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Simplicial Complexes

Simplicial Complexes

Definition

Let V be an ordered set, called the vertex set.
A simplex over V is any finite subset of V .

Definition

Let α and β be simplices over V , we say α is a face of β if α is a subset of β.

Definition

An ordered (abstract) simplicial complex over V is a set of simplices K over V
satisfying the property:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made
of the simplices of cardinality n + 1.
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Simplicial Complexes

Simplicial Complexes
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V = (0, 1, 2, 3, 4, 5, 6)
K = {∅, (0), (1), (2), (3), (4), (5), (6),

(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6),
(0, 1, 2), (4, 5, 6)}
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Incidence simplicial matrices

Incidence Matrices

Definition

Let X and Y be two ordered finite sets of simplices, we call
incidence matrix to a matrix m × n where

m = ]|X | ∧ n = ]|Y |

M =


Y [1] · · · Y [n]

X [1] a1,1 · · · a1,n

.

.

.

.

.

.
. . .

.

.

.
X [m] am,1 · · · am,n


where

ai ,j =

{
1 if X [i ] is a face of Y [j ]
0 if X [i ] is not a face of Y [j ]
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Incidence simplicial matrices

Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C
with an order between its elements and B the set of
(n − 1)-simplices of C with an order between its elements.
We call incidence matrix of dimension n (n ≥ 1), to a matrix p × q
where

p = ]|B| ∧ q = ]|A|

Mi ,j =

{
1 if Bi is a face of Aj

0 if Bi is not a face of Aj
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Incidence simplicial matrices

Incidence Matrices of Simplicial Complexes
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M1 =



{0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3} {3, 4} {4, 5} {4, 6} {5, 6}
{0} 1 1 1 0 0 0 0 0 0 0
{1} 1 0 0 1 1 0 0 0 0 0
{2} 0 1 0 1 0 1 0 0 0 0
{3} 0 0 1 0 1 1 1 0 0 0
{4} 0 0 0 0 0 0 1 1 1 0
{5} 0 0 0 0 0 0 0 1 0 1
{6} 0 0 0 0 0 0 0 0 1 1


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Incidence simplicial matrices

Incidence Matrices of Simplicial Complexes
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M2 =



{0, 1, 2} {4, 5, 6}
{0, 1} 1 0
{0, 2} 1 0
{0, 3} 0 0
{1, 2} 1 0
{1, 3} 0 0
{2, 3} 0 0
{3, 4} 0 0
{4, 5} 0 1
{4, 6} 0 1
{5, 6} 0 1


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Computing homology groups from Smith Normal Form

Computing homology groups from Smith Normal Form

Let X be a simplicial complex and Mn,Mn+1 be the incidence matrices of X of
dimension n and n + 1.

If we compute the Smith Normal Form of both matrices we obtain two matrices of the

form:

SNF (Mn) =



a1 0 . . . 0 0 . . . 0
0 a2 . . . 0 0 . . . 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . ak 0 . . . 0
0 0 . . . 0 0 . . . 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 0 0 . . . 0


SNF (Mn+1)



b1 0 . . . 0 0 . . . 0
0 b2 . . . 0 0 . . . 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . bm 0 . . . 0
0 0 . . . 0 0 . . . 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
0 0 . . . 0 0 . . . 0



Then Hn(X ) = f − k −m where f is the number of simplexes of X
of dimension n
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Computing homology groups from Smith Normal Form

Butterfly Example

Let us compute H0 of the butterfly simplicial complex
So, we need M0 and M1:

in this case M0 is the void matrix; so k = 0;

we compute the Smith Normal Form of M1:

SNF (M1) =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0


;

so, m = 6;

in addition, there are 7 0-simplexes

Therefore, H0(X ) = 7− 6− 0 = 1→ Z

This result must be interpreted as stating that the butterfly simplicial complex only

has one connected component
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Computing homology groups from Smith Normal Form

Butterfly Example continued

Let us compute H1 of the butterfly simplicial complex
So, we need M1 and M2:

we have computed in the previous slide the Smith Normal Form of M1: k = 6;
we compute the Smith Normal Form of M2:

SNF (M2) =



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


;

so, m = 2;
in addition, there are 10 1-simplexes

Therefore, H1(X ) = 10− 6− 2 = 2→ Z⊕ Z
This result must be interpreted as stating that the butterfly simplicial complex has two
“holes” in the topological sense
You can think that there is three holes in the butterfly example, but one of them is the
composition of the others

A more detailed explanation about this fact is given in Page 6 of http:

//www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
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Computing homology groups from Smith Normal Form

Butterfly Example continued

Let us compute H2 of the butterfly simplicial complex
So, we need M2 and M3:

we have computed in the previous slide the Smith Normal Form of M2: k = 2;

M3 is a void matrix; so, m = 0,

in addition, there are 2 2-simplexes

Therefore, H2(X ) = 2− 2− 0 = 0
This result must be interpreted as stating that the butterfly simplicial complex has not
“voids” in the topological sense

The rest of matrices are void, then the homology groups Hn(X ) with n ≥ 3 are null
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Computing homology groups from Smith Normal Form

Other Examples

K1 =
{∅, (0), (1), (2), (3), (4), (5), (0, 1), (0, 2), (1, 2), (2, 3), (3, 4), (3, 5), (4, 5), (3, 4, 5)}
H0(K1) = Z,H1(K1) = Z
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Computing homology groups from Smith Normal Form

Other Examples

V = (0, 1, 2, 3, 4, 5, 6, 7)
K2 = {∅, (0), (1), (2), (3), (4), (5), (6), (7),
(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7)
(2, 3), (2, 4), (2, 6), (2, 7), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6), (5, 7), (6, 7)
(0, 1, 5), (0, 1, 6), (0, 1, 7), (0, 2, 3), (0, 2, 4), (0, 2, 6), (0, 3, 4), (0, 5, 7), (1, 2, 3), (1, 2, 4),
(1, 2, 7), (1, 3, 5), (1, 4, 6), (2, 6, 7), (3, 4, 5), (4, 5, 6), (5, 6, 7)}
H0(K2) = Z,H1(K2) = 0,H2(K2) = 0
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Computing homology groups from Smith Normal Form

Other Examples

H0(K3) = Z,H1(K3) = Z⊕ Z,H2(K3) = Z
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Computing homology groups from Smith Normal Form

Other Examples
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V = (0, 1, 2, . . . , 24, 25)
K = vertices ∪ edges ∪ triangles

H0(K4) = Z,H1(K4) = Z⊕ Z⊕ Z,H2(K4) = 0
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