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Motivation

Motivation

Can we trust published mathematical-proofs?

A. B. Kempe. On the geographical problem of four-colours. American Journal of

Mathematics 2(3):193–200, 1879.

A. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of

Mathematics 142:443–551, 1995.

R. Mikhailov and J. Wu. On homotopy groups on the suspended classifying

spaces. Algebraic and Geometric Topology 10:565–625, 2010.

E. Gallardo and C. Cowen. Rota’s Universal Operators and Invariant Subspaces

in Hilbert Spaces. Submitted but withdraw by the authors, 2013.

M. Lecat. Erreurs de Mathématiciens des origines à nos jours, 1935.

List of incomplete proofs:

http://en.wikipedia.org/wiki/List_of_incomplete_proofs.
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Motivation

Motivation

Some proofs are really long and complex:

A. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of

Mathematics 142:443–551, 1995. (98 pages.)

N. Robertson and P. Seymour. Graph minors I–XX. Journal of Combinatorial

Theory, Series B, 1983–2004. (Approximately 500 pages.)

Classification of the Finite Simple Groups. (Approximately 500 papers and 100

authors.)

Some theorems are proven relying on results obtained by computers:

K. Appel and W. Haken. Every Map is Four Colourable. Bulletin of the American

Mathematical Society 82(5):711-712, 1976.

T. C. Hales. A proof of the Kepler conjecture. Annals of Mathematics

162:1065–1185, 2005.

A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: an

experimental approach. Mathematics of Computation 82:2237–2244, 2013.
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Motivation

Formal Proofs

How can we increase the trustworthiness of our proofs?

Formal Proofs.

Definition

A formal proof is a proof that has been verified from first principles.

Generally speaking, formal proofs are constructed using computers. Namely,
Interactive Proof Assistant:

Software tool for the development of formal proofs.

Require Man-Machine collaboration:

Human: designs the proofs.
Machine: fill the gaps.

Several systems: Isabelle, HOL, ACL2, Mizar, Coq, . . .

different underlying logics: set-theory, first-order logic, higher-order logic,
Calculus of Inductive Constructions.
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Motivation

Interactive Proof Assistants

Can Interactive Proof Assistants be used in actual mathematics?

G. Gonthier. Formal proof — The Four-Colour Theorem. Notices of the
American Mathematical Society 55(11):1382–1393, 2008.

G. Gonthier et al. A Machine-Checked Proof of the Odd Order Theorem.
Proceedings of ITP’2013:163–179, 2013.

Flyspeck project. A formal proof of the Kepler conjecture.
https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion, 2014.

Other examples: the Jordan curve theorem, the prime number theorem, the
fundamental theorem of algebra, . . .

Formalising 100 theorems (http://www.cs.ru.nl/F.Wiedijk/100/index.html) —
currently at 90%.
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Motivation

An Interactive Proof Assistant: Coq

Coq:

An Interactive Proof Assistant.

Based on the Calculus of Inductive Constructions — a constructive higher-order
typed lambda calculus.

Constructive proofs — we can extract programs from the proofs.

SSReflect:

Extension of Coq.

Developed while formalising the Four Colour Theorem, and intensively used in
the formalisation of the Odd Order Theorem.

Simplifies Coq developments, and provides several useful libraries.

A small demo.
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Formal Proofs related to Homological Perturbation Theory

Main Definition

Definition

A reduction ρ between two chain complexes C∗ y D∗ (denoted by ρ : C∗⇒⇒D∗) is a
triple ρ = (f , g , h)

C∗

h

�� f
++
D∗

g

kk

satisfying the following relations:

1) fg = IdD∗ ;

2) dh + hd = IdC∗ −gf ;

3) fh = 0; hg = 0; hh = 0.

Theorem

If C∗⇒⇒D∗, then C∗ ∼= D∗ ⊕ A∗, with A∗ acyclic, which implies that
Hn(C∗) ∼= Hn(D∗) for all n.
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Formal Proofs related to Homological Perturbation Theory

Formal Proofs related to HPT

Formalised in Isabelle/HOL (Higher-Order Logic):

Theorem (Basic Perturbation Lemma)

Let ρ = (f , g , h) : (C∗, dC∗ )⇒⇒ (D∗, dD∗ ) be a reduction, and δ̂ a perturbation of dC∗ .
We assume the nilpotency hypothesis is satisfied: for every c ∈ Cn, there exists ν ∈ N
such that (δ̂h)ν(c) = 0. Then, a perturbation δ can be defined for the differential dD∗

and a new reduction ρ′ = (f ′, g ′, h′) : (C∗, dC∗ + δ̂)⇒⇒ (D∗, dD∗ + δ) can be
constructed.

J. Aransay, C. Ballarin, and J. Rubio. A mechanized proof of the Basic
Perturbation Lemma. Journal of Automated Reasoning, 40(4):271–292, 2008.

Theorem (Trivial Perturbation Lemma)

Let ρ = (f , g , h) : (C∗, dC∗ )⇒⇒ (D∗, dD∗ ) be a reduction, and δ̂ a perturbation of dD∗ .
Then, a perturbation δ can be defined for the differential dD∗ and a new reduction

ρ′ = (f ′, g ′, h′) : (C∗, dC∗ + g δ̂f )⇒⇒ (D∗, dD∗ + δ) can be constructed.

J. Aransay and C. Doḿınguez. Modelling Differential Structures in Proof
Assistants: The Graded Case. LNCS 5717:203–210, 2009.
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Formal Proofs related to Homological Perturbation Theory

Formal Proofs related to HPT

Formalisations in ACL2 (First-Order Logic):

Theorem (Normalisation Reduction)

Given a simplicial set K , there exists a reduction C(K)⇒⇒CN(K), where C(K) and
CN(K) are, respectively, the chain complex and the normalised chain complex
associated with K .

L. Lambán, F. J. Mart́ın-Mateos, J. L. Ruiz-Reina, and J. Rubio. Formalization
of a Normalization Theorem in Simplicial Topology. Annals of Mathematics and
Artificial Intelligence 64(1):1–37, 2012.

Theorem (Eilenberg-Zilber Theorem)

Given two simplicial sets K1 and K2, there exists a reduction
C(K1 × K2)⇒⇒C(K1)⊗ C(K2).

L. Lambán, J. Rubio, F. J. Mart́ın-Mateos, and J. L. Ruiz-Reina. Verifying the
bridge between simplicial topology and algebra: the Eilenberg–Zilber algorithm.
Logic Journal of the IGPL 22(1):39–65, 2013.

Other formalisations: Cone Reduction theorem, Trivial Perturbation lemma and
SES theorems.
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Formal Proofs related to Homological Perturbation Theory

Formal Proofs related to HPT

Formalisations in Coq (Constructive Higher-Order Logic):

Theorem (Effective Homology of Bicomplexes)

Let B = {Bp , bp}p∈N be a bicomplex such that each chain complex Bp is an object
with effective homology, for all p ∈ N. Then, the bicomplex B is an object with
effective homology.

C. Doḿınguez and J. Rubio. Effective Homology of Bicomplexes, formalized in
Coq. Theoretical Computer Science, 412:962–970, 2011.

Theorem (Vector-Field Reduction Theorem)

Let C = (Cp , dp)p∈N be a chain complex with a distinguished basis {βp}p∈N, and
V = (αi , βi )i∈β be an admissible discrete vector field on C . Then the vector field V

defines a canonical reduction ρ = (f , g , h) : (Cp , dp)⇒⇒ (C c
p , d

c
p ) where C c

p = Z[βp ] is
the free Z-module generated by the critical p-cells.

M. Poza, C. Doḿınguez, J. Heras, and J. Rubio. A certified reduction strategy
for homological image processing. ACM Transactions on Computational Logic,
15(3), 2014.

Other formalisations: Cone Reduction theorem and Trivial Perturbation lemma.
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A Formal Proof of Sergeraert’s Proof of the BPL

A Formal Proof of Sergeraert’s Proof

A formal proof of Sergeraert’s proof of the BPL was presented in:

M. Poza, C. Doḿınguez, J. Heras, and J. Rubio. A certified reduction strategy
for homological image processing. ACM Transactions on Computational Logic,
15(3), 2014.

M. Poza. Certifying homological algorithms to study biomedical images. Ph.D.
thesis, University of La Rioja, 2013.

This proof was given in Coq/SSReflect, and it was restricted to finitely
generated chain complexes over a field.

In this scenario, we can use matrices to represent chain complexes, chain
complex morphisms, and so on.

Some figures:

356 definitions (63 are new),
532 lemmas (117 are new), and
8419 lines of code (2416 related to BPL).
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A Formal Proof of Sergeraert’s Proof of the BPL

Some Aspects of the Formalisation

The role of SSReflect.

Main mathematical structures.

Key points of the proof.

Live proof of a property.
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A Formal Proof of Sergeraert’s Proof of the BPL

The Role of SSReflect

SSReflect language improves efficiency when writing proofs.

Libraries:

basic infrastructure: natural numbers, integers, booleans, . . .
matrix.v and mxalgebra.v: matrix theory (multiplication, determinant,
matrix decomposition, . . . ).

Lemma mul_row_col:
(
α β

)
×
(

γ
η

)
= α× γ + β × η

bigop.v: library related to big operators.
Lemma big_distrr: a×

∑
0≤i<n

Fi =
∑

0≤i<n
(a× Fi ).

. . .
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A Formal Proof of Sergeraert’s Proof of the BPL

Main Mathematical Structures

SSReflect provides the basic infrastructure, but we need to define our own notions.

Finitely generated chain complexes over a field:

Variable K : fieldType.

Record FGChain_Complex :=

{ m : Z -> nat;

diff : forall i:Z, M[K]_(m (i + 1), m i);

boundary : forall i:Z, (diff (i + 1)) *m (diff i) = 0}.

Chain complex morphisms and homotopy operators:

Record FGChain_Complex_Morphism (A B : FGChain_Complex) :=

{ M : forall i:Z, M[K]_((m A i),(m B i));

M_well_defined : forall i:Z,

(diff A i) *m (M i) = (M (i+1)) *m (diff B i)}.

Record FGHomotopy_operator (A : FGChain_Complex) :=

{ Ho : forall i:Z, M[K]_(m A i, m A (i+1))}.
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A Formal Proof of Sergeraert’s Proof of the BPL

Main Mathematical Structures

Reduction:

Record FGReduction :=

{ C : FGChain_Complex;

D : FGChain_Complex;

F : FGChain_Complex_Morphism C D;

G : FGChain_Complex_Morphism D C;

H : FGHomotopy_operator C;

ax1 : forall i:Z, (M G i) *m (M F i) = 1%:M;

ax2 : forall i:Z, (M F (i+1)) *m (M G (i+1)) +

((Ho H (i+1)) *m (diff C (i+1))) +

((diff C i) *m (Ho H i)) = 1%:M;

ax3 : forall i:Z, (Ho H i) *m (M F (i+1)) = 0;

ax4 : forall i:Z, (M G i) *m (Ho H i) = 0;

ax5 : forall i:Z, (Ho H i) *m (Ho H (i+1)) = 0}.
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A Formal Proof of Sergeraert’s Proof of the BPL

Key Points of the Proof

Theorem (Basic Perturbation Lemma)

Let ρ = (f , g , h) : (C∗, dC∗ )⇒⇒ (D∗, dD∗ ) be a reduction, and δ̂ a perturbation of dC∗ .
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Live Proof of a Property

Theorem (Generalisation of the Hexagonal Lemma)

Let C∗ = (Cp , dp)p∈Z be a chain complex such that every chain group Cp can be
decomposed as Cp = Ap ⊕ Bp ⊕ C ′p . The boundary maps dp are then decomposed in
3× 3 block matrices [dp,i,j ]1≤i,j≤3. If every component of dp,2,1 : Ap → Bp−1 is an
isomorphism; then, the chain complex (Cp , dp)p∈Z can be reduced to a chain complex
(C ′p , d

′
p)p∈Z.

Proof.

The reduction has as components:
d ′p = dp,3,3 − dp,3,1d

−1
p,2,1dp,2,3 fp = [0 − dp,3,1d

−1
p,2,1 1]

gp =

 −d−1
p,2,1dp,2,3

0
1

 hp =

 0 −d−1
p,2,1 0

0 0 0
0 0 0



Demo

dh + hd + fg = id
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Conclusions

Conclusions

It is feasible to use interactive proof assistants to formalise mathematics.

Formal proofs do not start from scratch, but previously-developed libraries are
used as a basis.

Using different proof assistants, several results from homological perturbation
theory have been already formalised.
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