
Applying Generative Communication to Symbolic
Computation in Common Lisp

Jónathan Heras, Vico Pascual and Julio Rubio

Departamento de Matemáticas y Computación
Universidad de La Rioja

Spain

2nd European Lisp Symposium 2009
May 29, 2009

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 1/21



Table of Contents

1 Introduction

2 Architecture of the system

3 Communication among modules

4 Clients of our system

5 Conclusions and Further Work

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 2/21



Introduction

Table of Contents

1 Introduction

2 Architecture of the system

3 Communication among modules

4 Clients of our system

5 Conclusions and Further Work

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 3/21



Introduction

Introduction

Kenzo is a Common Lisp system devoted to Symbolic
Computation in Algebraic Topology

Accessibility and usability are two weak points in Kenzo
An intermediary layer was designed to interact with the Kenzo
system
Based on Microkernel pattern

Figure: Simplified diagram of the previous architecture.

Drawbacks:

Message passing style

Recalculations

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 4/21



Introduction

Introduction

Kenzo is a Common Lisp system devoted to Symbolic
Computation in Algebraic Topology
Accessibility and usability are two weak points in Kenzo

An intermediary layer was designed to interact with the Kenzo
system
Based on Microkernel pattern

Figure: Simplified diagram of the previous architecture.

Drawbacks:

Message passing style

Recalculations

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 4/21



Introduction

Introduction

Kenzo is a Common Lisp system devoted to Symbolic
Computation in Algebraic Topology
Accessibility and usability are two weak points in Kenzo
An intermediary layer was designed to interact with the Kenzo
system

Based on Microkernel pattern

Figure: Simplified diagram of the previous architecture.

Drawbacks:

Message passing style

Recalculations

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 4/21



Introduction

Introduction

Kenzo is a Common Lisp system devoted to Symbolic
Computation in Algebraic Topology
Accessibility and usability are two weak points in Kenzo
An intermediary layer was designed to interact with the Kenzo
system
Based on Microkernel pattern

Figure: Simplified diagram of the previous architecture.

Drawbacks:

Message passing style

Recalculations

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 4/21



Introduction

Introduction

Kenzo is a Common Lisp system devoted to Symbolic
Computation in Algebraic Topology
Accessibility and usability are two weak points in Kenzo
An intermediary layer was designed to interact with the Kenzo
system
Based on Microkernel pattern

Figure: Simplified diagram of the previous architecture.

Drawbacks:

Message passing style

Recalculations

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 4/21



Introduction

Introduction

Kenzo is a Common Lisp system devoted to Symbolic
Computation in Algebraic Topology
Accessibility and usability are two weak points in Kenzo
An intermediary layer was designed to interact with the Kenzo
system
Based on Microkernel pattern

Figure: Simplified diagram of the previous architecture.

Drawbacks:

Message passing style

Recalculations

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 4/21



Introduction

Introduction

Kenzo is a Common Lisp system devoted to Symbolic
Computation in Algebraic Topology
Accessibility and usability are two weak points in Kenzo
An intermediary layer was designed to interact with the Kenzo
system
Based on Microkernel pattern

Figure: Simplified diagram of the previous architecture.

Drawbacks:

Message passing style

Recalculations
J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 4/21



Architecture of the system

Table of Contents

1 Introduction

2 Architecture of the system
Linda Model and Shared Repository
An adapted implementation of the Linda Model
An example of complete computation

3 Communication among modules

4 Clients of our system

5 Conclusions and Further Work

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 5/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system Linda Model and Shared Repository

Linda Model and Shared Repository

Linda Model:

Based on Generative Communication

Asynchronous communication is performed by means of the insertion and

extraction of data over a shared memory

Three ingredients:

tuple space: the shared memory repository

tuples: the data in the Linda Model, tuples can contain actual and

formal items, e.g, (3 ? 4.3)

operations:

Shared repository pattern:

Add the nuance that a component has no knowledge of:

what components have produced the data it uses,

what components will use its outputs
J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 6/21



Architecture of the system An adapted implementation of the Linda Model

Architecture

Recalculations solved
No longer message passing style

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 7/21



Architecture of the system An adapted implementation of the Linda Model

Architecture

Recalculations solved
No longer message passing style

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 7/21



Architecture of the system An adapted implementation of the Linda Model

Architecture

Recalculations solved
No longer message passing style

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 7/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.

Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

About our Linda Model implementation

Desirable properties of any implementation of the Linda Model

Shared

Persistent

ACID compliant

Two possibilities

Implement the Linda Model from scratch.

Use an XML enabled database

An XML enabled database is built on top of relational or
object oriented databases.
Include two kind of processes:
XML data → database elements
database elements → XML data

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 8/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions
tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions
tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions
tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions

tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions
tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions
tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions
tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Our Linda Model implementation

Implementation of a Linda Model

tuple space

tuples

operations

In our implementation

AllegroCache

persistent objects of AllegroCache

based on AllegroCache functions
tuples:

tuples rely on XML-Kenzo but tuple space is based on AllegroCache, so it is

necessary to convert from XML to objects and viceversa

A tuple is implemented as an object belonging to any of the subclasses of the

tuple class

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 9/21



Architecture of the system An adapted implementation of the Linda Model

Implementation of the operations

writetuple: tuple→ Boolean
taketuple: tuple→ tuple
readtuple: tuple→ tuple-persistent
taketuplep: tuple→ tuple ∨ nil
readtuplep: tuple→ tuple-persistent ∨ nil

Implemented using the select, insert and delete-instance of
AllegroCache

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 10/21



Architecture of the system An adapted implementation of the Linda Model

Relations between the tuple space and the modules

I/O module
writes pending tuples
reads finished tuples

Intelligent system

writes valid tuples
writes finished non valid tuples
takes pending tuples

Kenzo module

writes finished tuples
takes valid tuples

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 11/21



Architecture of the system An adapted implementation of the Linda Model

Relations between the tuple space and the modules

I/O module
writes pending tuples
reads finished tuples

Intelligent system
writes valid tuples
writes finished non valid tuples
takes pending tuples

Kenzo module

writes finished tuples
takes valid tuples

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 11/21



Architecture of the system An adapted implementation of the Linda Model

Relations between the tuple space and the modules

I/O module
writes pending tuples
reads finished tuples

Intelligent system
writes valid tuples
writes finished non valid tuples
takes pending tuples

Kenzo module
writes finished tuples
takes valid tuples

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 11/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Architecture of the system An example of complete computation

Computing π6(S
3)

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 12/21



Communication among modules

Table of Contents

1 Introduction

2 Architecture of the system

3 Communication among modules
Communication
Concurrency issues

4 Clients of our system

5 Conclusions and Further Work

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 13/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)
observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer
tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)
observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer
tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)

observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer
tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)
observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer
tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)
observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer
tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)
observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer

tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)
observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer
tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

By means of a reactive mechanism

publish-subscribe machinery

subjects (can be modified)
observers (subscribed to any possible subjects modification)

In our implementation:

tuple space → subject
each module → an observer
tuple space → has got associated an observer

Subscriptions are stored in an AllegroCache database

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 14/21



Communication among modules Communication

Communication among modules

Module observer creates a passive socket

Tuple space observer

Consults the database of subscriptions

Sends a notification to the subscribers

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 15/21



Communication among modules Communication

Communication among modules

Module observer creates a passive socket

Tuple space observer

Consults the database of subscriptions

Sends a notification to the subscribers

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 15/21



Communication among modules Concurrency issues

Concurrency issues

Several requests could be in the system at the same time

Linda Model design avoids some of the concurrency problems
Two situations can appear:

Different modules working at the same time

Absence of deadlocks
Mutual exclusion

Different processes working in a same module

No deadlocks
No race condition problems
No starvation

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 16/21



Communication among modules Concurrency issues

Concurrency issues

Several requests could be in the system at the same time
Linda Model design avoids some of the concurrency problems

Two situations can appear:

Different modules working at the same time

Absence of deadlocks
Mutual exclusion

Different processes working in a same module

No deadlocks
No race condition problems
No starvation

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 16/21



Communication among modules Concurrency issues

Concurrency issues

Several requests could be in the system at the same time
Linda Model design avoids some of the concurrency problems
Two situations can appear:

Different modules working at the same time

Absence of deadlocks
Mutual exclusion

Different processes working in a same module

No deadlocks
No race condition problems
No starvation

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 16/21



Communication among modules Concurrency issues

Concurrency issues

Several requests could be in the system at the same time
Linda Model design avoids some of the concurrency problems
Two situations can appear:

Different modules working at the same time

Absence of deadlocks
Mutual exclusion

Different processes working in a same module

No deadlocks
No race condition problems
No starvation

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 16/21



Communication among modules Concurrency issues

Concurrency issues

Several requests could be in the system at the same time
Linda Model design avoids some of the concurrency problems
Two situations can appear:

Different modules working at the same time

Absence of deadlocks
Mutual exclusion

Different processes working in a same module

No deadlocks
No race condition problems
No starvation

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 16/21



Communication among modules Concurrency issues

Concurrency issues

Several requests could be in the system at the same time
Linda Model design avoids some of the concurrency problems
Two situations can appear:

Different modules working at the same time

Absence of deadlocks
Mutual exclusion

Different processes working in a same module

No deadlocks
No race condition problems
No starvation

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 16/21



Communication among modules Concurrency issues

Concurrency issues

Several requests could be in the system at the same time
Linda Model design avoids some of the concurrency problems
Two situations can appear:

Different modules working at the same time

Absence of deadlocks
Mutual exclusion

Different processes working in a same module

No deadlocks
No race condition problems
No starvation

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 16/21



Clients of our system

Table of Contents

1 Introduction

2 Architecture of the system

3 Communication among modules

4 Clients of our system

5 Conclusions and Further Work

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 17/21



Clients of our system

A GUI and two web services

A GUI

Two web services

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 18/21



Conclusions and Further Work

Table of Contents

1 Introduction

2 Architecture of the system

3 Communication among modules

4 Clients of our system

5 Conclusions and Further Work

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 19/21



Conclusions and Further Work

Conclusions and Further Work

Conclusions

We have reported on a system to interact with the Kenzo
Computer Algebra system

We have obtained a system which can process queries
concurrently and where persistent results are available thanks
to an adapted implementation in Common Lisp of the Linda
Model

Future Work

Liberate our system from the proprietary features of Allegro
Common Lisp

Decide when a computation is easy enough to solve it locally
or whether it must be sent to a central server

Devise good heuristics to decide what is the meaning of the
predicate “to be an easy computation”

Integration with other systems

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 20/21



Conclusions and Further Work

Conclusions and Further Work

Conclusions

We have reported on a system to interact with the Kenzo
Computer Algebra system

We have obtained a system which can process queries
concurrently and where persistent results are available thanks
to an adapted implementation in Common Lisp of the Linda
Model

Future Work

Liberate our system from the proprietary features of Allegro
Common Lisp

Decide when a computation is easy enough to solve it locally
or whether it must be sent to a central server

Devise good heuristics to decide what is the meaning of the
predicate “to be an easy computation”

Integration with other systems

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 20/21



Applying Generative Communication to Symbolic
Computation in Common Lisp

Jónathan Heras, Vico Pascual and Julio Rubio

Departamento de Matemáticas y Computación
Universidad de La Rioja

Spain

2nd European Lisp Symposium 2009
May 29, 2009

J. Heras, V. Pascual and J. Rubio Applying Generative Communication to Symbolic Computation in Common Lisp 21/21


	Introduction
	Architecture of the system
	Linda Model and Shared Repository
	An adapted implementation of the Linda Model
	An example of complete computation

	Communication among modules
	Communication
	Concurrency issues

	Clients of our system
	Conclusions and Further Work
	

