.
Reuse of I2EA environment to combine systems.

Further work:

Automatic transformation from Java code to Krakatoa code.
Automatic discovery of proof invariants.
Reconstruction of ACL2 proofs in Coq.
Full certification of SynapCountJ and NeuronPersistentJ.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 21/22

Conclusions and Further work

Conclusions and Further work

Conclusions:

Verification of Fiji/ImageJ Java code.
Isolate relevant parts of programs to formalise them.
Fiji is unsound but the errors are minor and can be easily
corrected.
Integration of several tools keeping transformations as simple
as possible.
Reuse of I2EA environment to combine systems.

Further work:

Automatic transformation from Java code to Krakatoa code.
Automatic discovery of proof invariants.
Reconstruction of ACL2 proofs in Coq.
Full certification of SynapCountJ and NeuronPersistentJ.

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 21/22

Thank you for your attention

Verifying a plaftorm for digital imaging: a
multi-tool strategy∗

J. Heras1, G. Mata2, A. Romero2, J. Rubio2, and R. Sáenz2

1School of Computing, University of Dundee (UK) -
2Department of Mathematics and Computer Science,

University of La Rioja (Spain)

Calculemus 2013

July 8, 2013

∗
Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European

Commission FP7, STREP project ForMath, n. 243847

J. Heras et al. Verifying a plaftorm for digital imaging: a multi-tool strategy 22/22

	Tools and method
	Verification of actual imaging code
	Challenges to formalise Fiji code
	Transforming Fiji/Java to Krakatoa/Java
	Specifying programs for digital imaging
	The role of ACL2
	Demo

	Conclusions and Further work

